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1. Introduction

Since the pioneering work of Babuska and Rheinboldt [1], adaptive finite element methods based on a posteriori error
estimation have attracted many researchers, and a variety of different a posteriori error estimators have been proposed
and analyzed. A posteriori error estimates and adaptive mesh-refinement techniques are well established for linear partial
differential equations, and we refer the reader to [2-4].

The discontinuous Galerkin (DG) method was first introduced for a hyperbolic equation. In recent years, DG methods have
been widely used for solving various types of partial differential equations. A historical account of their development can be
found in [5]. Advantages of DG methods include the flexibility of mesh-refinements and construction of local shape function
spaces (hp-adaptivity), and the increase of locality in discretization, which is of particular interest for parallel computing.
For standard finite element methods with conforming and shape-regular meshes, one needs to choose the mesh refinement
rule carefully to maintain conformity and shape regularity. In particular, hanging nodes are not allowed. For DG methods,
the approximate functions are allowed to be discontinuous across the element boundaries, so general meshes with hanging
nodes and elements of different shapes are allowed.

Discontinuous Galerkin methods for elliptic equations were independently proposed in the 1970s. A unified error analysis
of DG methods for elliptic problems was given in [6,7]. A unified approach was presented in [8] on a posteriori error
control for DG methods. In [9], a unified framework is given on DG methods for elliptic variational inequalities of both
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first and second kinds. DG methods for the Signorini problem and the quasistatic contact problem are also studied in
[10,11], respectively. In this paper, we focus on a posteriori error analysis of DG methods for solving an obstacle problem.

The obstacle problem. The problemisto findu € K := {v € V: v > i a.e in £2} such that
au,v—u) > (f,v—u)g Vvek, (1.1)

where 2 C R? is a bounded Lipschitz domain with boundary 32, f € I[*(2),¥ € H'(22) withy < 0on 82,V =
H(} (£2),a(u,v) = fg Vu - Vv dx, and (-, -)o denotes the [?-product in the domain £2. The obstacle problem is an example
of elliptic variational inequalities of the first kind [12] and has a unique solution [13]. This problem arises in various
applications, such as the membrane deformation in elasticity theory, and the non-parametric minimal and capillary surfaces
as geometrical problems. The elastic-plastic torsion problem and the cavitation problem in the theory of lubrication also
can be regarded as obstacle type problems. A variety of numerical methods have been developed to solve the discretized
obstacle problem, such as the relaxation method, multilevel projection method, multigrid method and primal-dual active
set method [14].

It is difficult to develop a posteriori error estimates to variational inequalities due to the inequality feature. Neverthe-
less, numerous papers can be found on a posteriori error estimation of finite element methods for obstacle problems, e.g.,
[15-17]. In [18], Braess showed how to derive a posteriori error estimators for the standard finite element methods of
the obstacle problem from the theory for linear equations. We will follow his idea and establish residual type error esti-
mators of discontinuous Galerkin methods for the obstacle problem. For this purpose, we introduce a Lagrange multiplier
o =o(u) € V*[18,12] by

(o,v) :=a(u,v) —(f,v) VveV. (1.2)
Here (-, -) denotes the duality pairing between V* = H™'(£2) and V = H(} (£2). We will write (o, v) for (o, v) when ¢ can
be regarded as an L? function. The solution u is then characterized by the linear equation:

aw,v) = (f,v)+ (o, v)VveV.

For the obstacle problem (1.1), a result by Brezis and Stampacchia [19] states that if the domain 2 is smooth and
f e ¥3(R), ¥y € W?5(£2) for some s € (1, 0o), then the solution u € W25(£2). We will assume f € L?(£2) and ¥ € H?(2),
sou € H?(£2). Then —Au = f + o a.e.in £2. We can rewrite (1.1) as

(c,v—u)>0 VYvek. (1.3)
Let v = u + ¢ forall ¢ € V, in the above inequality to get
(0,9) >0 VoeV, :={veV:v>0aeinfR} (1.4)

With the constraint condition u > 1, we define the contact set ¢ = {x € £2 : u(x) = ¥ (x)} and the noncontact set
D = 2\C.Then,o0 > 0in 2,0 = —Au—finC,and o = 0in D. For a subset w C £2, define

|0 140 = sup{(c, V) : v € Hy(@), [v],0 = 1},

where (-, -),, denotes the duality pairing between H™'(w) and H(} (w), and | - |1, is the semi-norm on H'(w). We omit the
subscript w if w = £2. Let a,(w, v) = fw Vw - Vvdx. We have |0 |, , = |w]|1,,, where w € H(} (w) is the solution of the
auxiliary equation

a,(w,v) = {o,v), Yve H(}(a)). (1.5)

2. Discontinuous Galerkin formulations

Notation. We denote by {7;} a family of subdivisions of £2 into (closed) triangles such that the minimal angle condition
is satisfied. For a triangulation 7}, let &, be the union of all edges and 6’,‘1 ‘= &,\052 the union of all interior edges. Let
hy = diam(K) for K € 7, and h, = length(e) for e € &,. We denote by N; the set of nodes of 7;. For any element
K € T, define the patch set wx = U{T € 7, T N K # @}, and for any edge e shared by two elements K; and
K, define w, = K; U K;. For a scalar-valued function v and a vector-valued function q, let v; = v|sx;, ¢i = qlak;, and
n; = nlgk, be the unit normal vector external to dK;. Then define the average {-} and the jump [-]Jone € 8,’1 as follows:
{v} = %(vl + vp), [v] = ving + vany, {q} = %(ql +q2),[q] = q1-n1 4+ q2 - ny. If e C 082, the set of boundary edges, we let
[v] = vn, {q} = q, where n is the outward unit normal. We introduce the following linear finite element spaces and set:

