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Abstract
This paper is on the numerical solution of an elliptic hemivariational inequality by the virtual
element method. We introduce an abstract framework of the numerical method and provide
an error analysis. We then apply the virtual element method to solve two contact problems: a
bilateral contact problemwith friction and a frictionless normal compliance contact problem.
Error estimates of their numerical solutions are derived, which are of optimal order for the
linear virtual elementmethod, under appropriate solution regularity assumptions. Thediscrete
problem can be formulated as an optimization problem for a difference of two convex (DC)
functions, and a convergent algorithm is introduced to solve it. Numerical examples are
reported to show the performance of the proposed methods.

Keywords Virtual element method · Hemivariational inequality · Error estimate · Double
bundle method

1 Introduction

Thenotion of hemivariational inequalitieswasfirst introducedbyPanagiotopoulos in the early
1980s (cf. [28]) and is closely related to the development of the concept of the generalized
gradient of a locally Lipschitz continuous function introduced by Clarke [15]. The theory and
applications of hemivariational inequalities can be found in several books (cf. [22,25–27]).
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In recent years, optimal order error estimates have been derived for linear finite element
solutions of hemivariational inequalities, e.g. [3,18–21].

The virtual elementmethod (VEM)was first proposed and analyzed in [1,5,7]. Themethod
immediately attracted much attention from the research community due to its advantages in
handling problems with complex geometries or problems requiring high-regularity solutions.
This method has been applied to a wide variety of scientific and engineering problems; in
particular, it has been applied to solve variational inequalities (cf. [17,31,32]). We refer the
reader to [8,10,11,14] and the references therein for recent advance of the method.

In this paper, we introduce and analyze VEM for solving elliptic hemivariational inequali-
ties.We provide an error analysis for the numericalmethod under some standard assumptions.
As applications, we employ VEM to solve a bilateral contact problemwith friction and a fric-
tionless contact problemwith normal compliance. To solve the discrete nonconvex problem, a
convexification iterative procedure was applied in [4], where the auxiliary nonsmooth convex
problems are solved by classical numerical methods (cf. [24,33]). In this paper, we convert
the discrete nonconvex problem into a DC (difference of convex functions) programming,
and apply the double bundle method to find the Clarke stationary point (cf. [23]). Numerical
results are reported to illustrate computational performance of the VEMs proposed in this
paper.

The rest of this paper is organized as follows. In Sect. 2, we recall notions and basic
properties of the generalized directional derivative and subdifferential in the sense of Clarke.
A general VEM for solving an elliptic hemivariational inequality and its error analysis are
given inSect. 3. InSect. 4, theVEMis applied to the bilateral contact problemwith friction and
the frictionless contact problem with normal compliance, and optimal order error estimates
are derived. In Sect. 5, we provide a detailed description of an algorithm based on the double
bundle method ([23]) to solve the discrete problems discussed in Sect. 4. Two numerical
examples are presented in Sect. 6 to illustrate the performance of the VEM studied in this
paper.

2 Preliminaries

All linear spaces in this paper are assumed to be real. For a normed space X , we denote by
‖ · ‖X its norm, by X∗ its topological dual, by 〈·, ·〉X∗×X the duality pairing between X∗ and
X , and by X∗

w∗ the space X∗ equipped with weak∗ topology. Weak convergence is indicated
by the symbol ⇀. Given two normed space X and Y , L(X , Y ) is the space of all linear
continuous operators from X to Y .

In the description of the hemivariational inequality, we need the notion of the generalized
(Clarke) directional derivative and the generalized gradient of a locally Lipschitz continuous
functional ([15]).

Definition 2.1 Let ψ : X → R be a locally Lipschitz continuous functional on a Banach
space X . The generalized (Clarke) directional derivative ofψ at x ∈ X in the direction v ∈ X
is defined by

ψ0(x; v) = lim sup
y→x, λ↓0

ψ(y + λv) − ψ(y)

λ
.

The generalized gradient (subdifferential) of ψ at x is defined by

∂ψ(x) = {ζ ∈ X∗ | ψ0(x; v) ≥ 〈ζ, v〉 ∀v ∈ X}.
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The function ψ : X → R is said to be regular in the sense of Clarke at x ∈ X if for all
v ∈ X , the directional derivative ψ ′(x; v) exists and ψ ′(x; v) = ψ0(x; v). The function ψ

is regular in the sense of Clarke on X if it is regular at every point x ∈ X .

Knowing the generalized subdifferential, we can compute the generalized directional
derivative through the formula:

ψ0(x; v) = max{〈ζ, v〉 | ζ ∈ ∂ψ(x)}. (2.1)

The following properties of locally Lipschitz continuous functionals hold (cf. [25, Propo-
sition 3.23]).

Proposition 1 Supposeψ : X → R is a locally Lipschitz continuous functional on a Banach
space X.
(1) For every x ∈ X, the function X � v 
→ ψ0(x; v) ∈ R is subadditive:

ψ0(x; v1 + v2) ≤ ψ0(x; v1) + ψ0(x; v2) ∀ v1, v2 ∈ X . (2.2)

(2) The graph of the generalized gradient ∂ψ is closed in X × X∗
w∗ topology. It means that if

{xn} ⊂ X and {ζn} ⊂ X∗ are sequences such that ζn ∈ ∂ψ(xn), xn → x in X, and ζn → ζ

weakly∗ in X∗, then ζ ∈ ∂ψ(x).

It is convenient to record an elementary result to be used later:

a, b, x ≥ 0 and x2 ≤ a x + b �⇒ x2 ≤ a2 + 2 b. (2.3)

3 An Elliptic Hemivariational Inequality and Its Numerical Solution

With applications to contact problems in mind, we first introduce an elliptic hemivariational
inequality. Let� ⊂ R

d (d = 2, 3 for applications) be a polyhedral domain, and let�3 ⊂ ∂�.
Let V be a subspace of H1(�;Rd). For some positive integerm, let γ ∈ L(V ; L2(�3;Rm)).
Given a bilinear form a(·, ·) : V × V → R, a locally Lipschitz function j : �3 × R

m → R,
and a linear bounded functional f : V → R, we consider the following problem.

