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ABSTRACT
Several discontinuous Galerkin (DG) methods are introduced
for solving a frictional contact problem with normal compli-
ance, which is modeled as a quasi-variational inequality.
Consistency, boundedness, and stability are established for the
DG methods. Two numerical examples are presented to illus-
trate the performance of the DG methods.
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1. Introduction

In industry and daily life, processes of frictional contact between deform-
able bodies or between a deformable body and a rigid foundation are very
common. Much effort has been made in modeling, analysis, and numerical
simulations of the frictional contact processes. The normal compliance con-
tact condition was proposed in [1] in the study of dynamic contact prob-
lems, and it allows interpenetration of the body’s surface into the
foundation. Contact problems with a normal compliance condition have
been studied in many articles, e.g. [2–9]. A frictional contact problem with
normal compliance can be described by a quasi-variational inequality,
and its existence and uniqueness are proved by using fixed-point arguments
[10, 11]. Conforming finite element methods (FEMs) were studied for these
problems, and a priori error estimates were derived in [6–8, 10]. Under a
smallness assumption on the material coefficient, a priori error estimates
were derived in [6]. The frictional contact problem with a reduced normal
compliance law was studied in [8], and a Ce�a-type error inequality was
derived there. In [1], a priori error estimates of finite element
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approximation for a dynamic contact problem was established. A contact
problem with the nonlinear elastic constitutive law was studied, and a priori
error estimates was derived in [10]. For other more complicated contact
problems with normal compliance, we refer to [12, 13] and the referen-
ces therein.
Unlike the standard FEMs, discontinuous Galerkin (DG) methods do

not require the ordinary inter-element smoothness in the discrete function
spaces. In DG methods, a boundary value problem is discretized in an
element-by-element fashion, and neighboring elements are joined together
through the use of numerical traces. It is easier to construct DG methods
that are locally conservative and that can capture non-smooth or oscilla-
tory solutions effectively. Consequently, the DG methods have attracted
the interest of many applied mathematicians and engineers, and have been
applied to solve various differential equations in the past three decades.
For a second-order boundary value problem, since no inter-element con-
tinuity is required in the discrete function spaces, DG methods allow gen-
eral meshes with hanging nodes and elements of different shapes. In
addition, locality of the discretization makes the DG methods ideally
suited for parallel computing. The compact formulation can be applied
near boundaries without special treatment, which increases the robustness
of any boundary condition implementation (see [14–16] and the referen-
ces therein).
In recent years, discontinuous Galerkin methods have been developed for

solving a variety of variational inequalities, such as the gradient plasticity
problem [17, 18], obstacle problems [19, 20], Signorini problem [21, 22],
quasi-static contact problems [23], the plate contact problem [24–26], two
membranes problem [27], and Stokes or Navier–Stokes flows with slip
boundary condition [28, 29]. In this paper, we study DG methods for solv-
ing a quasi-variational inequality arising in frictional contact problems with
normal compliance. We consider a process in which an elastic body, under
the influence of a given body force and surface traction, comes into contact
with a deformable foundation, and there exists penetration of the elastic
body into the foundation. Therefore, the normal compliance condition is
adopted and Coulomb’s law of dry friction is used to describe the frictional
phenomenon. Since the friction bound function depends on the unknown
variable, the problem is highly nonlinear, and in the literature, no reference
can be found on the study of DG methods for such a problem. We intro-
duce four DG schemes to solve this problem and analyze properties of the
methods. For numerical implementation, we use Uzawa algorithm to cir-
cumvent the difficulty from the non-differentiable term.
The paper is organized as follows: In Section 2, we introduce the frictional

contact problem with normal compliance, and present its weak formulation

2 W. XIAO ET AL.



as a quasi-variational inequality. In Section 3, we give the DG formulations,
and show the consistency of the DG schemes, boundedness, and stability of
the bilinear forms. Finally, in Section 4, we present results from numerical
examples, paying particular attention to numerical convergence orders.

2. A frictional contact problem with normal compliance

Let X � Rd (d¼ 2, 3) be a bounded open connected domain. A Lipschitz
boundary C of X consists of three non-overlapping parts CD, CF, and CC,
where displacement, force (surface traction), and contact boundary conditions
will be specified, respectively. We use a vector-valued function u : X � Rd !
Rd to denote the displacement, and use eðuÞ ¼ 1

2 ðruþ ðruÞTÞ and r for the
linearized strain tensor and the stress tensor, respectively, which belongs to Sd,
the space of second order symmetric tensors on Rd. Let r: / ¼ rij/ij be the
inner product on space Sd, and the corresponding norm is j/j :¼ ð/ : /Þ

1
2.

