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1. INTRODUCTION

Genetically engineered mice are popular laboratory mod-
els for numerous studies directly relevant to the hu-
man healthcare. Mouse imaging allows in vivo evalu-
ation of physiological and pathological processes under
controlled conditions simulating therapeutic interventions.
One of the most promising mouse imaging modalities is
based on luciferase report gene [1, 2]. When the cor-
responding substrate is administered into a mouse, the
resultant biochemical reaction generates bioluminescent
light at visible and infrared wavelengths. These biolumi-
nescent photons carry important information about tu-
mor burden, micro-metastases, infectious loci, therapeu-
tic gene delivery, and so on. Bioluminescent imaging
(BLI) utilizes sensitive photon detection techniques to ob-
serve bioluminescent signals on the body surface of the
mouse.

Funded by NIH/NIBIB, we built the first biolumines-
cence tomography (BLT) prototype [3], and developed the
BLT theory and methods [4–8]. Quickly, BLT has grown
into a hot area, in which several groups are actively pro-
ducing valuable results [9–14]. Currently, we are improv-
ing our BLT prototype with more features and better per-
formance in hope that BLT will become a universal and
powerful tool for molecular and cellular imaging in the

near future. While multispectral BLT results were already
reported in the literature [6, 12, 14], there is a critical
need to establish a mathematical theory of multispectral
BLT.

It is well known that all the common luciferase en-
zymes, from firefly (Fluc), click beetle (CBGr68, CBRed)
and Renilla reniformins (HRLuc), share a wide spectral
range, roughly from 400 to 750 nm [15]. Furthermore, the
newly developed tricolor reporter generates bioluminescent
light that is rich in green and red spectral bands. Because
the optical properties of the tissues depend on the wave-
length, the intensity and spectrum of bioluminescent light
measured on the body surface of a mouse are a func-
tion of the spectrum of the bioluminescent source, its 3D
distribution, and the individual anatomy of the mouse.
Clearly, multispectral data are more informative than mixed
data, and must be analyzed for the optimal BLT perfor-
mance.

This paper provides a theoretical study of the multispec-
tral BLT model. The spectrum is divided into certain num-
bers of bands, say i0 bands Λ1, . . . ,Λi0 , with Λi = [λi�1, λi),
1 � i � i0 � 1, Λi0 = [λi0�1, λi0 ]. Here λ0 < λ1 < � � � < λi0
is a partition of the spectrum range. Denote by p the biolu-
minescent source distribution function. Then the biolumi-
nescent source distribution within the band Λi is ωip. In this
paper, we always understand the range of the index i to be
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�1, . . . , i0�. The weight ωi � 0, and
∑i0

i=1 ωi = 1. Let Ω � Rd

(d � 3) be the biological medium with the boundary Γ. Let
Ω0 be a measurable subset of Ω (Ω0 = Ω is allowed) where
the light source exists. The set Ω0 is known as the permissi-
ble region. For each spectral band Λi, 1 � i � i0, we use the
following diffusion equation to describe the photon density
ui in Λi:

�div
(
Di�ui

)
+ μa,iui = ωipχΩ0 in Ω. (1)

Here, Di(x) = 1/[3(μa,i(x) + μ�s,i(x))], μa,i(x) and μ�s,i(x) are
the absorption coefficient and the reduced scattering coeffi-
cient within the band Λi, χΩ0 is the characteristic function of
Ω0, that is, its value is 1 in Ω0, and is 0 in Ω	Ω0. The bio-
luminescent imaging experiments are usually performed in
a dark environment so that the natural boundary condition
takes the form [16]

ui + 2ADi
∂ui
∂ν

= 0 on Γ. (2)

Here, ∂/∂ν stands for the outward normal derivative,

A(x) = 1 + R(x)
1� R(x)

,

R(x) 
 �1.4399γ�2 + 0.7099γ�1 + 0.6681 + 0.0636γ,
(3)

with γ being the refractive index of the medium. Let Γ0 � Γ
with meas(Γ0) > 0 be a part of the boundary where measure-
ment takes place; Γ0 = Γ is allowed. With the emission filter
of bandpass Λi, the measured quantity is the outgoing flux
density [16]:

Qi = �Di
∂ui
∂ν

= 1
2A

ui on Γ0. (4)

The pointwise formulation of the BLT problem is to de-
termine the source function from (1)–(4) for 1 � i � i0. As
noted in [8], the pointwise formulation (1)–(4) for 1 � i � i0
is ill-posed: (1) in general, there are infinite many solutions;
(2) when the form of the source function is specified, gener-
ally there are no solutions; (3) the source function does not
depend continuously on the data. We study the multispectral
BLT problem through Tikhonov regularization as follows.