Problem (P). Find an element u ∈ V such that

a(u, v) +
∫

�3

j0(γ u; γ v) ds ≥ 〈 f , v〉 ∀ v ∈ V . (3.1)

We allow j(x, z) to depend on the spatial variable x . However, to simplify the notation,
we will usually write j(z) with the understanding that it is allowed to depend on the spatial
variable. In the study of Problem (P), we need the following assumptions on the data:

(Ha) a(·, ·) : V × V → R is bilinear, symmetric, continuous and V -elliptic; we will denote
the V -ellipticity constant by mA > 0:

a(v, v) ≥ mA‖v‖2V ∀ v ∈ V . (3.2)

(Hj ) j(·, z) is measurable on �3 for any z ∈ R
m and there exists z0 ∈ L2(�3;Rm) such that

j(·, z0(·)) ∈ L1(�3). j(x, ·) is locally Lipschitz on R
m for a.e. x ∈ �3, and there are

constants c0, c1, α j ≥ 0 such that

‖∂ j(z)‖Rm ≤ c0 + c1‖z‖Rm ∀ z ∈ R
m, (3.3)

j0(z1; z2 − z1) + j0(z2; z1 − z2) ≤ α j‖z1 − z2‖2Rm ∀ z1, z2 ∈ R
m . (3.4)
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Denote by cγ an upper bound of the norm of the operator γ ∈ L(V ; L2(�3;Rm)):

‖γ v‖L2(�3;Rm ) ≤ cγ ‖v‖V ∀ v ∈ V . (3.5)

The following result can be derived from [20, Theorem 3.1].

Theorem 3.1 Assume (Ha), (Hj ), and

α j c
2
γ < mA. (3.6)

Then for any f ∈ V ∗, Problem (P) has a unique solution.

Proof We sketch a proof of the result. Define a linear operator A : V → V ∗ by

〈Au, v〉 = a(u, v), u, v ∈ V . (3.7)

Then A ∈ L(V , V ∗) and it is strongly monotone with a monotonicity constant mA. From
[34, Proposition 27.6], A is pseudomonotone (a property needed in applying [20, Theorem
3.1]). Define a functional

J (z) =
∫

�3

j(z) ds, z ∈ L2(�3;Rm).

From [25, Theorem 3.47], we know that J (·) is locally Lipschitz on L2(�3;Rm) and

∂ J (z) ⊂
∫

�3

∂ j(x, z(x)) ds ∀ z ∈ L2(�3;Rm), (3.8)

J 0(z1; z2) ≤
∫

�3

j0(z1; z2) ds ∀ z1, z2 ∈ L2(�3;Rm), (3.9)

‖∂ J (z)‖L2(�3;Rm ) ≤ √
2meas(�3) c0 + √

2 c1‖z‖L2(�3;Rm ) ∀ z ∈ L2(�3;Rm). (3.10)

Moreover, (3.8) and (3.9) become equalities when j is regular in the sense of Clarke; however,
we do not assume the regularity of j in the study of Problem (P). Here, (3.8) is understood
in the sense that for z∗ ∈ ∂ J (z), there is a function ξ(x) such that ξ(x) ∈ ∂ j(x, z(x)) for
a.e. x ∈ �3, and

〈z∗, v〉L2(�3;Rm )×L2(�3;Rm ) =
∫

�3

〈ξ(x), v(x)〉Rm×Rm ds ∀ v ∈ L2(�3;Rm). (3.11)

Note that

J 0(z1; z2 − z1) + J 0(z2; z1 − z2) ≤
∫

�3

[
j0(z1; z2 − z1) + j0(z2; z1 − z2)

]
ds

≤ α j‖z1 − z2‖2L2(�3;Rm )
.

Applying [20, Theorem 3.1], we know that there is a unique solution to the problem

u ∈ V , 〈Au, v〉 + J 0(γ u; γ v) ≥ 〈 f , v〉 ∀ v ∈ V . (3.12)

Since ∫
�3

j0(γ u; γ v) ds ≥ J 0(γ u; γ v),

it follows from (3.7) that the solution u of (3.12) is also a solution of Problem (P).
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The uniqueness of a solution to Problem (P) is proved by a standard approach. Assume
ũ ∈ V is another solution of Problem (P). Then,

a(ũ, v) +
∫

�3

j0(γ ũ; γ v) ds ≥ 〈 f , v〉 ∀ v ∈ V . (3.13)

Take v = ũ − u in (3.1), v = u − ũ in (3.13), and add the two resulting inequalities to get

a(ũ − u, ũ − u) ≤
∫

�3

[
j0(γ u; γ ũ − γ u) + j0(γ ũ; γ u − γ ũ)

]
ds.

Applying (Ha) and (Hj ), we derive from the above inequality that

mA‖ũ − u‖2V ≤ α j c
2
γ ‖ũ − u‖2V .

By the assumption (3.6), we deduce that ‖ũ − u‖V = 0, i.e. ũ = u. ��
Remark 3.1 The symmetry assumption on the bilinear form a(·, ·) in (Ha) is not needed
for the conclusion of Theorem 3.1. However, we will need this symmetry assumption in
developing error analysis of the VEM for Problem (P).

From the above proof we can also conclude that under the assumptions in Theorem 3.1,
Problem (P) is equivalent to the auxiliary problem (3.12). In fact, let u be the solution of the
forgoing problem and ũ the solution of the latter one. Then, ũ is also the solution of Problem
(P) due to (3.9). Hence, by the unique solvability of Problem (P), u = ũ as required. Certainly,
if the nonlinear functional j is regular in the sense of Clarke, the equality in (3.9) holds, which
shows that the previous two problems have the same formulation and are equivalent trivially.
We remark that we formulate the problem in the form (3.1) for convenience of application
by researchers in the areas of applied sciences, since it only involves the determination of j0.

In the rest of the section, we assume the conditions stated in Theorem 3.1. Now, we
propose a general framework for numerical methods to solve Problem (P). Let {Th}h , Th :=
{K }K∈Th , be a family of partitions of� into polygons, with a generic element denoted by K ;
h := maxK∈Th hK and hK := diam(K ). With this mesh, we consider a finite dimensional
subspace Vh of V . For a non-negative integer k and an element K ∈ Th , denote by Pk(K ) the
set of all polynomials on K with the total degree no more than k, and simply write (Pk(K ))d

as Pk(K ;Rd). Moreover, we assume that the bilinear form a(·, ·) can be decomposed as

a(v,w) :=
∑
K∈Th

aK (v,w) ∀ v,w ∈ V ,

where aK (·, ·) is a bilinear, symmetric and nonnegative form over VK := V|K . For a function
in V , we naturally view it as a function in VK by its restriction to K . We equip the Hilbert
space V|K with a norm or semi-norm ‖ · ‖V ,K such that

‖v‖2V :=
∑
K∈Th

‖v‖2V ,K ∀ v ∈ V , (3.14)

and for all K ∈ Th , there holds

aK (v, v) � ‖v‖2V ,K ∀ v ∈ VK , (3.15)

where and in what follows, C or c (with or without subscript) denotes a positive constant
independent of hK or h, which may take on different values at different occurrences. For any
two quantities a and b, “a � b” stands for “a ≤ Cb”.
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In addition, assume that there exists a natural number k such that Pk(K ;Rd) ⊂ Vh|K for
all K ∈ Th . With the above preparation, our abstract numerical method for Problem (P) is
the following.