Vi = {vp € [*(2) : wylk € P1(K) YK € Tp},
Ky = {vp € Vi 1 vp(x) > ¥ (x) at all nodes x of 71},
Wi = {wy € [L2(2)1 : walk € [P1(K)* VK € T3},
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Note that K, = {vy € Vj © vy, > 9 in £2}, ¥ being the continuous piecewise linear interpolant of vr. Denote by V), the
broken gradient whose restriction to each element K € 7} is equal to V. Define some seminorms and norms by the following
relations:

2 2 2 2 2 2 2 2
wEa=Y e PEc=1VolR vl = f v, vl = /v ds.
K e

KeTp

Throughout this paper, C denotes a generic positive constant dependent on the minimal angle condition but not on the
element sizes, which may take different values at different occurrences.

Discontinuous Galerkin schemes. Here we take the LDG method [20] as an example to demonstrate the a posteriori error
analysis of DG methods in solving the obstacle problem (1.1). The derivation and analysis of the a posteriori error estimators
for the LDG method can be extended to other DG methods studied in [9]. The LDG method for solving the obstacle problem
is: Find uy, € K}, such that

By (up, vp —up) = (f, vp —up) Yoy € K, (2.1)
where
By(w, v) = (Vhw, Vpv)o — ([w], {Vavhe, — ({Vaw}, [v])g, — (B - [w], [th])g;;
—({[Vaw], B - [v])gi + (r([w]) +1(B - [wD), r([v) + (B - [v])e + o (w, v). (2.2)

Here we use the notation (w, v)g, (w, v)g,, and (w, v)&li for [, wvdx, fgf. wv ds, and fsﬁ wvds. B € [L*(&})]? is a vector-
valued function which is constant on each edge; o/ (w, v) = fﬁn ulw] - [v]ds is the penalty (stabilization) term with the

penalty weighting function  : §, — R given by neh;1 oneache € &, n, being a positive number one; r : [[*(&,)]> — W,
and [ : [?(}) — W, are lifting operators defined by

/ r(q) - wpdx = —/ q - {wp}ds, / l(v) - wpdx = —f v[wplds Ywp, € Wh.
2 & Q &l

Let u € H?(£2) be the solution of (1.1) and v € V. Note thatone ¢ 8,’1 [u] =0, [Vu] =0, and [v] = 0. We have

Bh(u,v):f—Auvdx:/(f+a)vdx:(f+a,v) YveV. (2.3)
2 2
For (2.1), like (1.2), define oy, = oy (uy) € V| by

(Oh, vn) = Bn(un, vn) — (f, vn) Yup € Vi (24)
Note that we can view oy, as an element in V;, and it is determined from

(on, vn) = Bu(up, vn) — (f, vn) Yup € Vi (255)
Obviously, uy, is also the DG approximation of the solution z € V of the linear elliptic problem:

Bn(z,v) = (f +op,v) YveV. (2.6)

Since f + oy, € L?(£2),z € H?>(2) [21]. Thus, —Az = f + o}, in £2. From (2.1) and the definition of o7, we get
(Oh, vp —up) =0 Y, €K
Similar to (1.4), we have
(oh, vn) 20 Vo € Vg, vp > 0. (2.7)

Since (op, v) > 0 does not hold true for all v € V., we write o, = o, + 0% with (0", v) > 0forallv € V., 0% carrying
the consistency error. Following the choice of g, in [15], we define o, as

o =) Y (Bulun, @%) — (F. 60)) i/ (1, ), (2.8)
KeTh peKNNy

where ¢,’; is the nodal basis of vertex p in element K. From the definition of o}, and (2.7), it is easy to know ah+ > 0in £2.
Next we show a very important property of ah+ ,

or" ) (up(p) — Y1 (p)) =0 forallp € Ny, (2.9)

First, we know u,(p) — ¥;(p) > 0, so cr,;L (@) (wr(p) — ¥i1(p)) > 0. Let vy (p) = Y;(p) and vp(x) = up(x) for all other nodes
X € Ny, then

(W1(p) — up(p)) By (un, P) = Bu(un, v — up) = (f, v — un) = (Y1 (p) — un (@), ).
After a division by (1, q’),’z) on both sides, we obtain (y;(p) — uy (p))(r,fr (p) = 0.So0(2.9) is valid.
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We group the elements into three parts:
Cn=U[K € T, : up, = Yy onawg}, Dy =U[K € 7, : up, > Yyonk}, Fr = 2\(Cr U Dp).
Based on this decomposition 2 = G, U D, U %, and the relation (2.9), we obtain
o) =0 inDy. (2.10)

Given vy € V, written vy = g 25:1 oz,@d),?, we construct a function x € V, N Hy (£2) as follows: At every interior

node of the conforming mesh 73, the value of x is set to be the average of the values of v, computed from all the elements
sharing that node, and y = 0 at the boundary nodes. For each v € Ny, let w, = {K € 7 : v € K} and denote its cardinality
by |w, |, which is bounded by a constant depending only on the minimal angle condition of the mesh. To each node v, the
associated basis function ¢ is given by

suppp ) = U K. ¢k=¢) forx) =v.