Denote by Qad the admissible set of the source func-
tions. We assume Qad is a closed convex subset of L2(Ω0).
Examples include Qad = L2(Ω0), or the subset of L2(Ω0)
of nonnegatively valued functions, or certain finite dimen-
sional subspace or subset of L2(Ω0). For a weak formulation
of the boundary value problem (1)–(2), we need the space
V = H1(Ω). For any q � L2(Ω0), and any i = 1, . . . , i0, define
ui = ui(q) � V to be the solution of the problem

∫

Ω

(
Di�ui � �v + μa,iuiv

)
dx +

∫

Γ

1
2A

uiv ds

=
∫

Ω0

ωiqv dx �v � V.
(5)

From the assumptions on the data, we can apply the well-
known Lax-Milgram lemma [17, 18] to conclude that the so-
lution ui(q) exists and is unique. We note that the mapping
q 
� ui(q) is linear.

Choose weights wi > 0, 1 � i � i0, with
∑i0

i=1 wi = 1.
Define a Tikhonov regularization functional [19, 20]

Jε(q) =
i0∑

i=1

wi

∥
∥ui(q)� 2AQi

∥
∥2
L2(Γ0) + ε�q�2

L2(Ω0), ε � 0.

(6)

In the definition of Jε(�), other norms than � � �L2(Γ) and
� � �L2(Ω0) may be used if it is required to do so based on
practical considerations. In this paper, we use (6) for the def-
inition of Jε(�) that leads to easier implementation. The fol-
lowing formulas for Gâteaux derivatives of Jε(�) hold:

J �ε (p)q = 2
i0∑

i=1

wi
(
ui(p)� 2AQi,ui(q)

)
L2(Γ0) + 2ε(p, q)L2(Ω0),

J ��ε (p)q2 = 2
i0∑

i=1

wi

∥
∥ui(q)

∥
∥2
L2(Γ0) + 2ε�q�2

L2(Ω0)

(7)

for p, q � L2(Ω0). Thus, Jε(�) is strictly convex when ε > 0.
We then introduce the following multispectral BLT problem.

Problem 1. Find pε � Qad such that Jε(pε) = infq�Qad Jε(q).

This paper is on a study of the multispectral BLT
Problem 1. In the next section, we focus on the solution exis-
tence, uniqueness, and continuous dependence on the data.
In Section 3, we discuss numerical methods for the multi-
spectral BLT reconstruction and derive error estimates for
the numerical solutions. In Section 4, we include some nu-
merical examples to show the performance of the numerical
methods. We end the paper by a concluding remark summa-
rizing the main contributions of the paper.

2. WELL-POSEDNESS

We first address the existence and uniqueness issue. For this
purpose, we make some assumptions on the given data. We
assumeΩ � Rd is a nonempty, open, bounded set with a Lip-
schitz boundary Γ, A � [Al,Au] a.e. in Ω for some constants
0 < Al � Au < �. For i = 1, . . . , i0, we assume Di � L�(Ω),
Di � D0 a.e. in Ω for some constant D0 > 0, μa,i � L�(Ω),
μa,i � 0 a.e. in Ω, Qi � L2(Γ0), ωi � ω0 > 0 for some positive
constant ω0.

Theorem 1. For any ε > 0, Problem 1 has a unique solution
pε � Qad, which is characterized by a variational inequality

i0∑

i=1

wi
(
ui
(
pε
)
� 2AQi,ui

(
q � pε

))
L2(Γ0)

+ ε
(
pε, q � pε

)
L2(Ω0) � 0 �q � Qad.

(8)
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If Qad � L2(Ω0) is a subspace, then the solution pε � Qad is
characterized by a variational equation

i0∑

i=1

wi
(
ui
(
pε
)
� 2AQi,ui(q)

)
L2(Γ0) + ε

(
pε, q

)
L2(Ω0) = 0

�q � Qad.

(9)

Proof. For ε > 0, Problem 1 is a constrained optimization for
a strictly convex objective functional over a closed convex
set. Thus, it has a unique solution (see, e.g., [17, Theorem
3.3.12]), and the solution pε is characterized by the relation
J �ε (pε)(q�pε) � 0, for all q � Qad (see [17, Theorem 5.3.19]),
which is the variational inequality (8). When Qad � L2(Ω0)
is a subspace, the inequality (8) reduces to (9) by a standard
argument.

