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1 | INTRODUCTION

In physical and engineering sciences, many problems are modeled by partial differential equations
with proper boundary and/or initial conditions. However, various more complex physical processes are
described by variational inequalities (VIs), which form an important and very useful class of nonlin-
ear problems arising in diverse application areas of physical, engineering, financial, and management
sciences, such as elastoplasticity and contact mechanics [1-4], heat control problem [1], pricing of
options [5], and Nash-equilibria [6]. Various numerical methods, such as finite element method [7-10],
finite difference method [11], finite volume method [12], and spectral element method [13], have been
applied to discretize variational inequalities.

In the past four decades, due to their flexibility in constructing feasible local shape function spaces
and their capability to capture nonsmooth or oscillatory solutions effectively, discontinuous Galerkin
(DG) methods have been developed to solve a variety of equations, such as convection-diffusion
equations [14, 15], hyperbolic equations [16—19], Navier—Stokes equations [20, 21], Hamilton-Jacobi
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equations [22, 23], the radiative transfer equation [24] and so on. A historical account of the methods
can be found in [25]. A unified analysis of DG methods for elliptic problems was presented in [26].

The DG methods discretize differential equations in an element-by-element fashion, and glue
neighboring elements together through numerical traces, which makes the methods locally conserva-
tive. A penalty term is added in the bilinear form of DG method to force the continuity of the primal
variable, and this built-in stabilization mechanism does not degrade the high-order accuracy. Since
no inter-element continuity is required in the function spaces, DG methods allow general meshes
with hanging nodes and elements of different shapes, so they are very suitable for the implementa-
tion of hp-adaptive algorithm. Moreover, locality of the discretization makes the DG methods ideally
suited for parallel computing (see [25, 26] and the references therein). Recently, DG methods have
been applied for solving VIs, such as gradient plasticity problem [27, 28], obstacle problems [29, 30],
Signorini problem [31, 32], quasistatic contact problems [33], plate contact problem [34-36], two
membranes problem [37] and Stokes or Navier—Stokes flows with slip boundary condition [38, 39]. A
posteriori error analysis of DG methods for VIs was also considered in [40—44].

However, to our best knowledge, there is no literature studying DG methods for hyperbolic type
variational inequalities. In this paper, we study some DG methods to solve a hyperbolic variational
inequality problem from ([21], Chapter 6, Section 8.2). Given an open bounded connected domain
Q cR4(d =2, 3) with a Lipschitz boundary T, let us consider a hyperbolic type variational inequality
[1,9, 45]: Find u € L*(0, T;V) with i € L*(0, T; V), it € L*(0, T; V') s.t. for a.e. t € [0, T],

uit) €K, (1.1)
@), v —u(?) + au(®),v — u(®) > (f@),v—u(@®) VveKk, (1.2)
and
u(0) = ug, w(0) = v, (1.3)
where
V = Hy(Q),
K={veV:v>0 ae. in Q}, (1.4)

and the bilinear forms

a(u,v) = /Vu -Vuvdx, (u,v) = /uvdx.
Q Q

The VI (1.1)—(1.3) can be regarded as a scalar version of a moderated mechanical system problem
where the velocity components are non-negative and when a velocity component is positive, then the
motion equation in the corresponding coordinate is enforced with an adjusted external force.

For the well-posedness of the problem (1.1)—(1.3), we have the following theorem.

Theorem 1.1 ([21, 39], page 478) Assume

f.f € X0, T; LX(Q)), —Aug € L*(Q), vy €K.
Then the problem (1.1)—(1.3) has a unique solution u € L*(0, T; V), and it € L=(0,T; V),
it e L0, T; L*(Q)).

We observe that the solution has the continuity properties « € C([0, T1;V) and it € C([0, T]; L*(Q)).
The classical formulation of VI (1.1)—(1.3) is

i—Au—f>0, >0, ali—-Au—f)=0 ae. in Qx[0,T], (1.5)
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u=0 ae. onI' and u(0)=u, 1(0) = vy. (1.6)

In general, the solution regularity for VIs is limited no matter how smooth the problem data are.
A sample regularity result for the elliptic obstacle problem was proved by Brezies, compare [46, 47].
For the hyperbolic variational inequality (1.1)—(1.3), it appears that no higher solution regularity is
available in the literature.

In this paper, we study four DG methods for solving this hyperbolic variational inequality, and
provide a unified error analysis for these DG schemes. We show optimal order error estimates for
linear elements. The paper is organized as follows: in Section 2 we introduce spatially semi-discrete
and fully discrete schemes with DG discretization in space and finite difference discretization in time.
Next, we derive a priori error estimates for the spatially semi-discrete schemes of these DG methods in
Section 3, and for fully discrete scheme in Section 4. Then in Section 5, we report simulation results on
a numerical example to show the numerical convergence orders that match the theoretical predictions.

2 | DG SCHEMES FOR THE HYPERBOLIC VI

2.1 | Notation

For definiteness, we only consider the case d = 2 in the rest of the paper, even though the discussion
can be extended to the three-dimensional case. Given a bounded domain D ¢ R? and an integer m > 0,
W™ P(D) is the Sobolev space with the corresponding usual norm |- ||, p, p and semi-norm I-l,, ,, p.
We abbreviate them by |||, , and I, ,, respectively when D is chosen as Q. When p = 2, W™ 2(D)
is written as H™(D) for convenience, and the associated norm and semi-norm are denoted by ||-||,.. p
and ||,y p, respectively. In addition, ||-||p is the norm of Lebesgue space L?(D). Furthermore, for the
time dependent functions, we introduce the space

W™P0,T;V) = {v e I’(0,T; V) : 0pvllporv) <o  VI<m}

with the norm

1/p
T .
<f0 ) ||a£v||’;dr> it 1<p<oo
”V”W”W((),T;V) = 0<i<m
MaXo<i<messsUPo< <7 l0vlly — if p = co;

and the space
C"([0,T); V) = {v e C(0,T];V) : ojv € C([0,T]; V) VI < m}

with the norm
m

vllemqoryvy = max |0y
Vllengoryv) ;tem llofvlv

We assume Q is a polygonal domain and consider a regular family of triangulations of Q denoted by
{75}, such that the minimal angle condition is satisfied. Let hx = diam(K) and 4 = max{hg : K € T;}.
Denote by &}, the collection of all the edges of 7, & the set of all interior edges, and & = &,\&}. Let
e be an edge shared by two elements K+ and K—, and n* = n| o+ be the unit outward normal vector
on 0K*. For a piecewise smooth scalar-valued function v, let v& = v| =T and define the average {v}
and the jump [[v] on &; as follows:

(v} = %(W +v7), [Vl =virt+vn~ onee€é&l.
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For a piecewise smooth vector-valued function w, we denote wE =w| okt and set the average {w}
and the jump [w] on &} as follows:

{w}=%(w++w_), wl=w"-n*+w -n” on e€é&.
Ifee 8,‘3, the set of boundary edges, we let
[Vl =ve, {w}=w on e€é&,

where n is the unit outward normal on I'.
With the above definitions of average and jumps, after direct manipulation, we have

Z/vw-ansz/[]v]]-{w}ds+/{v}[w]ds, 2.1
Ker, J oK & &

where v is a scalar-valued function and w is a vector-valued function.
Let us introduce the following discontinous finite element spaces:

V= eX(Q): V'|x € Pi(K) VK € Tp,},
W= (wh e [LXQI* : w|x € [PIK)? VK € T},

where P(K) denotes the polynomial space of degree 1. We use the following subset of the finite
element space V" to approximate the adimissible set K defined in (1.4):

K'={"eVvh: v,(x)>0 at all nodes of 73}.

2.2 | Spatially semi-discrete DG approximation

Before presenting the DG schemes, we define lifting operators 7: [L*(E)]* = W', ry : [LH(E)]* -
W", and r, : [L2(e)]* - W" by

/r(q)-whdx = —/q- {(wh}ds, /ra(q)-whdx = —/ q-{whids, (2.2)
Q & Q f,?
/re(q) -whdx = —/q- (whyds, vw'e W (2.3)
Q e

Spatially semi-discrete DG formulation for the VI (1.1)—(1.3) is: Find u" : [0, T] = V" such that
i" € K" and

@V =iy + B V=i > (V- i) W e K, (2.4)
u"(0) = Phu, (2.5)
i"(0) = Plv, (2.6)

where P! is the Galerkin projection from V to V" defined by
By(Piv—v, vy =0 W' eV

We introduce four choices of the bilinear form B, = Bg) (j = 1-4) in the following. The bilinear
form of interior penalty (IP) method ([48-50]) is

B;l)(u, V) = /th -Vwodx — | [u]] - {Viv}ds— [ {Vju}- [V]ds+ / n [u] - V] ds,
Q &, &, &,
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where the penalty weighting function 5: £, — R is given by n.h;! on each e € £, with 5, being a
positive number. Here, the broken gradient operator V;, is defined by the relation V;,v=Vv on any
element K € T,. For the method of Bassi et al. [51], the bilinear form is

B (u,v) = / Vit - Vywdx — / [l - (Vav}ds - / (Vi) - [vlds
Q &, &

+ Z /S}”e’"e([[”]])'re([[vn)dx.

€,

The bilinear form of Brezzi et al. method [52] is given by
Bf)(u, V) = /th -Vyodx —/ [u]l - {Vpvids —/ {Viu} - [Vlds
Q fh ‘("h

# [ )+ 3 [l -

e€E),

The last one is the simplified local DG (LDG) method [53], the bilinear form is

B (u,v) = /th “Viodx — [ [u] - {Vyvids — / {Vau} - [v]ds
Q &, &,

+/Qr(ﬂu]])-r([IVJ])dx+/£n [u] - [v]ds.

h

Remark 2.1  For the general boundary condition u =g on I', the DG scheme needs an
extra linear form on the right hand side of (2.4). For the DG methods with j=1, ..., 4,
the associated linear forms are

FOw) = / g =V, -n)ds,
gr)

h

F(z)(v) = Z /nere(gn) -r.(va)dx — /Bthv -nds,
Q £

eeé‘ﬁ h

FOw) = / ro(gn) - r([vdx + )] / Nere(gn) - ro(vm)dx — / gV - nds,
Q Q &

)
eeE)

F®@) = /ra(gn) -r([v[dx + / glpu —=V,v-n)ds.
Q &

2.3 | Fully discrete approximation scheme

We need a partition of the time interval
N
[0,T] = Ul[[n—l,[n]a O=n<n<---<ty=T.
n=

For simplicity in notation, we use evenly spaced nodes 7, = nk, 0 < n < N, with a uniform time
step k = T/N. For a continuous function v, we use the notation v,, = v(t,,). We define

Vel + Vot Vel — Vn_i Vit — 2V, + Vi
n+ n 5kVn= n+ n and de _ Vnt+ n n .

YikVn = ) P 2k n = 2

Let By (-, -) be one of the bilinear forms Bg)(-, ) withj=1, ..., 4, and F, be the associated linear
form with the boundary condition g, = g(#,). Then a fully discrete approximation of (1.1)—(1.3) is:
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Find {uf*}"_, c V" such that

sul* e K", .7)
forl<n<N-1,
(deuf* V" = 8ul™y + B (yeu* V' = sl > (F,,V" = suul*y W e K, (2.8)
and
ul® = Plug, (2.9)
ultk = ul* + k Py, (2.10)

Remark 2.2 In the above fully discrete scheme, the temporal discretization in (2.8) is
2nd-order. However, as proved in Section 4, it only achieves linear convergence order
in time due to the limitation on the accuracy provided by (2.10). In [18], for the wave
equation, a second order scheme was given to approximate the initial condition (1.3), so
that the fully discrete approximation therein achieves 2nd order in time. Unfortunately,
due to the inequality feature, the same ideas cannot be applied to the hyperbolic varia-
tional inequality problem (1.1)—(1.3). It can be seen from the proof of Theorem 4.2 that
the fully discrete scheme can achieve 2nd order convergence in time if a higher order
approximation can be constructed for the initial condition (1.3).