Here and below, the summation convention over a repeated index is adopted.
For a vector w, its normal component and tangential component on the
boundary are v� ¼ w � m, ws ¼ w� w�m, where m is the unit outward normal
vector on C. For a tensor-valued function r, the normal component and tan-
gential component are r� ¼ rmÞ � mð , rs ¼ rm�r�m; respectively. Due to the
fact that ws � m¼ 0, rs � m¼ 0, we have the decomposition formula

ðrmÞ � w ¼ ðr�mþrsÞ � ðw�mþwsÞ ¼ r�w� þ rs � ws: (2.1)

divr¼ ð@jrijÞ1�i�d is divergence of a tensor-valued function r. If vector w
and tensor r are continuously differentiable, then, we have the integration
by a part formula:ð

X
r : eðwÞdx ¼

ð
C
ðrmÞ � wds�

ð
X
divr�wdx: (2.2)

Consider the following frictional contact problem with normal compliance,

r¼ CeðuÞ in X; (2.3)
�div r¼ f 1 in X; (2.4)

u ¼ 0 on CD; (2.5)
rm¼ f 2 on CF; (2.6)

�r� ¼ p�ðu� � gaÞ on CC; (2.7)
jrsj � psðu� � gaÞ on CC; (2.8)

rs ¼ �psðu� � gaÞ
us
jusj

if us 6¼ 0 on CC: (2.9)

Here, (2.3) represents the constitutive relation of the elastic material,
(2.4) is the equilibrium equation, in which volume forces of density f 1 acts
in X. Boundary condition (2.5) means that the body is clamped on CD, so
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the displacement field vanishes there. Surface traction of density f 2 acts on
CF in (2.6). (2.7) is the normal compliance condition, and it describes a
reactive normal pressure that depends on the penetration of the elastic
body in the deformable foundation. ga is the initial gap between the body
and foundation (Figure 1 in Section 4), u� is the normal displacement, and
u� � ga, when it is positive, represents the penetration of the body in the
foundation. The function p� is nonnegative with the property p�ðtÞ ¼ 0 for
t � 0. The relations (2.8)–(2.9) form a version of Coulomb’s law of dry fric-
tion, and are equivalent to

jrsj � psðu� � gaÞ;
jrsj< psðu� � gaÞ ) us ¼ 0;
jrsj ¼ psðu� � gaÞ ) rs ¼ �jus;j � 0:

8<: (2.10)

Here, us denotes the tangential displacement. ps is friction bound func-
tion, so it is nonnegative and psðtÞ ¼ 0 for t � 0. rs denotes the tangential
force on CC, the contact boundary. Obviously, the shear stress cannot
exceed the maximal frictional resistance psðu� � gaÞ. When the strict
inequality holds, it is stick state, i.e., the surface adheres to the foundation;
and when the equality holds, a relative sliding happens, this is slip state;
when u� < ga, there is no contact. Therefore, the contact surface CC is div-
ided into three zones: stick, slip, and separation.
We will make some assumptions on the data. The fourth-order elasticity tensor

of thematerial C : X� Sd ! Sd is assumed to satisfy the following conditions:

ðaÞ Cijkl 2 L1ðXÞ; 1 � i; j; k; l � d;
ðbÞ ðCrÞ : / ¼ r: ðC/Þ 8r;/ 2 Sd; a:e: in X;

ðcÞ 9C0>0 s:t: C/ : / � C0j/j2; 8/ 2 Sd; a:e: in X:

8><>: (2.11)

Γ
F

Γ
F

Γ
C

Γ
DΩ

deformable foundation

g
a

Figure 1. Setting of the problem for Example 4.1.
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For the elasticity tensor of a homogeneous and isotropic elastic material,
Ce ¼ kðtreÞI þ 2le with Lam�e parameters k> 0 and l> 0. The gap function
has the properties

ga 2 L2ðCCÞ; gaðxÞ � 0 a:e: x 2 CC: (2.12)