We then consider the continuous dependence of the so-
lution on the data.

Theorem 2. The solution pε of Problem 1 depends continu-
ously on the data.

Proof. The solution pε depends continuously on all the data.
In order to maintain the length of the proof, in the following
we show the continuous dependence of pε on ε, Di, μa,i, Qi

and ωi, 1 � i � i0. To simplify the notation, let pε � Qad be
the solution of Problem 1 with the data ε+δε with �δε� � ε/2,
and for 1 � i � i0, Qi + δQi � L2(Γ0), Di + δDi � L�(Ω) with
�δDi�L�(Ω) � D0/2, μa,i +δμa,i � L�(Ω) with μa,i +δμa,i � 0 a.e.
in Ω, and ωi + δωi with �δωi� � ω0/2. Also, in this proof, we
use c for constants that may depend on ε, D0, ω0, Qi, and μa,i

for 1 � i � i0, but are independent of δε, δωi , δμa,i , δDi , and
δQi for 1 � i � i0.

Similar to (8), pε is characterized by the inequality

i0∑

i=1

wi
(
ui
(
pε
)
� 2A

(
Qi + δQi

)
,ui
(
q � pε

))
L2(Γ0)

+
(
ε + δε

)(
pε, q � pε

)
L2(Ω0) � 0 �q � Qad.

(10)

Take q = pε in this inequality, q = pε in (8), and use these
two inequalities to obtain

i0∑

i=1

wi

∥
∥ui
(
pε � pε

)∥
∥2
L2(Γ0) +

(
ε + δε

)∥
∥pε � pε

∥
∥2
L2(Ω0)

�

i0∑

i=1

wi
(
ui
(
pε
)
�2AQi,ui

(
pε
)
�ui

(
pε
)

+ui
(
pε
)
�ui

(
pε
))

L2(Γ0)

+
i0∑

i=1

wi
(
ui
(
pε
)
� ui

(
pε
)
,ui
(
pε � pε

))
L2(Γ0)

+
i0∑

i=1

wi
(
� 2AδQi ,ui

(
pε � pε

))
L2(Γ0)

� δε
(
pε, pε � pε

)
L2(Ω0).

(11)

After some manipulations,

max
1�i�i0

∥
∥ui
(
pε � pε

)∥
∥2
L2(Γ0) +

∥
∥pε � pε

∥
∥2
L2(Ω0)

� c max
1�i�i0

[∥
∥ui
(
pε
)
� ui

(
pε
)∥
∥
L2(Γ0) +

∥
∥ui
(
pε
)
� ui

(
pε
)∥
∥
L2(Γ0)

]

+ c max
1�i�i0

[∥
∥ui
(
pε
)
� ui

(
pε
)∥
∥2
L2(Γ0) +

∥
∥δQi

∥
∥2
L2(Γ0)

]
+ c
∣
∣δε
∣
∣2
.

(12)

By the definitions of ui(q) and ui(q), we obtain the equality

∫

Ω

[(
Di + δDi

)
�
(
ui(q)� ui(q)

)
� �v

+
(
μa,i + δμa,i

)(
ui(q)� ui(q)

)
v
]
dx

+
∫

Γ

1
2A

(
ui(q)� ui(q)

)
v ds

=
∫

Ω0

δωiqv dx �
∫

Ω

[
δDi�ui(q) � �v + δμa,iui(q)v

]
dx

(13)

for any v � V . Since Di + δDi � D0/2 > 0 and μa,i + δμa,i � 0
a.e. in Ω, we deduce that

∥
∥ui(q)� ui(q)

∥
∥
H1(Ω)

� c
[∣
∣δωi

∣
∣�q�L2(Ω0) +

∥
∥δDi

∥
∥
L�(Ω)

∥
∥�ui(q)

∥
∥
L2(Ω)d

+
∥
∥δμa,i

∥
∥
L�(Ω)

∥
∥ui(q)

∥
∥
L2(Ω)

]
.

(14)

Thus,

max
1�i�i0

∥
∥ui
(
pε
)
� ui

(
pε
)∥
∥
L2(Γ0)

� c max
1�i�i0

(∣
∣δωi

∣
∣ +

∥
∥δDi

∥
∥
L�(Ω) +

∥
∥δμa,i

∥
∥
L�(Ω)

)
,

max
1�i�i0

∥
∥ui
(
pε
)
� ui

(
pε
)∥
∥
L2(Γ0)

� c max
1�i�i0

(∣
∣δωi

∣
∣ +

∥
∥δDi

∥
∥
L�(Ω) +

∥
∥δμa,i

∥
∥
L�(Ω)

)∥
∥pε

∥
∥
L2(Ω0).