2.4 | Properties of DG schemes

As a preparation for error analysis, we first show the consistency of the DG schemes, and then give
the boundedness and stability of the bilinear forms under DG norms.

Lemma 2.3 (Consistency) Assume u € L*(0, T;HZ(Q)) is the solution of the VI
(1.1)~(1.3). Then for all DG methods By(w,v) = BY(w,v) with j = 1, ..., 4, we have for
almost everywhere t € [0, T],

(i,V" — ity + By(u V" — i) > (F V' — i) W e K" 2.11)

Proof . Notice that u(t) € H*(Q) for almost everywhere ¢ € [0, T1, so [[u]] =0, {u} = u, [Vu] =0,
and {Vu} = Vu on any interior edge. For any v € K", using integration by parts formula, we get

By(u V' — i) = /V;,u VR0 —iydx — [ {Vyu) - V' —ids
Q £,

=/—Au(vh—f4)dx+ z / Vu-nK(vh—u)ds—/{th}- V' — i) ds
Q oK &,

KET/X
= / — Au(V" — in)dx.
Q

Then we use the relation (1.5) to obtain

i1,V — i) + By(u, V' — ir) = / (it — Auw)(V" — in)dx
Q

= /(u — Aundx — /(u — Au—fidx — /fudx
Q Q Q
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> / fdx — / fidx
Q Q

= / fOM —iydx,
Q
that is, (2.11) holds. [ ]

To consider the boundedness and stability of the bilinear form By, as in [30], let V(h) = V), +
H*(Q) N Hé(Q), and define seminorms and norms for v € V [h] by the following relations:

2 2 2 -1 2 2 2 2 2 2
M= Yle W= YD WP =i+ Y BB+ .. @12)

KeT, e€é, KeT,
We have the following inequalities ([[3], Lemma 2.1])
VIS (v + IR S vl v € V. (2.13)

Here “<- - -7 stands for “< C-: - -, where C is a positive generic constant independent of 4, k and
T, which may take on different values at different places. In the analysis, we shall use space L(0, T;V
(h)) with the norm

T 1/p )
(o wwar) ™, it 1 <p < oo,

€SSSUPg<;<T vill, if p = oo.

vl o.r.veny =

The boundedness and stability of the bilinear form B, (u, v) was given in [26, 30]. Here, we state
them as lemmas.
Lemma 2.4 (Boundedness) For B, = BE{), 1<j<4,

By(u,v) < Mluelll NIl Yu,v € V(h). (2.14)

Lemma 2.5 (Stability) For B, = BY, 1 <j<4,
Byv,v) 2 VI W eV, (2.15)

if no =inf,n, is large enough for IP method (j= 1), no > 3 for the method with j =2, and
no > 0 for the methods with j =3, 4.

3 | ERRORESTIMATES FOR THE SPATIALLY SEMI-DISCRETE SCHEMES

3.1 | Interpolation errors

If u € L*(0, T;H?*(Q)), let IT"u € V" be the usual continuous piecewise linear polynomial interpolant,
then the jumps of u — IT"u will be zero at the interelement boundaries. It is easy to see that [26, 30] for
almost everywhere ¢ € [0, T]

lu) = T u@lll S hlu@)|s. 3.1)

To extend the analysis to nonconforming meshes, it is convenient to use an interpolant IT"x which
is discontinuous across the interelement boundaries. As in [26], we just require the local approximation
property

h )
lu(@®) = TFu@® |1k < hlu@®)]2k;
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then for the global approximation error, we have for almost everywhere ¢ € [0, T1,
Nl = Tulll < Alu(@®)l2. (3.2)

Similarly, if # € L*(0,T;H*(Q)) and it € L*(0,T;H*(Q)), we have for almost everywhere
tel0, 1],
i = Tall| S hlio)lo, it = Tiill| S hlii(0)]a. (3.3)

Define u/(t) € V" by
By (1) —u@®), V) =0 W' e Vi (3.4)

Then we have the following approximation property (see [18, 33]).

Lemma 3.1  Assume u € H?(0, T:H*(Q)), we have
Nojw' —wll S hlldfull, 10/ = w)ll S KP|lofull,  i=0,1,2. (3.5)

3.2 | A priori error estimates

Theorem 3.2  Let u and uy, be the solutions of (1.1)—(1.3) and (2.4)—(2.6), respectively.
Assume u € H?(0, T:H?*(Q)), then for the DG methods withj=1, ..., 4, we have

li(t) — ")l + lu@) — @Il < Ch,  for ae. t€[0,T]. (3.6)
Here, the constant C depends on ||u|| p20.7:02(0))> and |[f || .2¢0.7:22(9))-
Proof . Note that u/(0) = Plug and i/ (0) = Plvy. Thus
u'(0) = u"(0), i' (0) = i"(0). (3.7
Now we write the error as
e=u—u"=@w—-u)+ @ —u")=e + ¢
Let V" = il in (2.11) to get
(it 0" — it) 4+ Bp(u, i — i) > (f, i — ). (3.8)
Combining with (2.4), we obtain for all v! € K",
=B V' — iy < By(u, il — i) + (i V= i) + (i, i — i) — (F V" — ). (3.9)
Using symmetry of B, and orthogonality (3.4), from (3.9), we have
2P + Bte", €M) = (@) + Bi(e", &)
=@" M+ By —u, il — i)+ By — i — V")
+ Byl V' — i) — By V! — i)
ST+ T+ T3+ 1Ty, (3.10)
where

Ty = B! () — u' (1), i (1) — (D)),
Ty = By(u! (1) — u"(0), iu(t) = V"),
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Ts = (it, V" — it) + By(u(0), V" — i) — (f, V" — ia(t)),

Ty = @, e" + (" — i, V" — iy = @, il = V") + @i — i, V' = i),

In the above argument, we used the fact that Bj,(u/ —u, v" — i) = 0 due to (3.4). By the boundedness
of the bilinear form Bj,, we have

1 h - . 1 hin2 . ] .2
Ty Sl =Wl Wl = aelll < Mo = w17+ MMl — alll*, (3.1

I h : h 1 2 : 2
Ty S Ml = wlIl Wi = vEIES Ml = 17 4 Nl = v~ (3.12)