Problem (Ph .) Find an element uh ∈ Vh such that

ah(uh, vh) +
∫

�3

j0(γ uh; γ vh) ds ≥ 〈 fh, vh〉 ∀ vh ∈ Vh, (3.16)

where fh ∈ V ∗
h satisfies the condition

〈 fh, v〉 ≤ c ‖ f ‖V ∗‖v‖V ∀ v ∈ Vh . (3.17)

In addition, the bilinear form is obtained from

ah(u, v) :=
∑
K∈Th

aKh (u, v),

with the symmetric bilinear form aKh (·, ·) satisfying
• k-Consistency For all p ∈ Pk(K ;Rd) and for all vh ∈ Vh|K ,

aKh (p, vh) = aK (p, vh). (3.18)

• Stability There exist two positive constants α∗ and α∗, independent of hK and K , such
that

α∗aK (vh, vh) ≤ aKh (vh, vh) ≤ α∗aK (vh, vh) ∀ vh ∈ Vh|K . (3.19)

By the V -ellipticity of a(·, ·) and the stability condition for aKh (·, ·), a routine computation
reveals the Vh-ellipticity of ah(·, ·):

ah(v, v) ≥ α∗a(v, v) ≥ m̃ A‖v‖2V ∀ v ∈ Vh, (3.20)

where

m̃ A = α∗mA. (3.21)

For the study of the discrete problem, we assume further that

mA > max

{
1,

1

α∗

}
α j c

2
γ . (3.22)

Note that (3.22) implies

m̃ A > α j c
2
γ . (3.23)

A discrete analogue of Theorem 3.1 is the following.

Theorem 3.2 Under the assumptions (Ha), (Hj ), (3.20) and (3.22), Problem (Ph) has a
unique solution.

Remark 3.2 The construction of ah(·, ·) is motivated by the ideas of the virtual element
method (VEM) introduced in [2,6]. Here, we first propose a general framework of numerical
methods for solving Problem (P). Based on this general framework, we devise and analyze
virtual element methods for solving elliptic hemivariational inequalities in a unified way.

In the study of the discrete problem, we first show the uniform boundedness of the numer-
ical solutions.
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Lemma 3.1 Assume (Ha), (Hj ), (3.17), (3.20) and (3.22). Then

‖uh‖V � ‖ f ‖V ∗ + 1.

Proof We take vh = −uh in (3.16),

ah(uh,−uh) +
∫

�3

j0(γ uh;−γ uh) ds ≥ 〈 fh,−uh〉,

which is rewritten as

ah(uh, uh) ≤
∫

�3

j0(γ uh;−γ uh) ds + 〈 fh, uh〉. (3.24)

By (3.20),

ah(uh, uh) ≥ m̃ A‖uh‖2V . (3.25)

From (3.3) and (3.4),

j0(γ uh;−γ uh) ≤ α j‖γ uh‖2Rm − j0(0; γ uh) ≤ α j‖γ uh‖2Rm + c0‖γ uh‖Rm .

So there is a constant c > 0,∫
�3

j0(γ uh;−γ uh) ds ≤ α j c
2
γ ‖uh‖2V + c ‖uh‖V . (3.26)

Use (3.25), (3.26) and (3.17) in (3.24) to obtain

m̃ A‖uh‖2V ≤ c ‖ f ‖V ∗‖uh‖V + α j c
2
γ ‖uh‖2V + c ‖uh‖V .

Hence, the combination of (3.23) and the above result gives

‖uh‖V � ‖ f ‖V ∗ + 1,

i.e. uh ∈ Vh is uniformly bounded independent of h. ��
As is customary in the literature on virtual element methods, in order to derive error

estimation, we make the following two assumptions for some natural number k.

Assumption B1 For every v ∈ Hk+1(K ;Rd), there exists a function vπ ∈ Pk(K ;Rd) such
that

‖v − vπ‖0,K + hK ‖v − vπ‖V ,K � hk+1
K |v|k+1,K ∀ v ∈ Hk+1(K ;Rd). (3.27)

Assumption B2 There exists an interpolation operator IK : Hk+1(K ;Rd) ∩ VK → Vh|K
such that

‖v − IK v‖0,K + hK ‖v − IK v‖V ,K � hk+1
K |v|k+1,K ∀ v ∈ Hk+1(K ;Rd) ∩ VK .

(3.28)

Moreover, if we write vI as the global interpolant of v, i.e. vI (x) is equal to IK v(x) for
x ∈ K , we require additionally that vI ∈ Vh if v ∈ V .

Theorem 3.3 If Assumptions B1–B2, (3.17)–(3.19) hold and the solution u of Problem (P)
belongs to Hk+1(�;Rd), then

‖u − uh‖V � hk |u|k+1,� + ‖ f − fh‖V ∗
h

+ ‖γ u − γ uI ‖1/2L2(�3;Rm )
, (3.29)
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where

‖ f − fh‖V ∗
h

= sup
vh∈Vh

〈 f − fh, vh〉
‖vh‖V .

Proof Let w = uI − uh . Due to (3.20),

m̃ A‖w‖2V ≤ ah(w,w) = ah(uI , w) − ah(uh, w). (3.30)

By the k-consistency (3.18), we have, for uπ ∈ Pk(K ;Rd),

aKh (uπ , vh) = aK (uπ , vh) ∀ vh ∈ Vh|K .

Therefore,

ah(uI , w) =
∑
K∈Th

(
aKh (IK u − uπ ,w) + aK (uπ − u, w)

) + a(u, w). (3.31)

Take v = −w in (3.1) to obtain

a(u, w) ≤
∫

�3

j0(γ u; γ uh − γ uI ) ds + 〈 f , uI − uh〉. (3.32)

From the discrete hemivariational inequality (3.16),

ah(uh, w) ≥ 〈 fh, uI − uh〉 −
∫

�3

j0(γ uh; γ uI − γ uh) ds. (3.33)

Use (3.31)–(3.33) in (3.30),

m̃ A‖w‖2V ≤
∑
K∈Th

(
aKh (IK u − uπ ,w) + aK (uπ − u, w)

)

+
∫

�3

[
j0(γ u; γ uh − γ uI ) + j0(γ uh; γ uI − γ uh)

]
ds + 〈 f − fh, w〉.

(3.34)

Note that

〈 f − fh, w〉 ≤ c‖ f − fh‖V ∗
h
‖w‖V .

By the sub-additivity of the generalized directional derivative (see Proposition 1),

j0(γ u; γ uh − γ uI ) ≤ j0(γ u; γ uh − γ u) + j0(γ u; γ u − γ uI ),

j0(γ uh; γ uI − γ uh) ≤ j0(γ uh; γ u − γ uh) + j0(γ uh; γ uI − γ u).

Thus,

j0(γ u; γ uh − γ uI ) + j0(γ uh; γ uI − γ uh) ≤ j0(γ u; γ uh − γ u) + j0(γ uh; γ u − γ uh)

+ j0(γ u; γ u − γ uI ) + j0(γ uh; γ uI − γ u).