(15)

We can bound �pε�L2(Ω0) by �pε�L2(Ω0)+�pε�pε�L2(Ω0). Then
from (12),

max
1�i�i0

∥
∥ui
(
pε � pε

)∥
∥2
L2(Γ0) +

∥
∥pε � pε

∥
∥2
L2(Ω0)

� c

{
∣
∣δε
∣
∣2

+ max
1�i�i0

[∣
∣δωi

∣
∣ +

∥
∥δDi

∥
∥
L�(Ω) +

∥
∥δμa,i

∥
∥
L�(Ω)

]

+ max
1�i�i0

∥
∥δQi

∥
∥2
L2(Γ0)

}

.

(16)

Hence, the solution depends continuously on the data.

Next, we consider the solution behavior when ε � 0+.
Note that a solution p � Qad of Problem 1 with ε = 0 is
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characterized by the inequality

i0∑

i=1

wi
(
ui(p)� 2AQi,ui(q � p)

)
L2(Γ0) � 0 �q � Qad.

(17)

Let S0 � Qad be the solution set of Problem 1 with ε = 0. As
in [21], the following result holds.

Proposition 1. Assume S0 is nonempty. Then S0 is closed and
convex. Moreover,

pε �� p0 in L2(Ω0
)
, as ε �� 0, (18)

where p0 � S0 is the solution of Problem 1 with minimal
L2(Ω0) norm: �p0�L2(Ω0) = infq�S0 �q�L2(Ω0).

Proof. The closedness and convexity of S0 are easy to deduce.
Here we only prove (18). Take q = p0 in (8), q = pε in (17)
for p = p0, and add the two inequalities to obtain

ε
(
pε, p0 � pε

)
L2(Ω0) �

i0∑

i=1

wi

∥
∥ui
(
pε � p0

)∥
∥2
L2(Γ0). (19)

Thus, (pε, p0 � pε)L2(Ω0) � 0, �pε�L2(Ω0) � �p0�L2(Ω0), and
�pε� is uniformly bounded. Let �pε�� be a subsequence of
�pε�, converging weakly to p. Since S0 is weakly closed,
p � S0. Moreover, �p�L2(Ω0) � lim inf ε��0 �pε��L2(Ω0) �

�p0�L2(Ω0). Now p0 is the unique element in S0 with mini-
mal L2(Ω0) norm, p = p0. Thus the limit p = p0 does not
depend on the subsequence selected; consequently, pε con-
verges weakly to p0 in L2(Ω0) as ε � 0. Using the relation

∥
∥pε � p0

∥
∥2
L2(Ω0) =

∥
∥pε
∥
∥2
L2(Ω0) � 2

(
pε, p0

)
L2(Ω0) +

∥
∥p0

∥
∥2
L2(Ω0)

� 2
∥
∥p0

∥
∥2
L2(Ω0) � 2

(
pε, p0

)
L2(Ω0),

(20)

we conclude the strong convergence �pε � p0�L2(Ω0) � 0 as
ε � 0.

As a simple consequence of Proposition 1, if the solu-
tion set S0 = �p� is a singleton, then pε � p in L2(Ω), as
ε � 0. Note that if Qad is a bounded set, then S0 is nonempty.
This follows from applying a standard result on convex min-
imization, for example, [17, Theorem 3.3.12]. As in the first
part of the proof of Theorem 1, L2(Ω0) is a Hilbert space,
Qad � L2(Ω0) is convex and closed, Jε�ε=0 : Qad � R is con-
vex and continuous. Since Qad is assumed to be bounded,
Problem 1 with ε = 0 has a solution. Without further infor-
mation on Qad, though, we cannot ascertain uniqueness of a
solution when ε = 0.

3. NUMERICAL APPROXIMATIONS

In this section, we discretize Problem 1 and derive error es-
timates for the numerical solutions. First we need to dis-
cretize the boundary value problem (5). Let �Th� (h: mesh-
size) be a regular family of finite element partitions of Ω

into triangular/tetrahedral elements such that each element
at the boundary Γ has at most one nonstraight face (for a
three-dimensional domain) or side (for a two-dimensional
domain). For each triangulation Th = �K�, let Vh � V be
the linear element space. For any q � L2(Ω0), denote by
uhi = uhi (q) � Vh the solution of the problem

∫

Ω

(
Di�uhi � �vh + μa,iu

h
i v

h
)
dx +

∫

Γ

1
2A

uhi v
hds

=
∫

Ω0

ωiqv
hdx �vh � Vh.