Kewy
Then we define x € Vy NHy(2) by x = Xy, BV 9", where

1

,3<V>:7|Za,¥> ifveN, N2, BY =0 ifveN,Nif.
()]

|y
XK =V

For nonconforming meshes, let ]P’g be the set of all hanging nodes. Then we construct x from v, same as conforming mesh
case on all the nodes v € Ny\PY.

In [22, Theorem 2.2 for the conforming mesh and Theorem 2.3 for the nonconforming mesh], a proof of the following
lemma was given. Here we just state the result for the conforming mesh; the same result holds for the nonconforming mesh.

Lemma 2.1. Let 7}, be a conforming mesh consisting of triangles. Then for any vy, € Vj, there exists x € V, N H(} (£2) satisfying

D IV = 0llg <C Y hg vl (2.11)

KeTy ecgy

3. The case of an affine obstacle

Now we follow the ideas in [ 18] to derive a posteriori error estimators of DG methods for the obstacle problem. We give
detailed derivation and analysis of an a posteriori error estimator for the LDG method [20]. Extension to other DG methods
can be derived by same arguments. We distinguish two cases depending on whether the obstacle function is affine. First,
we consider the case of an affine obstacle { € P;(£2); in this case, ¥, = .

3.1. Reliable estimator for the LDG method

From (2.3) and (2.6), for all v € V, we have
Bp(up — u, v) = Bp(up — 2z, v) + By(z — u, v) = Bp(up — z, v) + (o — 0, V).
Denote the error by e := u, — u. From the definition (2.2) and [v] = 0 on each e € &, the above equation becomes
(Vhe, Viv)o — ([el, {Vivhg, — (B - [e], [Vav])g = (Va(un —2), Viv)e — ([un — 21, {Viv})g,
— (B - [un = z], [Vpvl)gi + (on — 0, v).

Then,
f Vye - Vyvdx = / Vi(up — z) - Vyvdx — / [up —z —e] - {Vyvlds
2 2 En

— | B-lup—z—el[Vyvlds + (o4 — 0, v).
&,

Note thatu, —z —e=u — 2z, [u — z] = Ooneache € &,. We have

/Vhe~thdx:/Vh(uh—z)~thdx+(0h—a,v). (3.1)
2 2
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Let x € Vy ﬂH(} (£2) be the function constructed from uy, satisfying (2.11) for v, = uj. Takingv := x —u = x —up+up—1u
in (3.1) and using the Cauchy-Schwarz inequality, we have

2
lelyn < lun —zlinlx — ulin + lelinlx — unlin + (o — o, x — W)

2 1 2 5 2
< 2lup _Z|1,h + §|e|1,h + Z|X - uh|1,h + (on— o, x —u),
le2, < 4luy —z|? 2y — w2, + 2000 — - 3.2
1,h = h Z|1_h+ 2|X uh|1,h +2(op — 0o, x —u). (3.2)

With the estimate of | x — uh|{h by (2.11), we obtain from (3.2) that

el = Clun— 2B+ 3 I + (o — 0, x ). (33)

ecéy
We now recall a result from [8]. For the Poisson problem
—Au=f ing2, u=0 onads2,

rewrite it as the first order system

p=Vu, —V.p=f inf2, u=00n0ds2. (3.4)
Then the DG formulation for this problem is
/ Dh - Thdx = —f up Vi - thdx + Z/ Upng - thds Y1, € Wy, (3.5)
7 2 KeTh JK
/ Dh - thh dx = f fvh dx + Z/ pAh + Ng vy ds Vvh € Vh, (36)
2 2 KeTp, ¢ 9K

where 1}, and p, are numerical fluxes. Different choices of the numerical fluxes lead to different DG methods. The following
result holds for the LDG method and the methods discussed in [8].

Theorem 3.1. Let u € V := Hy(2) and p € W := [?(£2)? be the solution of the problem (3.4), and u, € V, and p, € W, the
solution of the problem (3.5)—(3.6). Then

Ilp—pull =C(e+ 80

where

=Y h2ldivpy + £l + D helllpalllZ, g2 =Y by Iualll?.

KeTy ee&,"1 ecép

Corollary 3.2. With the same notation as in Theorem 3.1, we have
[Vu = Vhup|| < C(n + &),
where

n* = el Aup+flig + Y hell[Vaunl|?.

KeTq eEé’}iI

Proof. By [8, Lemma 2.1], for all v, € V};, we have

Ir (oD 1> < €D h MIvallZ, B - T IP < € Y by liTvnl 2

ecy ecé]
From [7, (3.9)],

pr = Vaup — ([t — up]) — [({th — un}).
Then

Vu = Viup|l < IVu = pnll + 1Ipn — Vaunll < C (s + &) + Ir([in — up DI + [{tin — un}l-
From the choices of numerical fluxes i, in Table 3.1 of [7], we have

[ty — up] = —[up] or 0, {th, — up} = —pB - [up] or 0.
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Then,
(i — wDIl < €Y hg sl GG — un) | < €Y by [unll2,

ecéy ee@,’;

Ipn — Vatpll = & and  [[Vu — Viug|l < C (s + o) -

Finally, by the inverse inequality and trace inequality, we get

w2 = 2(8 + Y R Idivion — Van [ + 3 helllpn — Viunll?)