By (3.4),∫
�3

[
j0(γ u; γ uh − γ u) + j0(γ uh; γ u − γ uh)

]
ds ≤ α j‖γ u − γ uh‖2L2(�3;Rm )

≤ α j c
2
γ ‖u − uh‖2V .
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From (3.3),

j0(γ u; γ u − γ uI ) ≤ (c0 + c1‖γ u‖Rm )‖γ u − γ uI ‖Rm ,

j0(γ uh; γ uI − γ u) ≤ (c0 + c1‖γ uh‖Rm )‖γ uI − γ u‖Rm .

Taking the boundedness of ‖γ uh‖L2(�3;Rm ) into account, we then get from (3.34) that

m̃ A‖w‖2V ≤ c
[( ∑

K∈Th

‖IK u − uπ‖2V ,K

)1/2‖w‖V + ( ∑
K∈Th

‖u − uπ‖2V ,K

)1/2‖w‖V
]

+ c‖ f − fh‖V ∗
h
‖w‖V + α j c

2
γ ‖u − uh‖2V + c ‖γ uI − γ u‖L2(�3;Rm ). (3.35)

Note that

‖u − uh‖2V ≤ ‖u − uI ‖2V + ‖w‖2V + 2‖u − uI ‖V ‖w‖V . (3.36)

Then from (3.35),
(
m̃ A − α j c

2
γ

)
‖w‖2V ≤ c

[( ∑
K∈Th

‖IK u − uπ‖2V ,K

)1/2 +
( ∑
K∈Th

‖u − uπ‖2V ,K

)1/2] ‖w‖V

+ c
(
‖ f − fh‖V ∗

h
+ ‖u − uI ‖V

)
‖w‖V

+ c
(‖u − uI ‖2V + ‖γ u − γ uI ‖L2(�3;Rm )

)
.

Applying (2.3), we have

‖w‖2V �
∑
K∈Th

‖IK u − uπ‖2V ,K +
∑
K∈Th

‖u − uπ‖2V ,K

+ ‖u − uI ‖2V + ‖ f − fh‖2V ∗
h

+ ‖γ u − γ uI ‖L2(�3;Rm ).

Note that

‖u − uh‖V ≤ ‖u − uI ‖V + ‖w‖V .

Hence,

‖u − uh‖V �
( ∑
K∈Th

‖IK u − uπ‖2V ,K

)1/2 +
( ∑
K∈Th

‖u − uπ‖2V ,K

)1/2

+ ‖u − uI ‖V + ‖ f − fh‖V ∗
h

+ ‖γ u − γ uI ‖1/2L2(�3;Rm )
. (3.37)

From the estimate (3.27), we have
( ∑
K∈Th

‖u − uπ‖2V ,K

)1/2 � hk |u|k+1,�,

and from (3.28),

‖u − uI ‖V = ( ∑
K∈Th

‖u − IK u‖2V ,K

)1/2 � hk |u|k+1,�.

Therefore, we have (3.29) from (3.37). ��
Remark 3.3 Note that in general we can not expect to achieve optimal error estimates for solv-
ing hemivariational inequalities with high order elements. Hence, we restrict our discussion
to the lowest order virtual method introduced in [5], i.e. k = 1.
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4 Numerical Methods for Contact Problems

For definiteness, we let d = 2 in the following. Let � be the reference configuration of a
linear elastic body, assumed to be an open, bounded, connected polygon inR2. The boundary
is made up of three parts: �1, �2 and �3, where meas (�1) > 0. We assume that the body
is clamped on �1, is subject to the action of a surface traction of density f 2 ∈ L2(�2;R2),
and is in contact with a rigid foundation on �3. Volume forces of density f 0 ∈ L2(�;R2)

act in �. For a vector v, denote on the boundary ∂� by vν = v · ν its normal component
and vτ = v − vνν the tangential component, respectively. We use S

2 for the space of
second order symmetric tensors which is equipped with the canonical inner product “:”. For
a tensor σ ∈ S

2, define its normal component as σν = σν · ν and tangential component as
στ = σν − σνν. For the contact problems under consideration, we have the linear elastic
constitutive law

σ = Fε(u) in �, (4.1)

the equilibrium equation

Div σ + f 0 = 0 in �, (4.2)

the displacement boundary condition

u = 0 on �1, (4.3)

the traction boundary condition

σν = f 2 on �2. (4.4)

In (4.1), F : � × S
2 → S

2 represents the linear elasticity operator and is assumed to have
the following properties (cf. [20]):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a) there exists LF > 0 such that for all ε1, ε2 ∈ S
2, a.e. x ∈ �,

‖F(x, ε1) − F(x, ε2)‖ ≤ LF‖ε1 − ε2‖;
(b) there exists mF > 0 such that for all ε1, ε2 ∈ S

2, a.e. x ∈ �,

(F(x, ε1) − F(x, ε2)) : (ε1 − ε2) ≥ mF‖ε1 − ε2‖2;
(c) F(·, ε) is measurable on � for all ε ∈ S

2.

(4.5)

Introduce a function space Q = L2(�;S2), which is a Hilbert space with the canonical inner
product

(σ , τ )Q :=
∫

�

σi j (x)τi j (x)dx;
the associated norm is denoted by ‖ · ‖Q . When there is no danger of confusion, we simply
write (·, ·) for (·, ·)Q .

To study the contact problems, the displacement fields will be sought in the following
space

V := {v ∈ H1(�;R2) | v|�1 = 0},
which is equipped with the norm

‖v‖V := (ε(v), ε(v))
1/2
Q ∀ v ∈ V . (4.6)

Since meas(�1) > 0, we have by Korn’s inequality (see e.g. [9, Remark 1.1]) that

‖v‖H1(�;R2) � ‖v‖V � ‖v‖H1(�;R2) ∀ v ∈ V . (4.7)
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We assume the densities of body forces and surface tractions satisfy

f 0 ∈ L2(�;R2), f 2 ∈ L2(�2;R2)

and define f ∈ V ∗ by

〈 f , v〉V ∗×V = ( f 0, v)L2(�;R2) + ( f 2, v)L2(�2;R2) ∀ v ∈ V . (4.8)

Next, we consider two contact problems with two choices of the boundary conditions on
the contact boundary �3.

4.1 A Bilateral Contact Problemwith Friction

The contact boundary condition is

uν = 0, −στ ∈ ∂ jτ (uτ ) on �3. (4.9)

For the potential function jτ : �3 × R
2 → R (cf. [20]), we assume

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) jτ (·, z) is measurable on �3 for all z ∈ R
2 and jτ (·, z0(·)) ∈ L1(�3)

for some z0 ∈ L2(�3,R
2);

(b) jτ (x, ·) is locally Lipschitz on R
2 for a.e. x ∈ �3;

(c) |∂ jτ (x, z)| ≤ c̄0 + c̄1‖z‖ for a.e. x ∈ �3, for all z ∈ R
2 with c̄0, c̄1 ≥ 0;

(d) j0τ (x, z1; z2 − z1) + j0τ (x, z2; z1 − z2) ≤ α jτ ‖z1 − z2‖2 for a.e. x ∈ �3,

for all z1, z2 ∈ R
2 with α jτ ≥ 0.