We turn to bound T3. Note that on an interior edge, [u]] =0, {u}= u, {Vu}= Vu, and on T,
[[u]l = gn. Then

B(u, V" — i) = /th VL0 = idx — / Vu- V' —ids.
Q g

h

Since [Vu] = 0 on an interior edge and remembering (2.1), we have

Vau - Vi = iydx = /—A " — iydx + Vu- " —iyd
Z[(hu KOV —idx Z - u(V" —i)dx Z Vu-ngp)(vV" —i)ds

KeT, KeT, KeT, 7/ 9K
= 2 / — Au(v" —L't)dx+/Vu- V" =l ds.
KeT, K &
Then
By(u, V' — i) = Z / — Au(V" — in)dx.
KeT, /K
Hence, we get
T3 = (it — Au—f V" —it) < |lii = Au = £ V" = i]. (3.13)

For T4, we have

Ty =@ i =+ @ — v =)+ @ — i, i — i)

< @i =V i = all V= a4+ = allet - )|
“h N 1 . 1,.
< (eh,uI - vh) + ||u1 - u||2 + Ellvh - ulll2 + §||eh||2. (3.14)

We apply (3.11), (3.12), (3.13) and (3.14) in the inequality (3.10), and then integrate this inequality
over the time interval (0, s) for a fixed s € I. This yields

LR+ 1By ). 60 s 21217 + LB ), 0 + 2 / e 1%d1
2 2 2 2 o

S N
. ] ) . 2
+/ i — ] dr+/ it = v 2dt
0 0

+/ i = Au—flIV — ildr
0

+/ ||u’—u||2dt+1/ [IV" = i ||2dt
0 2 0

+1/ ||éh||2dt+/ @, il —Mydt. (3.15)
2 0 0
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LetVv" = IT"i1in the above inequality. Applying integration by parts to the last term on the right-hand
side, we get

/ @i —ipdt = — / @, 0" = I ipdr + @', = Tin)iZ)
0 0

N N
<3 | v S [ —ntapar S
1. . 1. 1. .
+ i) - PP + 1O + Lt o) - ticon®

Here, in the last inequality, the geometric—arithmetic mean inequality | ab |< %az + zigb2 is used
with any arbitrary small constant £ > 0.

Next, by the boundedness and stability of the bilinear forms, we make some algebra manipulation
and apply Gronwall’s inequality to the inequality (3.15). Then, we obtain

"I+ lle" @I Sl O + e O + Il & = il 20.7:vamy

e = T 2o zoviny + I = ill 20 70200

+ i = iill 212 + 1T — i 207220

+ || = Til| 20,7220 + 1 () = Ti(s) || + [l (0) — T"i(0)].
By the relation (3.7), we know that

e"(0) = ! (0) — u"(0) = 0, ¢"0) = i (0) — i"(0) = 0.
Then by (3.2), (3.3) and (3.5), we get
")+ llle" )l S b,

Finally, by the triangle inequality, we complete the proof of (3.6). [ |

4 | ERRORESTIMATES FOR THE FULLY DISCRETE SCHEME

In this section, we analyze the fully discrete scheme. First, we show the well-posedness
of problem (2.7)—(2.10).

Theorem 4.1  The problem (2.7)—~(2.10) admits a unique solution u"™*, which is stable
in the sense that for given uj o, uz 9 € V, and f, > € W (0, T: V), the corresponding
solutions u{"j, and ué"; 0<n <N, satisfy the inequality

0‘2%\,(]‘_1”3"“ —eull + lleall) S MPEGur0 — w2 )l +IIPEV 10 — vall + Ui = Allwis@ryy.  (4.1)

— ik _ hk
Here, e, = uy, —uy,,.

Proof . The inequality (2.8) can be rewritten as
2 2
O V" = ) + kBB’ V" = ) 2(F v = S + 5 — Ly, v = S’
— Bh(ufl’fl, V= suul®y W' e K.

This inequality problem admits a unique solution §ul* € K" by the boundedness and stability of
the bilinear form Bj,.
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Then we turn to deduce the inequality (4.1). Withn=1,2, ..., N — 1, for all v € K", we have

nk hk hk hk h hk
(druy s V' = Sxuyy) + Br(yauiy, V' = Sxuyy) = (fia, v' — duuf,), 4.2)

(ddhk V' = 5hb) + Bu(yiadsh V' = 5bh) > (o V! = Sibk). 4.3)
Taking V! = 5% in (4.2) and v = §,u% in (4.3), and adding the two inequalities, we obtain
An = (dkens éken) + Bh(ykem éken) < (fl,n _f2,na éken)~

We can get the lower bound as

1 1
An 2 25 Ulene = enll® = llew = en-ll®) + - (llensa iz, = Mea ). (4.4)
Here, the norm ||| - |||%,] := By(-,-) is equivalent with ||| - [||? due to continuity and coercivity of the
bilinear form B;,. Then for 1 <n < N — 1, we obtain

1 2 2 2 2
p(”enﬂ —enll” = llen — en1ll”) + lllensillls, — Men-1llz, S Frn = fons €ns1 — €n-r)

A simple induction yields

n
1 2 2 2 2
ﬁ(”erwl —enll” = ller = eoll”) + llenrtlllz, — llleollls, < Z(fl,j —faj- €1 — €j-1)
=
= (fin=1 = fon=1>€n) + (fiu2 — fon-2,€n-1) — (fi,1 —fo,1, €0) — (f12 — fo2. €1)

n-3
+ Z((fl,j = fij12) = (o) — f2j42) €j41)-
j=1
Recall (2.9)-(2.10), we have
el = u?kl - ugk] = u% + kngl,o — u% — kngz,o =ey+ kPg(vl,o —V0),

which implies
1
k7||61 —eoll* < 1P3(vi0 = v20)ll.

Let M =max; <, <n(k™'[|en+1 — €nlI* + lllenlll), we obtain

M?* S |IPh1o — vao)lI* + I1Ph(uio — u2o)lll* + (”fl,n—l = fon=tll + W=z = o=l

n—3
A = fall + iz = forll + Z (1 = frje2) = (foy —f2,7+2)||> M
=1

S IPE(v10 = vao)lI? + P50 — w2 0) I + MIlfy = fallwiso.1:v)-
Applying the following inequality
xa,b>0 and ¥ <ax+b=>x<a+b'"?, (4.5)
we then obtain the stability inequality (4.1). [ ]
Now we give error estimates for the fully discrete scheme in the following theorem.