For the functions pe ðe ¼ �; sÞ, we assume

ðaÞ pe : CC � R ! Rþ;
ðbÞ there exists Le>0 such that jpeðx; r1Þ � peðx; r2Þj � Lejr1 � r2j

8r1; r2 2 R; a:e: x 2 CC;
ðcÞ the mapping x 7! peðx; rÞ is measurable on CC; for any r 2 R;
ðdÞ peðx; rÞ ¼ 0 for all r � 0; a:e: x 2 CC:

8>>>><>>>>:
(2.13)

The condition (2.13)(b) means the functions to grow at most linearly.
If there is separation between the body and the foundation, the condition
(2.13)(d) implies that the normal and tangential components of the stress
tensor vanish on the boundary CC.
We define V ¼ fv 2 H1ðXÞd : v ¼ 0 a:e: on CDg. Then, by a standard

procedure, we can derive the weak formulation of the problem (2.3)–(2.9):
find u 2 V such that

aðu; v� uÞ þ jðu; vÞ � jðu; uÞ � ðf ; v� uÞ 8v 2 V; (2.14)

where

aðu; vÞ ¼
ð
X
CeðuÞ : eðvÞdx 8u; v 2 V;

ðf ; vÞ ¼
ð
X
f 1 � vdxþ

ð
CF

f 2 � vds 8v 2 V;

and

jðu; vÞ ¼
ð
CC

p�ðu� � gaÞv�dsþ
ð
CC

psðu� � gaÞjvsjds 8u; v 2 V: (2.15)

Here, the functional j depends on u� , which makes this problem highly
nonlinear. The existence of a unique solution for the quasi-variational
inequality (2.14) is studied in several references, see, e.g. [11].

3. Discontinuous Galerkin methods

3.1. Notation

For simplicity, we only consider the case d¼ 2 in this paper; the
three-dimensional case can be analyzed similarly. For a bounded domain
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D � R2;HmðDÞ is the standard Sobolev space, with the corresponding norm
jj � jjm;D and semi-norm j � jm;D. For a vector u ¼ ðu1; u2Þ 2 ½HmðXÞ�2, its

norm and semi-norm are jjujjm;D :¼
X2

i¼1
jjuijj2m;D

� �1=2
and

jujm;D :¼
X2

i¼1
juij2m;D

� �1=2
. These definitions are readily extended for the

norm and semi-norm of a matrix-valued function. To describe the numer-
ical methods, we will need the following symbols:

fT hgh :¼ a family of regular triangulations of X;
Eh :¼ the set of all edges of T h;
Ei
h :¼ EhnC;

E0
h :¼ EhnðCF [ CCÞ;

K :¼ a triangle element 2 T h;
hK :¼ diamðKÞ;
h :¼ maxfhK : K 2 T hg:

Then, we introduce finite element spaces:

Vh ¼ fvh 2 ½L2ðXÞ�2 : vhijK 2 P1ðKÞ 8K 2 T h; i ¼ 1; 2g;
Qh ¼ f/h 2 ½L2ðXÞ�2�2

s : /hijjK 2 PlðKÞ 8K 2 T h; i; j ¼ 1; 2g; l ¼ 0 or 1:

Here, PlðKÞ is the space of all polynomials in K with the total degree no
more than l � 0. On any element, K 2 T h, ehðvÞ, and divh/ are defined by
the relations ehðvÞ ¼ eðvÞ and divh/ ¼ div/ for any vector-valued function
v and matrix-valued function /.
Let e 2 Ei

h be an interior edge shared by two neighboring elements Kþ

and K–, and n6 ¼ nj@K6 is the unit outward normal vector on @K6. Then,
for a vector-valued function v and a matrix-valued function /, averages f�g,
and jumps ½��, ½½��� across the edge e are defined as follows:

vf g ¼ 1
2
ðvþ þ v�Þ; ½½v�� ¼ 1

2
ðvþ 	nþ þnþ 	 vþ þ v� 	n� þn� 	 v�Þ;

f/g ¼ 1
2
ð/þ þ/�Þ; ½/� ¼ /þnþ þ/�n�;

where

v6 ¼ vj@K6 ; /6 ¼ /j@K6 :

If e lies on the boundary C, we define

fvg ¼ v; ½½v�� ¼ 1
2
ðv 	 nþ n	 vÞ;

f/g ¼ /; ½/� ¼ /n:

Here, u	 v is a matrix with uivj as its (i, j)-th element.
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For a vector-valued function v and a matrix-valued function /, by direct
calculation, we can verify the following identity:X

K2T h

ð
@K
ð/nKÞ � vds ¼

X
e2Ei

h

ð
e
½/� � fvgdsþ

X
e2Eh

ð
e
f/g : ½½v��ds: (3.1)

To present the DG schemes, we introduce two lifting operators r0 :
L2ðE0

hÞ
� �2�2

s ! Qh and re : L2ðeÞ
� �2�2

s ! Qh, defined byð
X
r0ð/Þ : ndx ¼ �

ð
E0
h

/ : fngds 8n2 Qh; (3.2)ð
X
reð/Þ : ndx ¼ �

ð
e
/ : fngds 8n2 Qh: (3.3)

The two lifting operators are related by the equality

r0ð/Þ ¼
X
e2E0

h

reð/jeÞ 8/ 2 L2ðE0
hÞ

� �2�2
s :

Thus,

jjr0ð/Þjj2 ¼ jj
X
e2E0

h

reð/jeÞjj
2 � 3

X
e2E0

h

jjreð/jeÞjj
2: (3.4)

3.2. DG formulations

In this subsection, we present some DG formulations for solving the quasi-
variational inequality (2.14). On any element K 2 T h, using integration by
part formula, we multiply (2.3) and (2.4) by C�1/ and v, respectively, inte-
grate over an element K 2 T h, and perform integration by parts to get:ð

K
C�1r: /dx ¼ �

ð
K
u � div/dxþ

ð
@K
u � ð/nKÞds;ð

K
f 1 � vdx ¼

ð
K
r : eðvÞdx�

ð
@K
ðrnKÞ � vds:

A subscript h is added on r;/; u; v; div and e in these equations. Then,
we sum these two equalities over all the elements K 2 T h, and use numer-
ical traces buh and brh to approximate u and r over element edges:ð

X
C�1 rh : /hdx ¼ �

ð
X
uh � divh/hdxþ

X
K2Th

ð
@K
buh � ð/hnKÞds;

ð
X
f 1 � vhdx ¼

ð
X
rh : ehðvhÞdx�

X
K2Th

ð
@K
ð brhnKÞ � vhds

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 7



for all ð/h; vhÞ 2 Qh � Vh: to choose the numerical fluxes brh and buh, we
should guarantee the stability and consistency of the scheme.
To derive a formulation, which does not rely on rh explicitly, following

an argument similar to the one used in [21, 23], we have:ð
X
CehðuhÞ : ehðvhÞdxþ

ð
Ei
h

fbuh � uhg � ½CehðvhÞ�ds

þ
ð
Eh

½½buh � uh�� : fCehðvhÞgds

�
ð
Ei
h

½ brh� � fvhgds� ð
Eh

½½vh�� : f brhgds ¼ ð
X
f 1 � vhdx:

(3.5)

Then, we can obtain DG schemes from (3.5) through proper choices of
numerical fluxes.
In order to be consistent with the boundary condition, for all the DG

schemes in this paper, we always make the following choices:buh ¼ fuhg on EhnCD;buh ¼ 0 on CD;brhm¼ f 2 on CF;

8<: (3.6)

and on CC,

�r̂h� ¼ p�ðûh� � gaÞ;
jbrhsj � psðûh� � gaÞ;

r̂hs ¼ �psðûh� � gaÞ
buhs

jbuhsj
if buhs 6¼ 0:

8>><>>: (3.7)

Note that buh ¼ uh on CC [ CF:
To develop an interior penalty (IP) formulation ([30]), we choosebrh ¼ fCehðuhÞg � geh

�1
e ½½uh�� on E0

h, where ge is a bounded, positive, piece-
wise constant function on E0

h. Then we obtain from (3.5) that

Bð1Þ
1;hðuh; vhÞ ¼

ð
X
f 1 � vhdx þ

ð
CF

f 2 � vhdsþ
ð
CC

brhm�vhds; (3.8)

where

Bð1Þ
1;hðuh; vhÞ :¼

ð
X
CehðuhÞ : ehðvhÞdx�

ð
E0
h

½½uh�� : fCehðvhÞgds

�
ð
E0
h

½½vh�� : fCehðuhÞgdsþ
ð
E0
h

geh
�1
e ½½uh�� : ½½vh��ds:

(3.9)

Let vh ¼ wh � uh with wh 2 Vh: Using (2.1), we haveð
CC

ð brhmÞ � ðwh � uhÞds ¼
ð
CC

brh�ðwh� � uh�Þdsþ
ð
CC

brhs � ðwhs � uhsÞds:
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By (3.7), we have on CC,

r̂h�ðwh� � uh�Þ ¼ �p�ðûh� � gaÞðwh� � uh�Þ
¼ �p�ðuh� � gaÞwh� þ p�ðuh� � gaÞuh�;

and

r̂hs�ðwhs � uhsÞ ¼ r̂hs�whs � r̂hs�uhs
� �jr̂hsjjwhsj � r̂hs�uhs
� �psðuh� � gaÞjwhsj þ psðuh� � gaÞjuhsj:

Therefore, we obtain the IP scheme from (3.8),

Bð1Þ
1;hðuh;wh � uhÞ þ jðuh;whÞ � jðuh; uhÞ � ðf ;wh � uhÞ 8wh 2 Vh:

(3.10)

With the help of the lift operator r0, we can rewrite Bð1Þ
1;h as

Bð1Þ
2;hðuh; vhÞ :¼

ð
X
CehðuhÞ : ðehðvhÞ þ r0ð½½vh��ÞÞdx

þ
ð
X
r0ð½½uh��Þ : CehðvhÞdx þ

ð
E0
h

geh
�1
e ½½uh�� : ½½vh��ds:

(3.11)

Note that (3.9) and (3.11) are equivalent on Vh.
Similarly, we can introduce three other DG methods. We list the choices

of brh for these methods in Table 1. Furthermore, we list the bilinear forms
of the DG methods in Table 2 with ð�; �Þ ¼ ð�; �ÞX, h�; �i ¼ h�; �iE0

h
, and

g ¼
ð
X
CehðuhÞ : ehðvhÞdx;

bj ¼
ð
E0
h

geh
�1
e ½½uh�� : ½½vh��ds;

br ¼
X
e2E0

h

ð
X
geCreð½½uh��Þ : reð½½vh��Þdx:

Let Bh represent one of the four bilinear forms BðiÞ
1;h, 1 � i � 4. The corre-

sponding DG formulation is to find uh 2 Vh such that

Bhðuh; vh � uhÞ þ jðuh; vhÞ � jðuh; uhÞ � ðf ; vh � uhÞ 8vh 2 Vh: (3.12)

Table 1. Choices of r̂h on E0
h.

Methods Numerical flux r̂h on E0
h

IP [30] r̂h ¼ fCehðuhÞg � geh
�1
e ½½uh��

Bassi et al. [31] r̂h ¼ fCehðuhÞg þ gefCreð½½uh��Þg
Brezzi et al. [32] r̂h ¼ fCehðuhÞg þ fCr0ð½½uh��Þg þ gefCreð½½uh��Þg
LDG [33] r̂h ¼ fCehðuhÞg þ fCr0ð½½uh��Þg � geh

�1
e ½½uh��

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 9



3.3. Consistency, boundedness, and stability

Here, we present some properties of the four DG methods introduced pre-
viously. Recall that u is the solution of (2.14).

Lemma 3.1 (Consistency). Assume u 2 ½H2ðXÞ�2. Then for Bhðw; vÞ ¼
BðiÞ
1;hðw; vÞ with i ¼ 1; � � � ; 4, we have:

Bhðu; vh � uÞ þ jðu; vhÞ � jðu; uÞ � ðf ; vh � uÞ 8vh 2 Vh: (3.13)

Proof. Since u 2 ½H2ðXÞ�2, on any interior edge e, ½½u�� ¼ 0; fug ¼ u;
feðuÞg ¼ eðuÞ; ½r� ¼ 0; frg ¼ r. Then, for any vh 2 Vh,

Bhðu; vh � uÞ ¼
ð
X
CeðuÞ : ehðvh � uÞdx�

ð
E0
h

½½vh � u�� : CeðuÞds

¼
X
K2T h

ð
K
r : ehðvh � uÞdx�

ð
E0
h

½½vh � u�� : rds

Using integration by parts and (3.1), we get,X
K2T h

ð
K
r : ehðvh�uÞdx¼�

X
K2T h

ð
K
divr�ðvh�uÞdxþ

X
K2T h

ð
@K
ðrnKÞ � ðvh�uÞds

¼
X
K2T h

ð
K
f 1 � ðvh�uÞdxþ

ð
Eh

r : ½½vh�u��ds:

Therefore,

Bhðu; vh � uÞ ¼
ð
X
f 1 � ðvh � uÞdxþ

ð
CF

f 2 � ðvh � uÞdsþ
ð
CC

ðrmÞ � ðvh � uÞds

¼ ðf ; vh � uÞ þ
ð
CC

ðrmÞ � ðvh � uÞds:

(3.14)

Table 2. DG formulations.
Methods Bilinear forms

IP [30] Bð1Þ1;h ¼ g� h½½uh��; fCehðvhÞgi � h½½vh��; fCehðuhÞgi þ bj

Bð1Þ2;h ¼ gþ ðCehðuhÞ; r0ð½½vh��ÞÞ þ ðr0ð½½uh��Þ; CehðvhÞÞ þ bj

Bassi et al. [31] Bð2Þ1;h ¼ g� h½½uh��; fCehðvhÞgi � h½½vh��; fCehðuhÞgi þ br

Bð2Þ2;h ¼ gþ ðCehðuhÞ; r0ð½½vh��ÞÞ þ ðr0ð½½uh��Þ; CehðvhÞÞ þ br

Brezzi et al. [32] Bð3Þ1;h ¼ g� h½½uh��; fCehðvhÞgi � h½½vh��; fCehðuhÞgi þ ðCr0ð½½uh��Þ; r0ð½½vh��ÞÞ þ br

Bð3Þ2;h ¼ gþ ðCehðuhÞ; r0ð½½vh��ÞÞ þ ðCr0ð½½uh��Þ; ehðvhÞ þ r0ð½½vh��ÞÞ þ br

LDG [33] Bð4Þ1;h ¼ g� h½½uh��; fCehðvhÞgi � h½½vh��; fCehðuhÞgi þ ðCr0ð½½uh��Þ; r0ð½½vh��ÞÞ þ bj

Bð4Þ2;h ¼ gþ ðCehðuhÞ; r0ð½½vh��ÞÞ þ ðCr0ð½½uh��Þ; ehðvhÞ þ r0ð½½vh��ÞÞ þ bj
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Here,

ðrmÞ � ðvh � uÞ ¼ r�ðvh� � u�Þ þ rs � ðvhs � usÞ:

Using the boundary conditions (2.7)–(2.9) and (2.13), we have:

r�ðvh� � u�Þ ¼ �p�ðu� � gaÞðvh� � u�Þ
¼ �p�ðu� � gaÞvh� þ p�ðu� � gaÞu�;

rs � ðvhs � usÞ ¼ rs � vhs � rs � us
� �jrsjjvhsj � rs � us
� �psðu� � gaÞjvhsj þ psðu� � gaÞjusj:

Applying these relations in (3.14) together with the definition (2.15) of
the functional j, we observe that (3.13) holds. w

Denote VðhÞ ¼ Vh þ V \ ½H2ðXÞ�2. Recall that C is bounded, symmetric,
and positive definite. We define seminorms and norms for v 2 VðhÞ by the
following relations:

jvj2a;K :¼
ð
K
CeðvÞ : eðvÞdx; jvj2a;h :¼

X
K2T h

jvj2a;K ; jvj2
 :¼
X
e2E0

h

h�1
e jj½½v��jj20;e;

where

jj½½v��jj20;e ¼
ð
e
½½v�� : ½½v��ds:

Then define norms by

jjjvjjj2
 :¼ jvj2a;h þ jvj2
; jjjvjjj2 :¼ jjjvjjj2
 þ
X
K2T h

h2K jvj
2
2;K : (3.15)

By Korn’s inequality on the discontinuous finite element space, the norm
jjj � jjj
 is equivalent to the usual DG-norm ðjj � jj21;h þ j � j2
Þ

1
2 ([34]). Set the

norm jj � jj20;h :¼
P

K2T h
jj � jj20;K :

For the lifting operator re, we have the following lemma.