(4.10)

Let m = 2 and

V 1 := {v ∈ V | vν |�3 = 0}, γ v = vτ for v ∈ V ,

a(u, v) = (Fε(u), ε(v)), j(·, z) = jτ (z), z ∈ R
2.

From (4.5)(b) and the definition (4.6), the assumption (Ha) is satisfied with mA = mF , and
(Hj ) is satisfied with α j = α jτ from (4.10) (cf. [20]). The inequality (3.5) holds for any

cγ ≥ λ
−1/2
1,V , λ1,V > 0 is the smallest eigenvalue of the eigenvalue problem

u ∈ V 1,

∫
�

ε(u) : ε(v) dx = λ

∫
�3

uτ · vτds ∀ v ∈ V 1.

We assume additionally

α jτ < λ1,VmF .

For the first contact problem described by (4.1)–(4.4) and (4.9), proceeding in a standard
way, we can obtain the following weak formulation:

Problem (P1). Find an element u ∈ V 1 and ξτ ∈ L2(�3;R2) such that

a(u, v) − 〈 f , v〉 =
∫

�3

ξτ · vτds ∀ v ∈ V 1 (4.11)

with −ξτ ∈ ∂ jτ (uτ ) a.e. on �3.
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According to Theorem 3.1, there is a unique solution to the problem

u ∈ V 1, a(u, v) +
∫

�3

j0τ (uτ ; vτ ) ds ≥ 〈 f , v〉 ∀ v ∈ V 1, (4.12)

which is also the unique solution of the auxiliary problem (cf. Remark 3.1)

u ∈ V 1, a(u, v) + J 0(uτ ; vτ ) ≥ 〈 f , v〉 ∀ v ∈ V 1, (4.13)

where

J (z) :=
∫

�3

jτ (z) ds, z ∈ L2(�3;R2).

We next show the unique solvability of Problem (P1). Let u ∈ V 1 be the solution of (4.13).
Then by (2.1), there is a function η ∈ ∂ J (uτ ) such that

a(u, v) + 〈η, vτ 〉 ≥ 〈 f , v〉 ∀ v ∈ V 1.

For all v ∈ V 1, the above inequality still holds if v is replaced by −v. These two inequalities
together readily imply

a(u, v) + 〈η, vτ 〉 = 〈 f , v〉 ∀ v ∈ V 1. (4.14)

On the other hand, owing to (3.11), for η ∈ ∂ J (uτ ), there is a function −ξτ ∈ ∂ jτ (uτ ) such
that

〈η, vτ 〉 = −
∫

�3

ξτ · vτ ds. (4.15)

Inserting (4.15) into (4.14) gives (4.11), that means, the solution of (4.13) is a solution of
Problem (P1). It is evident from Remark 3.1 that the solution of (4.12) is also a solution of
Problem (P1). The uniqueness of a solution to Problem (P1) can be shown similarly as in the
uniqueness part of the proof of Theorem 3.1.

Now, we introduce a virtual element method to solve Problem (P1). As in [13,14], we
make the following assumption on the family of meshes {Th}h .
Assumption B3 For each K ∈ Th , there exists a “virtual triangulation” TK of K such that TK
is uniformly shape regular and quasi-uniform. The correspondingmesh size of TK is bounded
from below by a constant multiple of hK . Each edge of K is a side of certain triangle in TK .

It is evident to check that the above assumption covers the usual conditions satisfied by
K ∈ Th , given as follows (cf. [1,5,7]).

C1. There exists a real number γ > 0 such that each element K ∈ Th is star-shaped with
respect to a disk of radius ρK ≥ γ hK .

C2. There exists a real number γ1 > 0 such that for each element K ∈ Th , the distance
between any two vertices of K is ≥ γ1hK .

From now on, we always assume that the family of meshes {Th}h satisfies the assumption
B3. Furthermore, we express the three parts of the boundary � as unions of closed flat
components with disjoint interiors:

�k = ∪ik
i=1�k,i , 1 ≤ k ≤ 3.

Then, we construct virtual linear element spaces corresponding to Th . Let

V1(K ) := {v ∈ H1(K ) | �v = 0 in K , v|∂K ∈ C(∂K ), v|e ∈ P1(e) for each edge e ⊂ ∂K },
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Wh := {v ∈ C(�̄) | v|K ∈ V1(K ) for all K ∈ Th}.
The displacement fields will be sought in the space

V h := (Wh)
2 ∩ V 1.

Furthermore, we briefly describe how to construct the bilinear form aKh (·, ·). Let ΠK be
defined as a projection operator from V h(K ) into P0(K )2×2

sym such that for any given vh ∈
V h(K ) := (V1(K ))2,∫

K
ΠK (vh) : εPdx =

∫
K

ε(vh) : εPdx ∀ εP ∈ P0(K )2×2
sym ,

where P0(K )2×2
sym stands for the set of all second order symmetric tensor fields with each entry

being constant. Intuitively, ΠK (vh) is a constant projection of the strain field ε(vh) over K .
Then, following [2, Eqn. (12)], define

aKh (vh,wh) =
∫
K
FΠK (vh) : ΠK (wh) dx + bKh (vh,wh) ∀ vh, wh ∈ V h(K ),

(4.16)

where the second term plays a stabilization role. We mention that the first term on the right
of (4.16) is essentially equivalent to the first term given in equation (4.1) of the paper [6].
However, the construction of bKh (·, ·) is rather involved, requiring that bKh (·, ·) be a symmetric
and positive semidefinite bilinear form whose kernel is exactly (P1(K ))2 (cf. [6, pp. 808–
809]). To simplify the presentation, we refer to [2,6] for details along this line.

Then we introduce a local projection �∇
1 : H1(K ) → P1(K ) as follows. For all v ∈

H1(K ),
{

(∇�∇
1 v,∇ p)K = (∇v,∇ p)K ∀ p ∈ P1(K ),

�∇
1 v = v,

where (·, ·)K stands for the L2(K ) inner product, and v is the integral average of v on the
boundary ∂K of K . To simplify the presentation, we also use �∇

1 to represent the related
element-wise defined global operator.