KeTh ee@,’;
<27 +C Y lIpn— Vunllg = 20 + Clipn — Viunll* < 21° + CZ7.
KeTh
Therefore,

N < C(n+ &)
and the result is proved. ®
Define the interior residuals and edge-based jumps
Rk = Aup+f+o,=f+o0y, for K € 7y, R. := [Vhuy] fore € &.
Then the local estimators are
meo= (RIRE+ 32 mk?) . mace= (30 mwaiz) (37)
ecdKNE} ecdK
Applying Corollary 3.2 to |u, — z|1,5, we obtain from (3.3)
le3 4 < C(Z M+ Y M+ (on—o,x —u))- (38)
KeTh KeTh

Before giving an estimate of (o, — o, x — u), we introduce the following result [17].

Lemma 3.3. Let qj, be a continuous piecewise linear function over T, p € Ny N §2 an interior node withp € K, K € 7},. Suppose
qn > 0and qx(p) = 0. Then

1/2
lanllc < Che( D" RelllVaillz) ", Eap)i=f(ec & :peel.

ecEp(p)

Proposition 3.4. Assume V is an affine function. Then for any fixed € € (0, 1),

(o — o x —w) < elup =y + O3B M +lon =0 B+ D0 Y hlVullE ). (39)
ecéy KeFy, KN32=0 ecEp(p)
where

N =Y Vo, Ik + / SO0 — up) dx,
KeFp\Fp

KeFy
Fp ={K € #4 : 3p1,p2 € KN Ny, up(p1) > ¥1(p1) and up(p2) = ¥1(p2)}-
Proof. Note that /; = ¥.So x € K.From (1.3), (o, x — u) > 0. Write
(Oh. x —u) = (on — oy, x —uw) + (o7, x — w). (3.10)
Furthermore, we have by (2.11),

1 1
2 2
(oh— oy, x —u) < |on— o, lxlx —ul1e < 5€|X —uljo+ Z|Uh —o; 2

IA

1
lun —ulfy +C Y he M lunll; + 5—low — o I (3.11)

ecéy
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IfK € Dy, from (2.10), we know ah+ = 0in K. For K € Gy, with the construction of x, we know x = ¥; = ¥ < u, and so
o, (x —u) <0onK.Then

CAPEINESY f o) (x — u)dx. (3.12)
Kerp /K

We divide K € #; into two kinds to estimate fK G;T(X — u) dx. First, if K € F;\Fy, we know that u, = ¢y = ¥ on K.
Therefore,

/o,f(x—u)dx§/a,f(x—uh)dx+[o,f(W—u)dx§[o,f(X—uh)dx.
K K K K

Note that if K € Fy, then 3p; € N, N K with uy(p1) > ¥ (p1); so a,f(po = 0 by (2.9) and consequently,
oy ik < ChKHVU;—”K-

Now we bound [, o, (x — u) dx with K € Fy in two cases.
Case 1: K N 082 # @. We have

/a,fr(x —u)dx = /cr,f((x —u) — Ap(x —u))dx—i—/cr,fAh(x —u)dx
K K

K
< lloy Ik (106 = w) = AnGx = Wik + 140G = Wik )-

Here Ap(x —u) denotes the Clément interpolant of (x — u). By the local approximation property of the Clément interpolant,
we have

(¢ —w) = An(x — Wik = CheIV(X — 1)l -

Since (x —u) € H(}(.Q) and K N 052 # O, there exists a node p; € K N Ny N 382 such that (x — u)(p;) = 0. Then since
Ap(x —uw)(p1) =0,

lAn(x — Wik < ChglIVAR(x — Wik < ChelIV(x — W lay

by the stability property of Aj;. So we have

1 C
/a,r(x —wdx < el VO =Wl + oI
K

A

€lVa(x — )iz, + €l Vaun = wIIZ,, + ChilIVoy ik (3.13)

Case 2: K N 082 = @. Noting that ¢, = v, we get

/G,T(x—U)dXZ/G,T(x—1//1)d><+/0,,+(1/f—U)dXS/G,T(X—I/II)dx
K K K

K
by ah+ > 0and ¢ — u < 0in £2. First we assume

(x — ¥ (p) =0 foraninterior node p € K N N. (3.14)
Using Lemma 3.3 and ¢, = ¢ € P1(£2), we obtain

[N

1
I = vl = Chie( D2 RlIVOc—yllE)” = Chue(( Y RellVlIE) "

ecEp(p) e€Ep(p)

Then by trace inequality and (2.11), we get

1
2
[ o= v dx < 1oyl = valle < IV (Y iy xile)
K

eckp(p)
= C(MIVeIZ + Y heClValx = a2 + 119l 2)
ecEnp(p)
< c(hznw,fni+Zh;1||[uh1||§+ > hen[vhuh]ni). (3.15)

ecéy ecEp(p)
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If (3.14) does not hold, there is an interior node p, € K N Ny such that (u, — ¥;)(p2) = 0. Then
[ oc=max= [ o o-wax+ [ o=y
K K K