Theorem 4.2  Let u and u"™ be the solutions of (1.1)—(1.3) and (2.4)—(2.6), respectively.
Assume u € C2([0, TI;H*(Q)), 07u € L*(0, T; HX(Q)), o*u € L=(0, T; LA(Q)). Then the
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following error bound holds
mjfch(k‘l @1 — ut) = (= w ) + Nl — w 1) < Ch+ b, (4.6)

where the constant C depends on ||ullc2qory.az@) 107 ull o002 1107 ull =072,
and |[f || 120,112

Proof. Define e, = u,, — ul* forn=1, 2, ..., N. We have
= (uy — up) + (uy, — up*) = e} + €)1

where ul, = u!(t,). Denote

= (dye, Sren) + Bu(yien, Sxel).

As (4.4), we have
1
Ap 2 5 (Ile,,+1 enll® = lleh — en_ 1) + %(IIIeZHIII%,, — Il ll,)- 4.7
For an upper bound of A, write

Al =(dyuy — iy, Sty — Sxtun) + Bu(yittsy, — t, Sxtty, — Sty
+ (i, Sty — Sun’) + By(uty, Sguth — Spup’)
— (g, Sxut, — Vi) — Bu(rcun®, Sguhy — vi)
— (dxuf* Vi — Sy — Bu(yul®, vit — Srul®), (4.8)

where v!! € K" is arbitrary. We take v = §yuf'* € K" in (2.11) at t =1, to get
(un’ akuttlk - un) + Bh(um 5/(“}}11/c - un) > (fm 5k”}’11k - un)
Combining the above inequality with (2.8), we have,

—(dgur* Vi = Sy — Bu(yiun®, vit — Sul®) < (i, Sxun® — i) + Bp(uy, Spun® — i)
_(f;’h VrL - un . (49)

In Equation (4.8), inserting
(dutty, Seuth — Vi) — (dyusy, Sxtty, — vit) + Bu(uth, Sty — viv) — By(uh, Sy — Vi)

and applying (4.9), we get
AL STy +Ti+ Ty + Ty, (4.10)
where
T} = (duhy — iy, Suly — S,ul™) + By(yrdy — uy, Sudly, — S,ul™),
T2 (dkun - um vn - 5kun) + Bh(ens 5kun - ﬁ),
T3 = (dkem 5kun - ) + Bh(un ykun s 5kun - vn)

4
T (Lt,,, vn I/t,,) + Bh(um Vn - (fm Vn - n .

From the lower bound (4.7) and the inequality (4.10), we obtain

2 hoho o2y gy Low w2 P N R
(||en+1 - en” — llen — e, II7) + %(”|en+1|”3h - |||en_1|||3h) ST +T; +T, +T,.
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By an induction, we get

n

1 1
5l = b2 = lleh = eblIP) + L (lleh I, = ebli,) S Yo (T + 77 + 77 + 7)),
j=1

which implies

n

L n 2 ho2 U g2, 73, pd oy Lo w2 2

k7||€n+1 —enll” + e llls, SkZ(T/‘ +T7+ T +T)) + k7||€1 —eoll” + llleglll, - (4.11)
=

Set M = max; [l €} |ll, & = dwut] — iij, § = yau} — wj and 6; = u] — yul*, we get

n

D 2T} =) (Gnelyy €l )+ Y Bl —el))
j=1 j=1

j=1
n—-2

= Y& el — N+ D (G el =)+ Y BuG — Grar€h)
Jj=1 J=1 =1
+ B €l )) + Bi(Cui1s €) — Bi(Ga, €f) — Bi(C1, ef)

n n n-2
1
S DKIGIE + Y ey eIl + <Z 118 = Gealll +max |||¢j|||>M, 4.12)
j=1 j=0

=

2 K77 S maxligl + lefl) 3 Kl = sl 4.13)
j=1 Jj=1

and

J=1

i —

[Zw}zl ~ s =) = Y (e} ~ 1. 5] - v?)] + 2 kB0, bty = v])
j=1 j=1 j=1

=

n—1
h h I 1 h h h 7 1 h
lZ(e,-ﬂ =€} 6k — ujy) — (Vi = Vi) + (€4 — €ns Skt — Vi)

=1

= (€} — el ik — VDI + ) kBy(0), Sae] — )
j=1

n—1 n—1
1 h ny2 o 1 I B b2 . £k 2
S 3 2l =€ IP + o DBk — ufy) = 0F = VDI + 5l = el
= =
n
1 mp2 o Lyon on h h
+ E”éku{t —vll” + %Hel — eglll1 ey — V]| +m]aX”|9j”| Zk v =il (4.14)
. P

Then, by Gronwall’s inequality, we obtain from (4.11) to (4.14)

n n-2
1
allenn = el + M < 3 kg + <Z I1G) = ¢jealll + max |||c,-|||> M
=1 =1

n

+max;(|1&[l + lllef Il + N6;1) Z klllvi — Seu |l
=1
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n—1
1
+%Z||5k<u;—u;+1)—<v;? VDI + |6ty — VA1

+ 18y = viII* + Zk | T} | ta Ilel —egll? + llegll®. (4.15)
Jj=

Note that |6l = |||ujl - ykuf + yke;’||| < uJI- - yku]( Il +M, by the relation (4.5),
we obtain

Lo h h
max ( 2llefe = <11+ llefl )
n 172 n-2
s<2k||¢_,-||2> +Z|||c, ¢,+2|||+max|||¢,|||+2k|||v — &l
j=1

0 1/2
+ (me(Ilfjll +llefll + Nl = v 1D Yk MV = 5kuflll>

=1

n—1 172
1
+ <k D86l — ) = O - v,’-'+1)||2> + (|8t — Vi

J=1
1/2
1
+ |6y = vill + (Z kIT}| > + 2 llet = egll + llel - (4.16)