For the right-hand side f , we define the approximation f h such that

〈 f h, vh〉 :=
∑
K∈Th

∫
K

f 0 · 	∇
1 vhdx +

∫
�2

f 2 · vhdx ∀ vh ∈ V h, (4.17)

where 	∇
1 is the vectorized analog of �∇

1 , i.e. for all v = (v1, v2)
T , 	∇

1 v :=
(�∇

1 v1,�
∇
1 v2)

T .
According to [14, Corollary 3.8] and (4.7), we have by the Cauchy-Schwarz inequality

that, for any vh ∈ V h ,

∑
K∈Th

∫
K

f 0 · 	∇
1 vhdx ≤ ( ∑

K∈Th

‖ f 0‖2L2(K ,R2)

)1/2( ∑
K∈Th

‖	∇
1 vh‖2L2(K ,R2)

)1/2

�
( ∑
K∈Th

‖ f 0‖2L2(K ,R2)

)1/2( ∑
K∈Th

‖vh‖2L2(K ,R2)

)1/2

� ‖ f 0‖L2(�,R2)‖vh‖L2(�,R2)

� ‖ f 0‖L2(�,R2)‖vh‖V . (4.18)
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Using the Cauchy–Schwarz inequality again to the second term in (4.17) and then combining
the estimate with (4.18), we find

〈 f h, vh〉 � (‖ f 0‖2L2(�,R2)
+ ‖ f 2‖2L2(�2,R2)

)1/2‖vh‖V .

Thus, we have verified the condition (3.17).
Now, we define a VEM for solving Problem (P1) as follows.
Problem (Ph1). Find uh ∈ V h and ξhτ ∈ L2(�3;R2) such that

ah(uh, vh) − 〈 f h, vh〉 =
∫

�3

ξhτ · vhτds ∀ vh ∈ V h (4.19)

with −ξhτ ∈ ∂ jτ (uhτ ) a.e. on �3.
For an error analysis, we first note that for any vh ∈ V h ,

|〈 f − f h, vh〉| =
∣∣∣ ∑
K∈Th

∫
K

f 0 · (vh − 	∇
1 vh)dx

∣∣∣

≤
∑
K∈Th

‖ f 0‖L2(K ,R2)‖vh − 	∇
1 vh‖L2(K ,R2)

�
∑
K∈Th

‖ f 0‖L2(K ,R2)hK |vh |H1(K ,R2)

� h‖ f 0‖L2(�,R2)‖vh‖V ,

i.e.

‖ f − f h‖V ∗
h

� h. (4.20)

We comment that under Assumption B3, it is easy to derive the estimate (3.27) using the
classical Scott-Dupont theory in the case V = H1(�;Rd) (cf. [12]). Moreover, according
to [10,14], there exists a nodal interpolation operator IK : H2(K ) → V1(K ) such that

‖v − IK v‖0,K + hK |v − IK v|1,K � h2K ‖v‖2,K ∀ v ∈ H2(K ).

When d = 2, we write IK as the vectorized analog of IK defined above. Moreover, for
v ∈ H2(�;R2) write its global interpolant as v I . It is easy to check that if v ∈ V , v I ∈ V h .
Hence, Assumption B2 holds for k = 1 by using the interpolation operator IK .

Moreover, it can be proved using the arguments in [2,6,9,14] that the bilinear form aKh (·, ·)
from (4.16) satisfies conditions (3.18) and (3.19) under Assumption B3. Hence, applying
Theorem 3.3 and the finite element interpolation error estimates (cf. [10]), we conclude the
optimal order error bound

‖u − uh‖V � h (4.21)

under the regularity assumptions

u ∈ H2(�;R2), uτ |�3,i ∈ H2(�3,i ;R2), 1 ≤ i ≤ i3. (4.22)

Now, we consider a concrete example of jτ ,

jτ (z) =
∫ ‖z‖

0
μ(t) dt . (4.23)
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Here μ(t) can be interpreted as a friction bound function. This function is assumed to be
measurable from [0,∞) to R, μ(0+) > 0, and with two positive constant c1, c2,

0 ≤ μ(t) ≤ c1(1 + t) ∀ t ≥ 0, (4.24)

μ(t2) − μ(t1) ≥ −c2(t2 − t1) ∀ t2 > t1 ≥ 0. (4.25)

In this situation, the function jτ defined by (4.23) is regular in the sense of Clarke (cf. [3,
Lemma 3.2]).

4.2 A Frictionless Normal Compliance Contact Problem

The contact boundary condition is

− σν ∈ ∂ jν(uν), στ = 0 on �3. (4.26)

The first relation in (4.26) is a normal compliance contact condition, whereas the second
relation indicates that the contact is frictionless. Here, we assume the following properties
(cf. [20]) on the potential function jν : �3 × R → R:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) jν(·, z) is measurable on �3 for all z ∈ R and jν(·, z0(·)) ∈ L1(�3)

for some z0 ∈ L2(�3);
(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ �3;
(c) |∂ jν(x, z)| ≤ c̄0 + c̄1‖z‖ for a.e. x ∈ �3, for all z ∈ R with c̄0, c̄1 ≥ 0;
(d) j0ν (x, z1; z2 − z1) + j0ν (x, z2; z1 − z2) ≤ α jν |z1 − z2|2 for a.e. x ∈ �3,

for all z1, z2 ∈ R with α jν ≥ 0.

(4.27)

For the contact problem described by (4.1)–(4.4) and (4.26), proceeding in a standard way,
we can obtain the following weak formulation.

Problem (P2). Find an element u ∈ V and σν ∈ L2(�3) such that

a(u, v) − 〈 f , v〉 =
∫

�3

σν · vνds ∀ v ∈ V , (4.28)

with −σν ∈ ∂ jν(uν) a.e. on �3.
The displacement fields will be sought in the space

V h := (Wh)
2 ∩ V .

We follow the discussion in Sect. 4.1, with the following modifications:

m = 1, γ v = vν for v ∈ V ,

j(·, z) = jν(z), z ∈ R,

α j = α jν , and cγ ≥ λ
−1/2
2,V ,λ2,V > 0 being the smallest eigenvalue of the eigenvalue problem

u ∈ V ,

∫
�

ε(u) : ε(v) dx = λ

∫
�3

uν · vνds ∀ v ∈ V .

We assume additionally that

α jν < λ2,VmF .
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Similar to Problem (P1), Problem (P2) has a unique solution u ∈ V .
Now, we introduce the following approximation of Problem (P2):
Problem (Ph2). Find an element uh ∈ V h and σ h

ν ∈ L2(�3) such that

ah(uh, vh) − 〈 f h, vh〉 =
∫

�3

σ h
ν · vhν ds ∀ vh ∈ V h, (4.29)

with −σ h
ν ∈ ∂ jν(uhν ) a.e. on �3.