(21)

The solution uhi (q) exists and is unique. Let

Jhε (q) =
i0∑

i=1

wi

∥
∥uhi (q)� 2AQi

∥
∥2
L2(Γ0) + ε�q�2

L2(Ω0). (22)

The admissible source function space Qad may or may not
need to be discretized. In general, let Qad,1 � Qad be
nonempty, closed and convex. Later in the section, we will
consider two possible choices of Qad,1. We then introduce the
following discretization of Problem 1.

Problem 2. Find phε �Qad,1 such that Jhε (phε )= infq�Qad,1 J
h
ε (q).

Similar to Theorem 1 and Proposition 1, we have the fol-
lowing result.

Proposition 2. For ε > 0, Problem 2 has a unique solution
phε � Qad,1, which is characterized by the discrete variational
inequality:

i0∑

i=1

wi
(
uhi
(
phε
)
� 2AQi,uhi

(
q � phε

))
L2(Γ0)

+ ε
(
phε , q � phε

)
L2(Ω0) � 0 �q � Qad,1.

(23)

If Qad,1 is a subspace of L2(Ω0), then phε is characterized by a
variational equation:

i0∑

i=1

wi
(
uhi
(
phε
)
� 2AQi,uhi (q)

)
L2(Γ0) + ε

(
phε , q

)
L2(Ω0) = 0

�q � Qad,1.
(24)

The solution phε depends continuously on the data.
Assume the solution set Sh0 �= � for Problem 2 with ε = 0.

Then Sh0 � Qad,1 is closed and convex, and phε � ph0 in
L2(Ω0) as ε � 0, where ph0 � Sh0 satisfies �ph0�L2(Ω0) =
infq�Sh0 �q�L2(Ω0).

If Qad,1 is a bounded set, then Sh0 is nonempty. In con-
crete situations, it is possible to show the nonemptyness of
the solution set Sh0 directly.

We then turn to error estimation. For this purpose, we
further assume

Γ � C1,1, A � C0,1(Γ),

Di � C0,1(Ω), μa,i � L�(Ω), 1 � i � i0.
(25)
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Then we have the solution regularity bound ([22, Theorems
2.3.3.6 & 2.4.2.6])

∥
∥ui(q)

∥
∥
H2(Ω) � c�q�L2(Ω0). (26)

The assumptions (25) are made to ensure the validity of
the solution regularity (26) used below in error estima-
tion. Without the solution regularity property, error esti-
mates with lower convergence orders can still be derived. Let
ΠVhu � Vh be the piecewise linear interpolant of u. We have
the finite element interpolation error estimate:
∥
∥u�ΠVhu

∥
∥
L2(Ω) + h

∥
∥u�ΠVhu

∥
∥
H1(Ω) � ch2

�u�H2(Ω)

�u � H2(Ω).
(27)

This error estimate is usually proved when Ω is a polyhe-
dral/polygonal domain so that each element K in a finite el-
ement partition Th has straight faces/sides on its boundary
(e.g., [23, 24]). For applications in bioluminescence tomog-
raphy, Ω is a smooth domain, and is not polyhedral. In such
an application, the error estimate (27) still holds [8]. For the
finite element solution of (21), there is a constant c > 0 inde-
pendent of h and ε such that
∥
∥ui(q)� uhi (q)

∥
∥
L2(Γ) � ch3/2

�q�L2(Ω0) �q � L2(Ω0
)
.

(28)

This error bound is shown in [8] in a somewhat different
setting.

Now we distinguish two cases in the discretization of the
admissible set Qad,1. We first consider the case Qad,1 = Qad.
This is the natural choice when Qad is a finite dimensional
subspace or subset of linear combinations of specified func-
tions such as the characteristic functions of certain subsets of
Ω. We have the following error bound.

Theorem 3. With Qad,1 = Qad, there is a constant c > 0 inde-
pendent of ε and h such that

max
1�i�i0

∥
∥ui
(
pε
)
� uhi

(
phε
)∥
∥
L2(Γ0) + ε1/2

∥
∥pε � phε

∥
∥
L2(Ω0)

� ch3/4
i0∑

i=1

∥
∥ui
(
pε
)
� 2AQi

∥
∥1/2
L2(Γ0)

∥
∥pε � phε

∥
∥1/2
L2(Ω0)

+ ch3/2 ∥∥pε
∥
∥
L2(Ω0).