Now, let us estimate the above inequality term by term. By Taylor’s theorem, we have

K2 k" o (G — D"
Vil =V + kv + =V 44+ =0 + ot tlidt,
AR I m [ Vo m!

f

2 _\m /= t — "
Vi1 = v — kv + %i}j +---+ ( rr]:') or'v; + / dlmHv(t)%dt,
! p !

i

then
Vigl = 2vj + Vi 1 [
@W=Jﬂ—?%—ii=%5 W)k — |t — ;])dt
4
D U 3
=itz t orv(n)(k — |t — ;) dt,
=1
Vitl ~ Vj-1 L[ s 2 1 [ 2
by = L = +@ OOty = 0%t = o | OOt = 0,
j
and
Visl + Vi 1 [
YKV = % =v+ 5/ WOk = |t —t;dt.
t

=1

Note that k — It — t;1 < k. We obtain

I s 1 .
WGl = Ndru; — il < |ldie(uj — upll + lldiut — i

T Ly
51/'uw—ww+k/'n&wm
k lj-1 6 fi-1



908 ‘V\/IIJEE\, WANG AND HAN

h livi
L / liilladt + k / lotull dr
S .
1/2 o 172
km( |u||%dr> +k3/2</ ||a:‘u||2dt> .
fio1

0 12
<Z k||§j||2> S P llill 2o + K107 ull 20,1120 4.17)

Therefore,

Similarly, we have

NG = Ny = willl < MyeCeef = wplll + My —

I k i1 .1 .. k fi1 .
< lwj = willl +5 it — alll dt + = llalll d2
2/, 2/,

li1 li1
Shluj|2+kh/ |'u|2dr+k/ il dr
o t

= 71

< (h+ D)l 2qo.rm2@)» (4.18)

and

n—-2

G - Gl = 3 / ¢warll
= :

n— 2 t+k t+k
/ (hluj(t)|2 + kh/ |02uldt + k/ o2ull d7> dt
j=1 74 1—k t—k

- 3
< hllitll o072 + K107 ull Lo 0,712 - (4.19)

\

A

Choose vj’ = [T"i1;, we have

Dkl = sl =D k T — e |
Jj=1 j=1

" L1
< Ykt -k [ oru
= :

li1
S hlitll .2 + K107 ull 11071202 - (4.20)
In addition,

Il + el + ] — v
J J J

B2 [lin . k[ . L1 »
S |lit]|dt + 3 / |07 ullds + hllull z=0,7:12) + k/ |lii*||2d s
t t t

k = /-1 =
S (h+ Dl qo.rm2@) + K107 ull 10722 -
Therefore,

n 1/2
(m]?lx(||§j|| +llelll + Nluf =y 1) Y & NIV = 6! |||> Sh+k. (4.21)

J=1
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TABLE 1 Numerical convergence orders when ¢ =1 for fixed k=0.01

h 28 2! ot 2 2
H'erors  7.7073e-001  3.4212e-001  12933e-001  7.0273e-002  3.0137e-002
Order - 11717 1.4034 0.8801 12214

15

0.5

-1

-1.5
-1.5 -1 -0.5 0 0.5 1 1.5

FIGURE 1 Quasi-uniform triangulation with #=0.125 [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Numerical convergence orders when # =1 for fixed 42 =0.03

k Pl 2 % o= D
H' errors 9.8526e—-001 1.7645e—001 1.3772e-001 6.5695e—002 26168e—0.02
Order = 2.4812 0.3576 1.0678 1.3280

Next, we estimate

166t} = uf,y) = (it — iy )|
< 1Gutef = i) = Buttfyy = i DI + 1G] = i) = iy = g
Ly 4
- / O (1) (11 — 172t + / Ol (111 — 1t
4 "

j—1

fv2 livt
- / Ru (D(tj2 = dt = / Pul (0t — 0d1

liv1 %

lis1 Gis1
+ / il dt — / Miidt
1. 1.

J 7
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FIGURE 2 Numerical solution on mesh with 2= 0.125 when 7= 1 [Color figure can be viewed at wileyonlinelibrary.com]

2> [ 2 [
5k/ ||a,u’||dt+h/ |07 ull, dt
t t
J

-1
1/2 1/2

liv2 lj1
SKP / lofu|[Pdt |+ h*k'/? / l|07ull3 dt
lj-1 4

J

In the third inequality, we use the results in Lemma 3.1 and the fact that
t
Ul (1) = o}’ (1) + / ot (t)dr.
;

Hence, we have
[l 12
i Z ||5k(M]I- - M,l+1) — (i — )| S K0t ull o @) + PPl o rmay.  (4.22)
=

Similarly,
! _ 17 1_ ol 1 TThs
lSxe; = I || < || Spat; — iy || + [l — T |

1

li1 4y
~ 4k / ou' (O)(t41 — 0dt —/ Pul ()G — 0%dt | + i — i
b v

lis1
<K / ot ldt + i .
t

j—1

Therefore,

h h 21 A4 21
Sxuh, — ity || + NSty — iy || S K207 ull o2 + PNl o072 - (4.23)
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log(error)

——nh
—*—H" error

10-2 1

10° 10’
log(1/h)

FIGURE 3 Numerical errors for IPDG method when =1 for fixed k=0.01 [Color figure can be viewed at
wileyonlinelibrary.com]

To estimate the term | T;‘ |, doing similar argument for deriving (3.13), we obtain
4 .. o 2
| 77 1< ity — Aw; = fillllv; = igll S h”

Hence,
1/2

Y ML) sh (4.24)
=1

Because u/* = Phug = ul), we have ¢} = 0, and
h_ i I hk _ I hk VA Y B R
el—eo—ul—ul —I/ll—uo —kPBvo—ul—MO—kuo—ku(a),
we get

1
et = el + llebll < & (4.25)
Summarizing the results (4.17)—(4.25), we obtain
1
max; (2 llefr = e/l + lfII) S i+ k.
Finally, we apply the triangle inequality to finish the proof

-1 —1y 1 ! ! —1)| h h h
k= e — el + lleilll < &7 llejy — el + llle;lll + &7 Mlegyy —efll + llleflll < 72 + k.