Similar to the derivation of the error estimate (4.21), we can conclude the optimal order
error bound

‖u − uh‖V � h (4.30)

under the regularity assumptions

u ∈ H2(�;R2), uν |�3,i ∈ H2(�3,i ), 1 ≤ i ≤ i3. (4.31)

5 An Algorithm for Solving Discrete Problems

We now present an efficient algorithm to solve the discrete problems. To this end, we require
to formulate the discrete hemivariational inequality under study as a minimization problem
following some ideas in [4]. For definiteness, we only consider Problem (Ph1) in detail. Let

N0 be the number of nodal points, and let {φi }2N0
i=1 be the shape basis functions of V h . For

v ∈ V h , define a function � : R2N0 → R by

�(α) =
∫

�3

j(v)ds =
∫

�3

j
( 2N0∑
k=1

αkφk(x)
)
ds ∀ α ∈ R

2N0 , (5.1)

where α := [αk]2N0
k=1 and v :=

2N0∑
k=1

αkφk(x). Recalling the relation (3.8), we know that for

any η ∈ ∂�(α), there exists −ξhτ (x) ∈ ∂ j(v) a.e. on �3 such that

〈η, ζ 〉
R
2N0×R

2N0 =
∫

�3

−ξ hτ (x) · v1 ds ∀ ζ ∈ R
2N0 , (5.2)

where v1 :=
2N0∑
i=1

ζiφi (x) and ζ := [ζi ]2N0
i=1 . Next, define

b = [bi ]2N0
i=1 , bi = 〈 f h,φi 〉; A = [Aik]2N0

i,k=1, Aik = ah(φi ,φk).

If a vector α∗= [α∗
k ]2N0

k=1 is a solution of the inclusion

b − Aα ∈ ∂�(α), (5.3)

then we take η = b− Aα∗ in (5.2), from which we immediately know uh =
2N0∑
k=1

α∗
kφk(x) is

exactly the solution of Problem (Ph1). So we turn to solve the problem (5.3).
On the other hand, by [15, Proposition 2.3.3], the inclusion (5.3) is equivalent to the

following:

0 ∈ ∂H(α), (5.4)
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where

H(α) = 1

2
αT Aα − bTα + �(α). (5.5)

By [4, Lemma 4], we know that H(α) defined in (5.5) attains a global minimum. Note
that Problem (Ph1) has a unique solution, so it is equivalent to the minimization problem:

H(α∗) = inf{H(α) | α ∈ R
2N0}, (5.6)

where H(α) is given by (5.5).
Furthermore, we approximate �(α) with the trapezoidal rule to get

∫
�3

j

(2N0∑
k=1

αkφk(x)

)
ds ≈

∑
i∈I

wi j

(2N0∑
k=1

αkφk(xi )

)
=: wT j(α), (5.7)

where {xi }i∈I is the set of the nodal points of Th on �3 and {wi }i∈I are the weights of the
integration formula. Assuming that N1 components corresponding to the index set I are listed
first, we write the vector α in block form as α = (αT

1 ,αT
2 )T with α1 ∈ R

N1 . Similarly,

A :=
(
A11 A12

AT
12 A22

)
, b :=

(
b1
b2

)
, w :=

(
w1

0

)
. (5.8)

Then the problem (5.6) can be recast approximately as follows: find α∗
1 ∈ R

N1 and α∗
2 ∈ R

N2

such that

F(α∗
1,α

∗
2) = inf{F(α1,α2) | α1 ∈ R

N1 ,α2 ∈ R
N2}, (5.9)

where N2 = 2N0 − N1, and

F(α1,α2) := 1

2
(αT

1 A11α1 + 2αT
1 A12α2 + αT

2 A22α2) − bT1 α1 − bT2 α2 + wT
1 j(α1).

It is evident that the first order conditions of the optimization problem (5.9) are

0 ∈ A11α1 + A12α2 − b1 + ∂(wT
1 j(α1)), (5.10)

0 = AT
12α1 + A22α2 − b2, (5.11)

where ∂ denotes the generalized gradient of a Lipschitz function (cf. [26,27]). We have by
(5.11) that

α2 = A−1
22 (b2 − AT

12α1). (5.12)

Using this formula in (5.9) to eliminate α2, we find the following reduced minimization
problem from (5.9):

Find α∗
1 ∈ R

N1 such that

F̂(α∗
1) = inf{F̂(α1) | α1 ∈ R

N1}, (5.13)

where

F̂(α1) := 1

2
αT
1 Ã1α1 − b̃1

T
α1 + wT

1 j(α1),

with

Ã1 := A11 − A12A
−1
22 AT

12, b̃1 := b1 − A12A
−1
22 b2.

In our numerical simulation given in the next section, we will use the double bundle
method (cf. [23]) to solve problem (5.13).
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Fig. 1 Polygonal mesh for N = 64 (left) and N = 256 (right)

6 Numerical Experiments

In this section, we report numerical results to illustrate performance of the numerical method.
In our numerical simulation, the polygonal meshes are produced by an algorithm presented
in [30] and the codes obtained are written based on the program in [29]. Meshes with element
numbers N = 64 and N = 256 for the unit square are displayed in Fig. 1.

Example 6.1 First, we consider an example of Problem (P1). The contact is bilateral and
frictional. The domain� = (0, 4)×(0, 4) is the cross section of a three-dimensional linearly
elastic body and the plane stress condition is imposed. The boundary ∂� is decomposed into
three parts: �D = {4}× (0, 4)where the body is clamped, �C = (0, 4)×{0}where frictional
contact takes place, and the remaining part �N = ({0}× (0, 4))∪ ((0, 4)×{4}) is for traction
boundary condition. The elasticity tensor F is given by

(Fε)i j = Eν

1 − ν2
(ε11 + ε22)δi j + E

1 + ν
εi j , 1 ≤ i, j ≤ 2,

where E is the Young modulus, ν is the Poisson ratio of the material and δi j is the Kronecker
delta. We use the following data:

E = 2000 daN/mm2, ν = 0.4,

f 0 = (0, 0)T daN/mm2,

f 2(x1, x2) =
{

(200(5 − x2),−200)T daN/mm on {0} × (0, 4),
0 on (0, 4) × {4}.

The contact condition is determined by (4.9) and (4.23), where

μ(t) = (a − b) e−αt + b.