(29)

Proof. We choose q = pε in (23), q = phε in (8), and use the
two inequalities to obtain

i0∑

i=1

wi

∥
∥ui
(
pε
)
� uhi

(
phε
)∥
∥2
L2(Γ0) + ε

∥
∥pε � phε

∥
∥2
L2(Ω0)

�

i0∑

i=1

wi
(
ui
(
pε
)
� uhi

(
phε
)
,ui
(
pε
)
� uhi

(
pε
))

L2(Γ0)

+
i0∑

i=1

wi
(
ui
(
pε
)
� 2AQi,uhi

(
pε�phε

)
�ui

(
pε � phε

))
L2(Γ0).

(30)

Then,

i0∑

i=1

wi

∥
∥ui
(
pε
)
� uhi

(
phε
)∥
∥2
L2(Γ0) + ε

∥
∥pε � phε

∥
∥2
L2(Ω0)

� c
i0∑

i=1

wi

∥
∥ui
(
pε
)
� uhi

(
pε
)∥
∥2
L2(Γ0)

+ c
i0∑

i=1

wi

∥
∥ui
(
pε
)
� 2AQi

∥
∥
L2(Γ0)

�
∥
∥ui
(
pε � phε

)
� uhi

(
pε � phε

)∥
∥
L2(Γ0).

(31)

The error bound (29) follows from this inequality together
with (28).

Further error bounds require more information on the
data. We present two sample results as consequences of
Theorem 3.

Assume Qad is a bounded set in L2(Ω). Then �pε�L2(Ω0)

and �phε�L2(Ω0) are uniformly bounded with respect to ε and
h. By (26), �ui(pε)�H2(Ω), and hence �ui(pε)�L2(Γ) as well, is
uniformly bounded. So from (29), we see that there is a con-
stant c > 0 independent of ε and h such that

max
1�i�i0

∥
∥ui
(
pε
)
� uhi

(
phε
)∥
∥
L2(Γ0) + ε1/2

∥
∥pε � phε

∥
∥
L2(Ω0) � ch3/4 .

(32)

Next, we assume the data are compatible in the sense that
there exists p1 � Qad such that ui(p1) = 2AQi on Γ0 for 1 �
i � i0. Under this assumption, we have

i0∑

i=1

wi

∥
∥ui
(
pε
)
� 2AQi

∥
∥2
L2(Γ0) + ε

∥
∥pε
∥
∥2
L2(Ω0) � Jε

(
p1
)

= ε
∥
∥p1

∥
∥2
L2(Ω0),

(33)

and so for all ε > 0, �pε�L2(Ω0) + ε�1/2�ui(pε)� 2AQi�L2(Γ0) �

2�p1�L2(Ω0). Thus from (29),

max
1�i�i0

∥
∥ui
(
pε
)
� uhi

(
phε
)∥
∥
L2(Γ0) + ε1/2

∥
∥pε � phε

∥
∥
L2(Ω0)

� ch3/4 ε1/4
∥
∥pε � phε

∥
∥1/2
L2(Ω0) + ch3/2 .

(34)

The first term on the right-hand side is bounded as follows:

ch3/4 ε1/4
∥
∥pε � phε

∥
∥1/2
L2(Ω0) �

1
2
ε1/2
∥
∥pε � phε

∥
∥
L2(Ω0) + ch3/2 .

(35)

Therefore, we conclude that for some constant c > 0 inde-
pendent of ε and h,

max
1�i�i0

∥
∥ui
(
pε
)
� uhi

(
phε
)∥
∥
L2(Γ0) + ε1/2

∥
∥pε � phε

∥
∥
L2(Ω0) � ch3/2 .

(36)
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We now consider the situation where Qad is a gen-
eral admissible set and needs to be discretized. In ad-
dition to the regular family of finite element partitions
�Th� of Ω, let �T0,H� be a regular family of finite ele-
ment partitions of Ω0 such that each element at the bound-
ary ∂Ω0 has at most one nonstraight face (for a three-
dimensional domain) or side (for a two-dimensional do-
main). The partitions Th and T0,H do not need to be re-
lated; however, Th can be constructed based on T0,H . Let
QH � L2(Ω0) be the piecewise constant space. Define Qad,1 =
QH

ad � QH � Qad. We denote the solution of Problem 2 by
ph,H
ε .