Here, we use the fact that

f

b 7 N tis ] tj+1 -t 20 2 lis1 .
llejr — ¢l = llke; + é (I)Tdtll S kh”|lull2 + kh llill> dt.
5
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log(error)
)
T

—k
—x—H! error

1072 '
10° 10
log(1/k)

FIGURE4 Numerical errors for IPDG method when 7= 1 for fixed 42 =0.03 [Color figure can be viewed at
wileyonlinelibrary.com]

5 | NUMERICAL EXAMPLE

In this section, we present a numerical example on convergence orders. The hyperbolic variational
inequality problem (1.1)—(1.3) is discretized by the IPDG scheme in space and finite difference scheme
in time as stated in Section 2.3. In each time step, the discretized problem is solved by primal-dual
active set method [54].

Example. Let the domain Q: = (—1.5, 1.5)? and denote r = (x> + y*)"/2. Given a function

r? 1 .

——=In(r)— -, if r>1,
wx,y) =% 2 2 ,

0, otherwise,

we set the right side function f(z, x, ) =2 w(x, y) —2 > and define the Dirichlet boundary condition
as the trace of the exact solution u(t, x, y) = £2y(x, y).

We use quasi-uniform triangulations 7, as shown in Figure 1 for & = 0.125. Figure 2 shows the
numerical solution when ¢ = 1 on the mesh with 4 = 0.125.

To observe how the numerical errors depend on the mesh size &, we fix time step k = 0.01, and let
h=20 271 .., 27* The numerical errors and convergence orders for ¢ = 1 are summarized in Table 1
and shown in Figure 3. We see that the numerical convergence order for H' error is around 1, which
matches well the theoretical prediction.

Then we fix mesh size & = 0.03, and observe how the numerical errors depend on the time step
size k, see Table 2 and Figure 4. We see that the convergence order is linear with respect to k.


http://wileyonlinelibrary.com

WANG AND HAN WI LEY 913

ACKNOWLEDGMENTS

F. W. was partially supported by the National Natural Science Foundation of China (Grant no.
11771350) and W. H. was partially supported by NSF under grant DMS-1521684.

ORCID

Fei Wang @ http://orcid.org/0000-0002-9745-1195

REFERENCES

(1]
(2]

(3]
(4]
(5]
(6]
(71

(8]
(9]

(10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]

G. Duvaut, J.-L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin, 1976.

W. Han, B. D. Reddy, Plasticity: Mathematical theory and numerical analysis, Interdisciplinary applied mathe-
matics, vol. 9. 2nd ed., Springer-Verlag, New York, 2013.

W. Han, M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, AMS/IP studies in
advanced mathematics, vol. 30, American Mathematical Society and International Press, Somerville, MA, 2002.
N. Kikuchi, J. T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element
methods, SIAM, Philadelphia, 1988.

P. Jaillet, D. Lamberton, B. Lapeyre, Variational inequalities and the pricing of American options, Acta Appl.
Math. vol. 21 (1990) pp. 263-289.

E. Cavazzuti, M. Pappalardo, M. Passacantando, Nash equilibria, variational inequalities, and dynamical systems,
J. Optim. Theory Appl. vol. 114 (2002) pp. 491-506.

R. S. Falk, Error estimates for the approximation of a class of variational inequalities, Math. Comp. vol. 28 (1974)
pp. 963-971.

R. Glowinski, Numerical methods for nonlinear variational problems, Springer-Verlag, New York, 1984.

R. Glowinski, J. L. Lions, R. Trémolieres, Numerical analysis of variational inequalities, North-Holland,
Amsterdam, 1981.

D. Shi, C. Wang, Q. Tang, Anisotropic crouzeix-raviart type nonconforming finite element methods to variational
inequality problem with displacement obstacle, J. Comput. Math. vol. 33 (2015) pp. 86-99.

E. A. Al-Said, M. A. Noor, A. K. Khalifa, Finite difference scheme for variational inequalities, J. Optim. Theory
Appl. vol. 89 (1996) pp. 453-459.

R. Herbin, E. Marchand, Finite volume approximation of a class of variational inequalities, IMA J. Numer. Anal.
vol. 21 (2001) pp. 553-585.

M. Moradipour, S. A. Yousefi, Using spectral element method to solve variational inequalities with applications
in finance, Chaos, Solitons & Fractals vol. 81 ( (2015) pp. 208-217.

P. Castillo et al., Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method
for convection-diffusion problems, Math. Comp. vol. 71 (2002) pp. 455-478.

I. Perugia, D. Schotzau, An hp-analysis of the local discontinuous Galerkin method for diffusion problems, J. Sci.
Comput. vol. 17 (2002) pp. 561-571.

K. Bey, J. Oden, hp-version discontinuous Galerkin methods for hyperbolic conservation laws, Comput. Methods
Appl. Mech. Eng. vol. 133 (1996) pp. 259-286.

M. Grote, A. Schneebeli, D. Schotzau, Discontinuous Galerkin finite element method for the wave equation, SIAM
J. Numer. Anal. vol. 44 (2006) pp. 2408-2431.

M. Grote, D. Schétzau, Optimal error estimates for the fully discrete interior penalty DG method for the wave
equation, J. Sci. Comput. vol. 40 (2009) pp. 257-272.

P. Houston, C. Schwab, E. Siili, Stabilized hp-finite element methods for hyperbolic problems, SIAM J. Numer.
Anal. vol. 37 (2000) pp. 1618-1643.

F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the
compressible Navier-Stokes equations, J. Comput. Phys. vol. 131 (1997) pp. 267-279.

B. Cockburn, G. Kanschat, D. Schotzau, A locally conservative LDG method for the incompressible Navier-Stokes
equations, Math. Comp. vol. 74 (2005) pp. 1067-1095.

C. Hu, C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM J. Sci.
Comput. vol. 21 (1999) pp. 666-690.

R. Kornhuber et al., The analysis of the discontinuous Galerkin method for Hamilton-Jacobi equations, Appl.
Numer. Math. vol. 33 (2000) pp. 423-434.