Lemma 3.2 ([21]). For any v 2 VðhÞ and e 2 E0
h,

C1h
�1
e jj½½v��jj20;e � jjreð½½v��Þjj20;h � C2h

�1
e jj½½v��jj20;e: (3.16)

So, from (3.16) and (3.4), we have

jjr0ð½½v��Þjj20;h ¼ jj
X
e2E0

h

reð½½v��Þjj20;h � 3C2

X
e2E0

h

h�1
e jj½½v��jj20;e ¼ 3C2jvj2
:

Then similar to [21, 23], we have the following results concerning the
boundedness and stability of Bh.
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Lemma 3.3 (Boundedness). There is a constant Cb>0 such that for 1 � i �
4; Bh ¼ BðiÞ

1;h satisfies

Bhðu; vÞ � Cbjjjujjjjjjvjjj 8u; v 2 VðhÞ: (3.17)

Lemma 3.4 (Stability). Let g0 :¼ mine2E0
h
ge be large enough. Then there is a

constant h 2 ð0; 1Þ such that for 1 � i � 4;Bh ¼ BðiÞ
1;h and BðiÞ

2;h satisfy

Bhðv; vÞ � hjjjvjjj2 8v 2 Vh: (3.18)

Proof. Note that jjjvjjj ¼ jjjvjjj
 for v 2 Vh. Since BðiÞ
1;h and BðiÞ

2;h coincide on
Vh, once the stability for BðiÞ

2;h on Vh, the stability of BðiÞ
1;h on Vh follows.

Following [21, 23], we apply the Cauchy–Schwarz inequality and Lemma
3.2 to get

Bð1Þ
2;hðv; vÞ � ð1� �Þjvj2a;h þ

 
g0 �

3C2jjCjjL1ðXÞ
�

!
jvj2
;

Bð2Þ
2;hðv; vÞ � ð1� �Þjvj2a;h þ

 
g0C0C1 �

3C2jjCjjL1ðXÞ
�

!
jvj2
;

Bð3Þ
2;hðv; vÞ � ð1� �Þjvj2a;h þ

�
g0C0C1 þ 3C2jjCjjL1ðXÞ

�
1� 1

�

��
jvj2
;

Bð4Þ
2;hðv; vÞ � ð1� �Þjvj2a;h þ

�
g0 þ 3C2jjCjjL1ðXÞ

�
1� 1

�

��
jvj2
:

Here, C0 is the constant in (2.11)(c). Let g0 be large enough. We can
then take h ¼ 1� � and (3.18) holds.

4. Numerical examples

For the numerical examples, we consider functions p�; ps of the form

p�ðtÞ ¼ k�ðtÞm�

þ ; psðtÞ ¼ ksðtÞms
þ ; (4.1)

where k�;m�; ks;ms are the material interface parameters and all non-nega-
tive. Here, ðtÞþ is the positive part of function t, i.e. ðtÞþ ¼ t for t � 0; and
ðtÞþ ¼ 0 for t � 0: In [3, 4], it is proved that the (2.14) has a locally unique
solution, for 1 � m�;ms<1 if d¼ 2, and 1 � m�;ms<4 if d¼ 3 (in the
case 3 � m�;ms<4 and d¼ 3, (2.14) is replaced by a weaker formulation).
For simplicity, we consider a reduced normal compliance law, i.e. ms ¼ 0
in (4.1) [8]. Then the functional jðu; vÞ can be written as:

jðu; vÞ ¼
ð
CC

k�ðu� � gaÞm�

þ v�dsþ
ð
CC

ksjvsjds ¼ j�ðu; vÞ þ jsðu; vÞ: (4.2)
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To implement the DG method (3.12), following the idea in [35–37], we
use Uzawa iteration by introducing a Lagrange multiplier kh. Then the DG
scheme is equivalent to the system

Bhðuh; vhÞ þ j�ðuh; vhÞ þ
ð
CC

kskhs � vhsds ¼ ðf ; vhÞ 8vh 2 Vh; (4.3)

jkhsj � 1; khs � uhs ¼ juhsj a:e: on CC; khs 2 ðL1ðCCÞÞd: (4.4)

The following is the Uzawa iteration algorithm:
Step 1. Choose k0h ¼ 0, and find u0h, solution of the problem

Bhðuh; vhÞ ¼ ðf ; vhÞ 8vh 2 Vh: (4.5)