Denote by ΠH : L2(Ω0) � QH the orthogonal projection
opeartor: for q � L2(Ω0),

ΠHq � QH ,
(
ΠHq, qH

)
L2(Ω0) =

(
q, qH

)
L2(Ω0) �qH � QH.

(37)

We will use the following properties:

∥
∥ΠHq

∥
∥
L2(Ω0) � �q�L2(Ω0) �q � L2(Ω0

)
, (38)

∥
∥q �ΠHq

∥
∥
L2(Ω0) � cH�q�H1(Ω0) �q � H1(Ω0

)
, (39)

∫

Ω0

(
q �ΠHq

)
v dx

� cH
∥
∥q �ΠHq

∥
∥
L2(Ω0)�v�H1(Ω) �v � H1(Ω).

(40)

By the elementwise formula

ΠHq�K = 1
�K�

∫

K
q dx �K � T0,H , (41)

since Qad � L2(Ω0) is convex, we see that ΠH : Qad �

QH
ad, that is, for q � Qad, its piecewise constant orthogonal

projection ΠHq � QH
ad. We first present a preparatory re-

sult.

Lemma 1. There is a constant c > 0 independent of h and H
such that

∥
∥ui(q)�uhi

(
ΠHq

)∥
∥
H1(Ω)�cH

∥
∥q�ΠHq

∥
∥
L2(Ω0) + ch�q�L2(Ω0).

(42)

Proof. From the definitions of ui(q) and uhi (ΠHq), we have

∫

Ω

[
Di�

(
ui(q)� uhi

(
ΠHq

))
� �vh

+ μa,i
(
ui(q)� uhi

(
ΠHq

))
vh
]
dx

+
∫

Γ

1
2A

[
ui(q)� uhi

(
ΠHq

)]
vhds

=
∫

Ω0

ωi
(
q �ΠHq

)
vh dx �vh � Vh.

(43)

For any vh � Vh, write

∫

Ω

[
Di

∣
∣�
(
ui(q)�uhi

(
ΠHq

))∣
∣2

+μa,i
∣
∣ui(q)�uhi

(
ΠHq

)∣
∣2]

dx

+
∫

Γ

1
2A

∣
∣ui(q)� uhi

(
ΠHq

)∣
∣2
ds

=
∫

Ω

[
Di�

(
ui(q)� uhi

(
ΠHq

))
� �
(
ui(q)� vh

)

+ μa,i
(
ui(q)� uhi

(
ΠHq

))(
ui(q)� vh

)]
dx

+
∫

Γ

1
2A

(
ui(q)� uhi

(
ΠHq

))(
ui(q)� vh

)
ds

+
∫

Γ

1
2A

(
ui(q)� uhi

(
ΠHq

))(
vh � uhi

(
ΠHq

))
ds

+
∫

Ω

[
Di�

(
ui(q)� uhi

(
ΠHq

))
� �
(
vh � uhi

(
ΠHq

))

+ μa,i
(
ui(q)� uhi

(
ΠHq

))(
vh � uhi

(
ΠHq

))]
dx.

(44)

The sum of the last two integrals on the right-hand side can
be replaced by the following, with the help of (43),

∫
Ω0

ωi(q�

ΠHq)(vh�ui(q) +ui(q)�uhi (ΠHq))dx, which is bounded by
(40). Then after some algebraic manipulations we obtain

∥
∥ui(q)� uhi

(
ΠHq

)∥
∥
H1(Ω)

� c
[

inf
vh�Vh

∥
∥ui(q)� vh

∥
∥
H1(Ω) + H

∥
∥q �ΠHq

∥
∥
L2(Ω0)

]

.

(45)

We use the error bound inf vh�Vh �ui(q) � vh�H1(Ω) �

ch �ui(q)�H2(Ω) and the regularity bound (26) in (45) to ob-
tain (42).

We now prove the following error estimate.

Theorem 4. With the choice Qad,1 = QH
ad as a subset of piece-

wise constant functions, there is a constant c > 0 independent
of ε, h, and H such that

max
1�i�i0

∥
∥ui
(
pε
)
� uhi

(
ph,H
ε

)∥
∥
L2(Γ0) + ε1/2

∥
∥pε � ph,H

ε

∥
∥
L2(Ω0)

� c
i0∑

i=1

∥
∥ui
(
pε
)
� 2AQi

∥
∥1/2
L2(Γ0)

�
(
H1/2

∥
∥pε �ΠH pε

∥
∥1/2
L2(Ω0) + h1/2

∥
∥pε
∥
∥1/2
L2(Ω0)

+ h3/4
∥
∥ph,H

ε

∥
∥1/2
L2(Ω0)

)

+ cH
∥
∥pε �ΠH pε

∥
∥
L2(Ω0) + ch

∥
∥pε
∥
∥
L2(Ω0).