W. Han, J. Huang, J. Eichholz, Discrete-ordinate discontinuous Galerkin methods for solving the radiative transfer
equation, SIAM J. Sci. Comput. vol. 32 (2010) pp. 477-497.

B. Cockburn, G. E. Karniadakis, C.-W. Shu (Editors), Discontinuous Galerkin methods. Theory, com-
putation and applications, Lecture Notes in Comput. Sci. Engrg., vol. 11, Springer-Verlag, New York,
2000.


http://orcid.org/0000-0002-9745-1195
http://orcid.org/0000-0002-9745-1195

914 Wl LEY WANG AND HAN

[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]

[35]

[36]
[37]
[38]
[39]
[40]

[41]

[42]
[43]
[44]

[45]
[46]

[47]
[48]

[49]
[50]

[51]

[52]

[53]

D. N. Arnold et al., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer.
Anal. vol. 39 (2002) pp. 1749-1779.

J. K. Djoko et al., A discontinuous Galerkin formulation for classical and gradient plasticity — Part 1: Formulation
and analysis, Comput. Methods Appl. Mech. Eng. vol. 196 (2007) pp. 3881-3897.

J. K. Djoko et al., A discontinuous Galerkin formulation for classical and gradient plasticity — Part 2: Algorithms
and numerical analysis, Comput. Methods Appl. Mech. Eng. vol. 197 (2007) pp. 1-21.

F. Wang, Discontinuous Galerkin methods for solving double obstacle problem, Numer. Methods Partial Differ.
Equ. vol. 29 (2013) pp. 706-720.

F. Wang, W. Han, X. Cheng, Discontinuous Galerkin methods for solving elliptic variational inequalities, SIAM
J. Numer. Anal. vol. 48 (2010) pp. 708-733.

F. Wang, W. Han, X. Cheng, Discontinuous Galerkin methods for solving Signorini problem,IMA J. Numer. Anal.
vol. 31 (2011) pp. 1754-1772.

Y. Zeng, J. Cheng, F. Wang, Error estimates of the weakly over-penalized symmetric interior penalty method for
two variational inequalities, Comput. Math. Appl. vol. 69 (2015) pp. 760-770.

F. Wang, W. Han, X. Cheng, Discontinuous Galerkin methods for solving a quasistatic contact problem, Numer.
Math. vol. 126 (2014) pp. 771-800.

S. C. Brenner et al., A quadratic C° interior penalty method for the displacement obstacle problem of clamped
Kirchhoff plates, SIAM J. Numer. Anal. vol. 50 (2012) pp. 3329-3350.

F. Wang et al., “Discontinuous Galerkin methods for an elliptic variational inequality of fourth-order,” in
Advances in variational and hemivariational inequalities with applications, Springer International Publishing,
Switzerland, 2015, pp. 199-222.

F. Wang, T. Zhang, W. Han, C? discontinuous Galerkin methods for a Kirchhoff plate contact problem, J. Comput.
Math. vol. 37 (2019) pp. 184-200.

F. Wang, Discontinuous Galerkin methods for two membranes problem, Numer. Funct. Anal. Optim. vol. 34 (2013)
pp- 220-235.

J. K. Djoko, Discontinuous Galerkin finite element discretization for steady Stokes flows with threshold slip
boundary condition, Quaest. Math. vol. 36 (2013) pp. 501-516.

F.Jingetal., Discontinuous Galerkin finite element methods for stationary Navier-Stokes problem with a nonlinear
slip boundary condition of friction type, J. Sci. Comput. vol. 76 (2018) pp. 888-912.

T. Gudi, K. Porwal, A posteriori error control of discontinuous Galerkin methods for elliptic obstacle problems,
Math. Comp. vol. 83 (2014) pp. 579-602.

T. Gudi, K. Porwal, A reliable residual based a posteriori error estimator for a quadratic finite
element method for the elliptic obstacle problem, Comput. Methods Appl. Math. vol. 15 (2015)
pp- 145-160.

T. Gudi, K. Porwal, A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem,
J. Comput. Appl. Math. vol. 292 (2016) pp. 257-278.

F. Wang, W. Han, Reliable and efficient a posteriori error estimates of DG methods for a frictional contact
problem, to appear in Int, J. Numer. Anal. Model.

F. Wang et al., A posteriori error estimates of discontinuous Galerkin methods for obstacle problems, Nonlinear
Anal.: Real World Appl. vol. 22 (2015) pp. 664-679.

J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod, Paris, 1969.

D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Academic
Press, New York, 1980.

J. F. Rodrigues, Obstacle problems in mathematical physics, North-Holland, Amsterdam, 1987.

D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. vol.
19 (1982) pp. 742-760.

J. Douglas Jr., T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Lecture Notes
in Phys., vol. 58, Springer-Verlag, Berlin, 1976.

M. F. Wheeler, An elliptic collocation finite element method with interior penalties, SIAM J. Numer. Anal. vol.
15 (1978) pp. 152-161.

F. Bassi et al.,, “A high-order accurate discontinuous finite element method for inviscid and viscous tur-
bomachinery flows,” in Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and
Thermodynamics, R. Decuypere, G. Dibelius (Editors), Technologisch Instituut, Antwerpen, Belgium, 1997,
pp- 99-108.

F. Brezzi et al.,, “Discontinuous finite elements for diffusion problems,” in Atti Convegno in onore
di F. Brioschi (Milan, 1997), Istituto Lombardo, Accademia di Scienze e Lettere, Milan, Italy, 1999,
pp. 197-217.

B. Cockburn, C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion
systems, SIAM J. Numer. Anal. vol. 35 (1998) pp. 2440-2463.



WANG AND HAN WI LEY 915

[54] S. Heber, M. Mair, B. I. Wohlmuth, A priori error estimates and an inexact primal-dual active set strategy for
linear and quadratic finite elements applied to multibody contact problems, Comput. Methods Appl. Mech. Eng.
vol. 194 (2005) pp. 3147-3166.

How to cite this article: Wang F, Han W. Discontinuous Galerkin methods for solv-
ing a hyperbolic inequality. Numer Methods Partial Differential Eq. 2019;35:894-915.
https://doi.org/10.1002/num.22330