< /Uﬁ(x —up) dx + C(Rg Vo Ik + IV @n — 0N + IV (x — vlig)-
K
Let @« = ming{x — ¥} = (x — ¥1)(p). By an inverse inequality and Lemma 3.3, we get

IVOC= ¥k = IV — v — )l < ChiPllix — v —allg <C Y hellIVXIIZ.
ecEy (p)

For fK o,F (x — un) dx, we have

3

/ o (¢ = ) dx < o el = unllc < o e (3 18 = 1116 1)
K i—
=1

< hylloy (€ ZwK —al) = c(htve; ||K+Z|/3K —af' ). (3.16)

From the proof of Theorems 2.2 and 2.3 in [22], we know

ZZ“‘}K _a1<)| <CZh

KeTy j=1 ecéy
o)
> fo—,f(x —u)dx<C Y glIVo N +C > b w2 (3.17)
KeFp, KN32=0 KeFp, KN32=0 ecéy
The inequality (3.9) follows from the combination of (3.10)-(3.13) and (3.15)-(3.17). =
Lemma 3.5.
low — 0y 12 C Y hillow — oy lIx < C Y HgllVion — o)k (3.18)

KeTp KeTh

Proof. Let 1x be the indicator function of K € 7. Then

(on, 1x) = (on, 1K)k = Bu(up, 1) — (f, 1k).

We use the relation } ¢y, dr = 1k to get

(GI-Tv 1K) = Z (Bh(Uh, ¢1€) - (f7 ¢[I;))(1K9 ¢]€)/(17 ¢[I;) = Bh(ul’h ll() - (fv 1K)

peKNNy

Hence, for any constant cx on element K, we get

(on — oy, cx1k) = 0. (3.19)
Then for any piecewise constant ¢, c|x = cx,and v € H(} (£2), we have
lon — oy | = sup (oh — oy, v) = sup (oh — oy, v —0),
veH}(£2). Iv]1=1 veH}(£2). Jv]1=1
+ 12 2\
jon =il =C  sup (D hillon—o; ||,<) ol = (3 W llow = o 1) (3.20)
veH (). Ivl1=1 KeTj, KeTh

Using the relation (3.19), we obtain

2 .
llow — oyl = Jnf (on — o s on — 0 =k < Chillon — o3 Ik IV (on — ) Ik,

llon — o llx < ChgllV(on — o3 Ik (3.21)

A combination of (3.20) and (3.21) completes the proof of (3.18). ®
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From (3.8), Proposition 3.4 and Lemma 3.5, we obtain
lel ), < C(Z e+ Y mk+ Y hillon — ol Ik + ngfh)-
KeTy KeTy KeTy
Recalling (1.5), we have
lo —onls = [u—2z|1,0 < lelin+ [un — z|15-

Finally, we obtain the following theorem.

Theorem 3.6. Let u € H?(£2) and uy, solve (1.1) and (2.1) respectively, Y, = . Then

1

1 1
2 2 2
el +lo —anle =G (Yo n2)" +C( X nd)” +G(X hEllon — o7 12) + Cangy. (3:22)

KeTy KeTy KeTy

3.2. Efficiency of the estimator for the LDG method

Now we consider lower bounds of the estimators. We follow the standard argument of lower bounds of residual error
estimators for elliptic problems, see [2, pp. 28-31]. First, we introduce the bubble functions. Let K € 73, and let A, A, and
A3 be the barycentric coordinates on K. Then the interior bubble function ¢ is defined by ¢x = 27X1A,A3 and the three
edge bubble functions are given by 71 = 4Ay)3, T, = 4A1)3, T3 = 4A1)1,. We list properties of bubble functions stated in
Theorems 2.2 and 2.3 of [2] in the form of a lemma.

Lemma 3.7. ForeachK € 7, e C 9K, let i and t, be the corresponding interior and edge bubble functions. Let P(K) C H'(K)

and P(e) C H'(e) be finite-dimensional spaces of functions defined on K or e. Then there exists a constant C such that for all
v € P(K),

—1 2 2 2
c ||v||,<sf<va dx < Cllvl2,
K

1
C vk < llekvllk + helekvix < Cllvllk,

M l? < /revz ds < Cllv|2,
e
—1/2 1/2
he vl + hy*|zevlix < Clllle.

Denote ax (u, v) = [, Vu - Vudx. Then foru,v € H'(2), a(u,v) = > ker, Ak (U, v). Forall v € H} (£2), noting that
[v] =0and [u — z] = 0, we have

Za,((e, v) = Za,<(uh—z,v)+a(z—u, v) = Z/V(uh—z)-Vvdx+(ah—a,v)
K

KeTy KeTy KeTy
=Y /(—Auh —f—owvdx+ ) /[Vuh] -vds+ (oh — 0, V). (3.23)
Kery 7K ece) "¢

Let I_Q_K be an approximation to the interior residual Ry from a suitable finite-dimensional subspace. In (3.23), choose
v = Rg¢x on element K. Since ¢k vanishes on the boundary of K, v can be extended to be zero on the rest of the domain as
a continuous function. Therefore,

ax (e, Rygy) = /KRKRK(/)KCIX + (on — o, Rk
Then
/Kklzdﬂk dx = /KRK(RK — Ri)gk dx + ax (e, Repi) — (0 — o, Regi -
Applying the Cauchy-Schwarz inequality and Lemma 3.7, we obtain
/KRK(RK — Rk dx < ||Regk Ik IRe — R llx < ClIR¢ /I IR — Recllk.