Hence,

jτ (uτ
h) =

∫ ‖uτ
h‖

0

[
(a − b)e−αt + b

]
dt = f0(uτ

h) − f̃0(uτ
h),

with

f0(uτ
h) := a ‖uτ

h‖ + a − b

α
, f̃0(uτ

h) := a − b

α
(e−α‖uτ

h‖ + α ‖uhτ ‖).
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Since a > b > 0 and α > 0, after using numerical integration to
∫
�3

jτ (uhτ ) ds, we can
similarly get ∫

�3

jτ (uhτ ) ds ≈ wT
1 j(α1) =: j(α1). (6.1)

In this situation, the function j(α1) is regular (cf. [3]). We observe that the Lipschitz
function j(α1) is a DC function, i.e. it is a difference of two convex functions. Obviously, it
is satisfied with the necessities of the double bundle method (cf. [23]). We choose a = 900,
b = 450 and α = 2000. Combining with (5.7), we obtain that

j(α1) = f0(α1) − f̃0(α1),

where

f0(α1) := 900wT
1 |α1| + 9

40
meas(�3), (6.2)

f̃0(α1) := 9

40
wT
1 (e−2000|α1| + 2000|α1|), (6.3)

and |α1| denotes a new vector formed by taking the absolute value for each entry of α1,
whereas w1 denotes a vector formed by the coefficients of the integration formula. The
problem (5.13) is equivalent to the following DC minimization problem:

min
{
f (α1) = f1(α1) − f2(α1) | α1 ∈ R

N1
}

,

where

f1(α1) := 1

2
αT
1 Ã1α1 + f0(α1), f2(α1) := b̃1

T
α1 + f̃0(α1). (6.4)

It is verified that the method terminates after a finite number of steps and the solution is
approximately Clarke stationary (cf. [23, Section 5.4]). The associated Fortran code can be
obtained from http://napsu.karmitsa.fi/nsosoftware/.

The numerical solutions corresponding to several meshes with N = 200, N = 800,
N = 3200, N = 12,800 are displayed in Fig. 2, respectively. A convergence trend is evident
for the numerical solutions as N increases.

In Table 1 and Fig. 3, we report relative errors ‖uref − uh‖E/‖uref‖E of the numerical
solutions in the energy norm on square meshes, where the energy norm is given by

‖v‖E := 1√
2
(F(ε(v)), ε(v))

1/2
Q .

Note that the error bound (4.21) predicts an optimal first order convergence of the numerical
solutionsmeasured in the energy norm, under the regularity assumptions (4.22). Since the true
solution u is not available, we use the numerical solution with a fine mesh as the “reference”
solution uref in computing the solution errors. Specifically, the “reference” solution uref is
set as the numerical solution with h = 1/32.

The relative errors in energy norm are shown in Fig. 3. ��
Example 6.2 Now, we consider an example of Problem (P2). The first relation in (4.26)
is a normal compliance contact condition, whereas the second relation indicates that the
contact is frictionless. The domain � = (0, 1) × (0, 1) is the cross section of a three-
dimensional linearly elastic body and plane strain condition is assumed. On the part �1 =
({0} × [0, 1]) ∪ ({1} × [0, 1]) the body is clamped. Vertical tractions act on �2, where
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Fig. 2 The numerical solution related to different numbers of elements: N = 200 (upper left), N = 800
(upper right), N = 3200 (bottom left) and N = 12,800 (bottom right)

Table 1 Numerical errors on
square meshes for lowest-order
VEM

h 1 1
2

1
4

1
8

1
16

Error 31.914% 14.319% 6.353% 2.713% 1.129%

�2 = [0, 1]×{1}. The contact part of the boundary is �3 = [0, 1]×{0}. The elasticity tensor
F satisfies

(Fε)i j = Eν

(1 + ν)(1 − 2ν)
(ε11 + ε22)δi j + E

1 + ν
εi j , 1 � i, j � 2,

where E is the Young’s modulus, ν is the Poisson’s ratio of the material and δi j is the
Kronecker symbol. For the computation below, we use the following data

E = 70GPa, ν = 0.3.

No body forces are assumed to act on the body during the process, and

f 0 = (0, 0)GPa, f 2 = (0,−52)GPa on�2.
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Fig. 3 Relative errors in energy norm

For Problem (P2) with boundary (4.26), we choose

− σν =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if uν ≤ 0,

100uν if uν ∈ (0, 0.1],
20 − 100uν if uν ∈ (0.1, 0.15),

400uν − 55 if uν ≥ 0.15.

(6.5)

We have the following formula by (4.26),

jν(uν) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if uν ≤ 0,

50u2ν if uν ∈ (0, 0.1],
20uν − 50u2ν − 1 if uν ∈ (0.1, 0.15),

200u2ν − 55uν + 4.625 if uν ≥ 0.15.

(6.6)

Let jν(uν) = f0(uν) − f̃0(uν), where f0(uν) and f̃0(uν) defined as follows:

f0(uν) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

50u2ν if uν ≤ 0,

100u2ν if uν ∈ (0, 0.1], and f̃0(uν) = 50u2ν .

20uν − 1 if uν ∈ (0.1, 0.15),

250u2ν − 55uν + 4.625 if uν ≥ 0.15,

For the numerical solution uhν , we choose

jν(u
h
ν ) = f0(u

h
ν ) − f̃0(u

h
ν ),

as in the case of (6.1). Then∫
�3

jν(u
h
ν ) ds =

∫
�3

( f0(u
h
ν ) − f̃0(u

h
ν ))ds ≈ wT

1 j(α1) =: j(α1),

with

j(α1) := f0(α1) − f̃0(α1),
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Fig. 4 The function f0(uν)
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Fig. 5 The numerical solution of normal direction for different meshes

where w1 denotes a vector formed by the coefficients of an numerical integration formula
[cf. (5.7)]. It is noted the function f0(uν) is convex, which is sketched in Fig. 4.

Clearly, the function j(α1) is regular (cf. [16, Proposition 5.6.15(b)]) and directionally
differentiable. The problem (5.13) is equivalent to the following DC minimization problem
of the form:

min
{
f (α1) = f1(α1) − f2(α1) | α1 ∈ R

N1
}

,

where

f1(α1) := 1

2
αT
1 Ã1α1 + f0(α1), f2(α1) := −b̃1

T
α1 + f̃0(α1). (6.7)

According to the numerical results of the numerical solution of normal direction on the
boundary [0, 1] × {0}, a similar convergence trend is clearly observed (cf. Fig. 5).
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Table 2 Numerical errors on
square meshes for lowest-order
VEM

h 1
4

1
8

1
16

1
32

1
64

error 36.877% 24.739% 14.944% 8.679% 4.575%
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u
re
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−
u
h
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u
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Fig. 6 Relative errors in energy norm
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Fig. 7 The normal displacement (left) and normal stress (right) for a mesh with N = 25,600

In this situation, the numerical solution with h = 1/256 is taken to be the “reference”
solution uref (Table 2).

The relative errors in energy norm are shown in Fig. 6.

On the other hand, we fix the number of elements in the mesh N = 25600, and plot the
displacement uν and force −σν in Fig. 7.

All nodes are in status of normal compliance, i.e. 0 ≤ uν < 0.15. Nevertheless for part
of the nodes we have 0 ≤ uν < 0.1 and for the other part we have 0.1 ≤ uν < 0.15. We
note that for 0 ≤ uν < 0.1 the normal forces increase with respect to the penetration and for
0.1 ≤ uν < 0.15 they decrease. It arises since there −σν = kν(uν) and kν is an increasing
function on [0, 0.1], and it is decreasing on [0.1, 0.15]. �
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