Step 2. For n ¼ 1; 2; :::; update the Lagrangian multiplier

knh ¼ Pðkn�1
h þ qksu

n�1
h Þ; (4.6)

and find unh 2 Vh, solution of the problem

Bhðunh; vhÞ ¼ ðf ; vhÞ � j�ðun�1
h ; vhÞ �

ð
CC

kskhs
n � vhsds; 8vh 2 Vh: (4.7)

Here, q is a positive constant and P is a projection operator defined as:

PðlÞ ¼ supð�1; infð1; lÞÞ 8l 2 L1ðCCÞ: (4.8)

Step 3. If jjun � un�1jj<�, a specified error tolerance, stop; otherwise, go
to Step 2.
Now, we present numerical results on two-dimensional problems solved by

the IP method. In all the examples, the domain is a square, and uniform tri-
angulations of the domain are used. We divide the unit interval into h�1

equal sub-intervals and start with h¼ 1/4, which is decreased by half subse-
quently. We set the error tolerance � ¼ 10�8. We adopt the numerical solu-
tion on the mesh h ¼ 1

128 as the “exact” solution u
 for computing the errors
of the numerical solutions on coarser meshes. Let E be Young’s modulus and
s be the Poisson ratio of the material, the Lam�e coefficients are

k ¼ Es
ð1þ sÞð1� 2sÞ ; l ¼ E

2ð1þ sÞ :

The penalty parameter g is chosen to be 30l for two examples.

Example 4.1. The physical setting is shown in Figure 1. The domain X ¼
ð0; 1Þ � ð0:05; 1:05Þ is the cross-section of a three-dimensional linearized
elastic body and plane stress condition is assumed. On CD ¼ f1g �
ð0:05; 1:05Þ; the body is clamped. CF ¼ ðf0g � ð0:05; 1:05ÞÞ[
ðð0; 1Þ � f1:05gÞ. Oblique tractions act on the part f0g � ð0:05; 1:05Þ and
the part ð0; 1Þ � f1:05g is traction free. The contact part of the boundary
is CC ¼ ð0; 1Þ � f0:05g:
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We use the following data (the unit daN/mm2 stands for “decaNewtons
per square millimeter”):

E ¼ 2000daN=mm2; s ¼ 0:4; f 1 ¼ ð0; 0ÞdaN=mm2;
f 2 ¼ ð200ð5� x2Þ;�190ÞdaN=mm2; ks ¼ 450; k� ¼ 1;m� ¼ 1; ga ¼ 0:05mm:

Figure 2 shows the deformed mesh with h¼ 1/16, and the red rectangle
stands for foundation below the elastic body. Initially, there is no contact
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Figure 2. Example 4.1. Deformed configuration with h¼ 1/16.
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deformable foundation

Figure 3. Setting of the problem for Example 4.2.
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since the gap function ga ¼ 0:05mm, but we see that penetration of the elastic
body into foundation occurs after surface traction acts on the boundary CF.

Example 4.2. The physical setting is shown in Figure 3, where
X ¼ ð0; 1Þ � ð0; 1Þ. On CD ¼ ð0; 1Þ � f1g the body is clamped. CF ¼
ðf0g � ð0; 1ÞÞ [ ðf1g � ð0; 1ÞÞ: Horizontal tractions act on the part f0g �
ð0; 1Þ and the part f1g � ð0; 1Þ is traction free. The contact part of the
boundary is CC ¼ ð0; 1Þ � f0g. We use the following data:

E ¼ 2500daN=mm2; s ¼ 0:2; f 1 ¼ ð0; 0ÞdaN=mm2;
f 2 ¼ ð880; 0ÞdaN=mm2; ks ¼ 250; k� ¼ 1;m� ¼ 1; ga ¼ 0mm:

Figure 4 shows the deformed mesh with h¼ 1/16, and penetration occurs
at some places.
The numerical errors ju
 � uhj1;h and numerical convergence orders are

reported in Table 3. We observe that the numerical convergence orders are near
1, an expected result since linear elements are used in the numerical methods.
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Figure 4. Example 4.2. Deformed configuration with h¼ 1/16.

Table 3 Numerical solution error ju
 � uhj1;h.
h Example 4.1. Order Example 4.2. Order

1/4 6.1438e–002 – 1.0134e–001 –
1/8 3.0672e–002 1.0022 5.9611e–002 0.7656
1/16 1.5566e–002 0.9785 3.3589e–002 0.8276
1/32 7.4369e–003 1.0656 1.8337e–002 0.8733
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