_ _ . _
ag (e, Rgpx) < lel1klRx@k |1k < Chy lelik IRk lx,

z _ o _
(on — 0, Repi)k < lon — olsx[Rkgk |1,k < Chg "|lon — o sk IRk Il -
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Use Lemma 3.7 again,

IRl = C [ Rprds

Combining the above relations, we obtain
IRk llk < C(IR — Recllx + hy'lelik + hgtlow — ol«x)-

Finally, by the triangle inequality ||R¢ [k < |[Rx — Rk llx + [IRkllx, we get
IRcllc < CUIRk = Reclli + i el + i lon — lx)-

Now choose the finite-dimensional subspace for Ry to be spanned by the local nodal basis ¢,((i), i=1,2,3.Then ||RK — Rkl
reduces to [If — fullk,

th ¢ withfi = (F, ¢/ (1, ¢ (3.24)

If we choose R, as an approximation to the jumps from a suitable finite-dimensional space and let v = R, 7., we have
IRelle < C(hy 2 lel1,w, + 1y 2 10h = 0l + B2 If = fillo)-

Then we obtain the efficiency of the local error indicator r.
Theorem 3.8. Let u € H?(£2) and uy, be the solutions of (1.1) and (2.1), respectively, and ng be the estimator (3.7). Then
Mk < C(Ju— tpliwg + 10 = Onliar + hrllf = fullog) -
To bound the remaining terms in the error estimator (3.22), we first give a lemma.

Lemma 3.9.

el -+ il = (X0 M)+ (3 hlvianiz) (3:25)

ecéy ecdk

Proof. Using the definitions (2.8) and (3.24), we have

helloy” + fullk = hi <c Z By (utn, b))

3
> Buun, ¢)e’ /(1 B)
i=1

since [|g\ lk/(1, 62k < Chy'. For each ¢\, we know qﬁ(l) (x) = 0Vx € 2\K, which implies [¢{’] = 0 and V4¢{’ = 0on
€,\K. So
Bu(un, ¢¢) = (Vi Voo ik — ([unl. (Vb Dok — ({Viaun}. [6¢ 1ax
— (B - [unl. [Vagp Dok — ([Vatunl. B - (o Dok
(r([uh]) + 1B - [un)). raxc ([ D) + Lok (B - [6¢' D) ) f ] - [,
K
where rax : [[2(0K)]*> — Wy and Iy : [>(0K) — W, are lifting operators defined by
/ Tal((q) . wth = —/ q- {wh}ds, / laK(U) . wth = —/ v[wh] dS, th € Wh.
2 2

oK aK
Noting Au, = 0 on K, we get by integration by part and the Cauchy-Schwarz inequality

. . 1 .
(Vitn, Vo = (Vi [9¢ Dok = 5 / [Viunlpg ds < C Y hY2I[Vhup]lle-
aK

ecdk
Similarly, we have

(Tund. {Vap Dax < €Y b2 [l

ecdK
(B - [unl. [Vad Dok < C Y h 2 [un]lle.
ecdK
([Vatnl, B - [9 Dok < C D WY [Vatn]le.

ecdk

/ pulunl - (601 < C Y hY2(Iup]le-
oK

ecak
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Define the edge lifting operators r. : [L*(e)]*> — W), and [, : [*(e) — W, by
/ re(q) - wpdx = —/q - {wp} ds, f l(v) - wpdx = —/v[wh]ds Ywy € Wp.
2 e 2 e

We recall some results about the lifting operators [7]:

> r(@

ecéy

2

<3 lre@l% <€ h gl

o ecéy ecéy

Ir @13 =

2

@l = | D @] <3 le@Ilf <12 lIre@nolly; < €Y b qlll.

i i i i
ee&h o eesh ee&h eesh

Then

. . 1/2
(rund + 18 - D), ("D + LB - [8'D) = €3 bz Mluall2)

ecéy

Combination of above inequalities accomplishes the proof. =
Now we explore bounds on the remaining terms in the error estimator (3.22). First,
helloy — onllik < hilloy + fullk + hellf + onllc + hellf — fullk-
Note that f + o, = R¢ inK. Let fy = fo dx/|K| for K € FFy,. By inverse inequality, we obtain
he Vo, Il = hg IV (o + fiollk < Chelloy” + ficllk < C (hilloy” + fullk + hicllf — ficllk) -

For 1y, by the trace inequality and inverse inequality, we obtain

1 _ 1 B
M = 5 D hendlE = 5 Y b — wlli?
ecdK ecdK
—1p—1 2 2 2
< C Y un — wliZ + helun — i ) < Clup — w3, .

Eew[(

where u; is a continuous piecewise polynomial interpolant of u. Summarizing the above argument, we get the following
theorem.

Theorem 3.10. Let u € H?(£2) and uy, be the solutions of (1.1) and (2.1), respectively. Then we have local lower bounds of error
estimators in (3.22),

mk < C(Ju— tpliwg + 10 = Onlua + hllf = fallog) -

Nk < Clup — Url1,my

hilloy™ — onlle < helloy™ + fullk + hiclIf + onllk + hicllf — fallk
he Vo ik < C (helloy + fulle + hiellfs — fillk) -

For the term fK a,f(x — up) dx with K € F,\Fy, we are not able to derive a bound of the form

/U;T(X —up) dx < C(|u — tplug + 10 = Onluwg + e lf = fullo) -
K

This term is expected to be very small due to the construction of x. See Section 5 for numerical confirmation of this.

4. The case of a general obstacle

For the case of a general obstacle, we only need to treat the term (o, — o, x —u) differently. Define x* = max{x, ¥} € K
and denote v = max{v, 0}. Then with (1.3), we get

<U7u_X> = <G7U_X*>+<O—7X*_X>S<0—7(1/I_X)+>

1
elo — onl} + yPL S g+ on (W — 0.

IA
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Inserting o;,", we have
Onx—utW - =n—0 . x —ut+@ =0+ . x —ut+ @ -0,

1 € €
(oh—oy . x —u+ @ — ") < g|0'h —oy 12+ 5|X —ul} o+ El(llf -0 e

IA

1 €
E|Uh — oy 12+ €lx —unlf, +€eluy —uli, + il(llf -0 e

Noticing ;7 = 0 onK € Dy, we obtain

o=t @ =0 = Y [t lo-us -0 b
K

KecpUF,
We consider three cases of K € €, U % to estimate [, o (x —u+ (¥ — x)T) dx.

Case 1: K € Fyand K N 982 # @.0bserving (x —u), (v — )T eV = H(}(.Q), we can use the same argument for Case 1in
the proof of Proposition 3.4 to obtain

1 C
/Ko,r(x — et (=0 ") de < €l Vil — w5, + el Vatn —wlE, + S el V=0T I, + —hil VoI

For the remaining two cases, noting ¥ — u < 0 and ah* > 0, we have

/KG;(X —u)dx:/Ka,:“(X _w)dx+/Kah+(¢_u)dxg/Ka,f(x_w)dx,
and observing x — ¥ + (¥ — x)* = (x — ¥)*, we get
/G;T(x w0 de < /U,T(x gyt
K

K
Case 2: K € Fyand K N 952 = @. Since x > v, we have

X= ==+ v =" <Ux-v" +W -y =0—v)+ W -7,
[oroc-wras [ o= wder [aron-pra
K K K
Following the proof of Proposition 3.4 to estimate the first term on the right side,

[ora=wrasc ¥ HIVe R+ h i

KeFy, KNo2=0 KeFy, KNo2=0 ecép

+C Y Y hlVe =yl + Y /a,w,—wax.
K

KeFy, KNd2=0 ecEy (p) KeFy, KNo2=0

Case 3: K ¢ Fj,. We have uy = v, on K and thus

fom )ty < /a,f(x —uh)dx+/o:<w,—w>+dx.
K K

K
Note that x = uponK € Cp. So

/GJ(X —y)tdx < /a,f(w, —y)tdx fork € Gy
K K
Therefore, we obtain the following result.

Proposition 4.1.

(o — 0 x =) < eluy — ull g +elon — o2 o+ C( 0 NnlIE + low — o 2 + 72, ).

ecéy
where
2, = > Ve Ik + Y /G,f(x —up)dx+ (¥ — 0
KeFy KeFp\Fp v K
LD DI SN\ RO R B U R O
KeFy,, KNd2=0 ecEy (p) Kespuep YK

Here, 0 < € < 1is an arbitrary constant and

Fp:={K € F : Ap1, p2 € K NNy, up(p1) > Y1 (p1) and up(p2) = ¥ (p2)}.
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Theorem 4.2. Let u € H?(2) and uy, solve (1.1) and (2.1), respectively. Then

1

e+ lo ol = [(Z i)+ (D) + (S il — a2 + neh]- (4.1)

KeTy KeTy KeTy

For the local lower bounds of estimators, the terms ng, 7y, h,z( || Vcrh+ |l and hg ||op, — cr,f || are bounded in the same way
as in Section 3.2. Now consider the other terms in (4.1).
hY2 IV (un — ¥)1lle < B IIVuRllle + b2 1V Y e, (42)

W =0Tk =1V = Xhiknwsx < 1Y — Yiliknwsx + X — Viliknisy)- (4.3)
Let @ = ming{x — ¥} = (x — ¥1)(p). By inverse inequality and Lemma 3.3, we get

IVGC=yllk = IV = ¥ — o)llg < Chillx —vn —ellg <C Y helllV(x — vl

e€Ep(p)
< c( 3 hellVudlZ+ > Ix -l + he||[w,]||§). (4.4)
e€Ep(p) KNp#£0 ecEy(p)

Finally, we bound f, o;" (¥ — ¥)" dx. We have

/ o (Y1 — ) dx = / (o7 + )W — Y+ dx+ / (W — ) dx,
K K K

1 1
/ O (1 = )l = oy + 0 + 5 g (= 9 I + / F (W — ) dx. (45)
K K

Here (4.2)-(4.5) give local lower bounds for these terms. Notice that these lower bounds will be zero or be absorbed by 7y
if ¥ € P1(£2). Summarizing the above argument, we get the following theorem.

Theorem 4.3. Let u € H?(£2) and uy, be the solutions of (1.1) and (2.1), respectively. Then we have local lower bounds of error
estimators in (4.1),

Mk < C(Iu— tpliwg + 10 = Onluag + helf = fallo) -
Nok =< Clup — t|1,0x»
hilloy — onllx < hilloy™ + fullk + hiIf + onllk + helf — fullk.
hiIVoy Il < C (helloy” +fullk + hicllfi — ficllie)
and (4.2)-(4.5) hold true.
We comment that for other DG methods studied in [9] for solving the obstacle problem, it is easy to see that (3.1), (3.23)
and (3.25) hold true. So Theorems 3.6, 4.2, 3.10 and 4.3 hold for all of them by the similar arguments.

5. Implementation and numerical example

Each loop of the adaptive algorithm consists of four steps,
Solve —> Estimate —> Mark —> Refine.
Let 7o be the initial mesh. At each loop, first solve the obstacle problem by the LDG method on a mesh 7;. Then based on the
analysis in Section 3, for the affine obstacle case, we choose the error indicator & of element K as
1
(n + Mk + hilloy” — anllg), 1 ifK € 5\ Fh,
Sk =\ (i + i + glloy” — onllg + g Vo I%) 2, ifK € Fy,
1
(nk + Mok + hilloy — onllg + lloy Nk llun — xllk)?,  ifK € F4\Fy.
With the error estimators, we still need to mark the elements to be refined. Here, we use the bulk criterion strategy

Z £ > 6 Z £ = 6 - (Total Error), 0 <6 < 1. (5.1)
KeMp KeTh

In this strategy, the elements are marked according to the sizes of element errors. Therefore, elements with larger errors
are put into the marked set M}, until the inequality (5.1) is satisfied. Last, we refine the marked elements and get the new
mesh 7. For DGMs, refinement allows hanging nodes. To refine the marked elements, we connect the midpoints on the
three edges to divide the element into four new elements. In the numerical example, the discretized problem is solved by a
primal-dual active set strategy [14].
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To’ N=6 T4, N=63

TB’ N=597 T12, N=7302

Fig. 1. The refined meshes in Example.

The solution on the mesh T12

Y
A

S
A
i

Fig. 2. The solution on the mesh 77,.
Example. Let 2 := (=2, 2)?\(0,2) x (=2,0),up = 00nd$2, ¥ = 0and,

— 2/3 o / " 4 -1/3, :
f(r @) == —r">sine/3)(vi(r)/r + V() — gr v1(r) sin(e/3) — vy (1)

where the polar coordinate system (r, ¢) is used, and with7 = 2(r — 1/4),

1 ifF <0, .
<
nr)={-67 +157* —10FP +1 if0o<7 <1, vy (r) = {(1’ gt;(;;é‘;’
0 ifF > 1, .

The exact solution is u(r, ¢) = r?/3v(r) sin(2¢/3).

In this example, we choose & = 0.5. Fig. 1 shows the adaptive meshes with hanging nodes, N denoting the number
of elements. Fig. 2 shows the numerical solution on the mesh 77,. In Fig. 3, the L?> norm and H' norm errors are given
respectively on uniformly refined meshes and adaptively refined meshes. For the final uniformly refined mesh, the number
of elements N = 24 576, H' norm and L? norm error are 0.097020 and 0.001293, respectively. To achieve the same level
of accuracy, with adaptivity, we only need to compute the solution on the mesh 77; correspondingly, N = 3975, and H'
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1

10
10° ¢ 3
107¢ 3
_107%¢ :
<
o
107°¢ :
—— L2, uniform
1074 3 —8— H', uniform 3
—O— L2 adaptive
_5 —*—H', adaptive
10 " ¢ —— llu-xll 2 E
-6
10 . . . .
10° 10’ 10° 10° 10* 10°
N
Fig. 3. The error on the uniform and adaptive refined meshes.
10
9 L 4
——1
8 L ——7| |
—x—
7 . 4
6 L 4
k)
T 51 1
o
4 L 4
3 L 4
2 L 4
1 7.«“\% 4
0 2 3 v 5
10 10 10 10

Fig. 4. The ratio of error indicators to the real error || Ve||.

Table 1

The maximum ratio of (|lo;} |l lun — x llx)'/? to & and 7.
N 192 342 597 1107 1974 3975 7302 15261 28434
Y1 0.01184 0.00450 0.00719 0.00497 0.00611 0.00824 0.01209 0.00563 0.00640
V2 0.04982 0.01738 2.12665 0.01357 0.01419 0.01747 0.02735 0.01246 0.01459

norm and L? norm errors being 0.088184 and 0.001134, respectively. Therefore comparing to the uniform refinement, with
smaller memory, the adaptive strategy save lots of time even though it needs to spend a little time to solve the problem on
the coarse meshes. In this figure, we also provide the quantity of ||u, — x|, which is very small.

We compare the quantity (||o," ||k llun — x llx)"/? with & and 5k in Table 1. In this table,

(o Ik

1
up — xllx)?

4 KeFp\Fp [

)

£k

1
(log Il llun — xlIx)2
Ul

|

KeFp\Fp [

In addition, we examine the quality of the error estimators provided above, let

> &
)2 = KeT;
3 = s
> [IVell
KeT;

2 2 + 2
Z Mk Z hK”Uh _Uh”](
) = KeT; )2 = Ke;
s = ) 5 = 2
Z IVellx Z Vellg
KeT; Ke;

Then y3, y4 and ys are the ratios of the error indicators to the exact error, see Fig. 4. The error indicator efficiency index y;3
stabilizes to a constant around 5.77.
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