(46)
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Proof. Similar to the first part of the proof of Theorem 3,
there holds

i0∑

i=1

wi

∥
∥ui
(
pε
)
� uhi

(
ph,H
ε

)∥
∥2
L2(Γ0) + ε

∥
∥pε � ph,H

ε

∥
∥2
L2(Ω0)

�

i0∑

i=1

wi
(
ui
(
pε
)
� uhi

(
ph,H
ε ),ui

(
pε
)
� uhi

(
ΠH pε

))
L2(Γ0)

+
i0∑

i=1

wi
(
ui
(
pε
)
� 2AQi,uhi

(
ΠH pε

)

� ui
(
pε
)

+ ui
(
ph,H
ε

)
� uhi

(
ph,H
ε

))
L2(Γ0),

(47)

where we used the property (ph,H
ε ,ΠH pε � pε)L2(Ω0) = 0.

Then,

i0∑

i=1

wi

∥
∥ui
(
pε
)
� uhi

(
ph,H
ε

)∥
∥2
L2(Γ0) + ε

∥
∥pε � ph,H

ε

∥
∥2
L2(Ω0)

� c
i0∑

i=1

∥
∥ui
(
pε
)
� uhi

(
ΠH pε

)∥
∥2
L2(Γ0)

+ c
i0∑

i=1

∥
∥ui
(
pε
)
� 2AQi

∥
∥
L2(Γ0)

�
(∥
∥ui
(
pε
)
� uhi

(
ΠH pε

)∥
∥
L2(Γ0)

+
∥
∥ui
(
ph,H
ε

)
� uhi

(
ph,H
ε

)∥
∥
L2(Γ0)

)
.

(48)

Applying the error bound (28) and Lemma 1, we can then
deduce (46).

Similar to Theorem 3, we present two sample results as
consequences of Theorem 4. If Qad is bounded in L2(Ω0),
then there is a constant c > 0 independent of ε, h, and H
such that

max
1�i�i0

∥
∥ui
(
pε
)
� uhi

(
ph,H
ε

)∥
∥
L2(Γ0) + ε1/2

∥
∥pε � ph,H

ε

∥
∥
L2(Ω0)

� c
(
H1/2

∥
∥pε �ΠH pε

∥
∥1/2
L2(Ω0) + h3/4).

(49)

If the data are compatible, then there is a constant c > 0 in-
dependent of ε, h, and H such that

max
1�i�i0

∥
∥ui
(
pε
)
� uhi

(
ph,H
ε

)∥
∥
L2(Γ0) + ε1/2

∥
∥pε � ph,H

ε

∥
∥
L2(Ω0)

� c
(
h + h1/2ε1/4 + H

∥
∥pε �ΠH pε

∥
∥
L2(Ω0)

)
.

(50)

These error bounds involve an approximation error term
�pε � ΠH pε�L2(Ω0). This term can always be bounded by
�pε�L2(Ω0) + �ΠH pε�L2(Ω0) � 2�pε�L2(Ω0) � c. Moreover, as
is shown in [8], if S0 �= �, then �pε � ΠH pε�L2(Ω0) � 0 as
H , ε � 0, and if pε � H1(Ω0), then �pε � ΠH pε�L2(Ω0) �

cH�pε�H1(Ω0).
We underline that the above theoretical results on the

numerical solutions with the second choice of Qad,1 are still

valid if QH � L2(Ω0) is a general finite element space con-
taining piecewise constants. The proofs of the results are the
same as long as we define ΠH to be the orthogonal projection
operator in L2(Ω0) onto the space of piecewise constants.

When the regularization parameter ε is chosen related to
the discretization parameters h and H , we may express the
error bounds in terms of the discretization parameters only.
For example, from (36), max1�i�i0 �ui(pε) � uhi (phε )�L2(Γ0) �

ch3/2, and if ε = chβ, 0 < β < 3 in (36), then �pε� phε�L2(Ω0) �

ch(3�β)/2.
Finally, we comment that when the solution set S0 is

nonempty, convergence of the numerical solution phε to the
minimal energy solution p0 � S0 follows from the triangle
inequality

∥
∥phε � p0

∥
∥
L2(Ω0) �

∥
∥pε � p0

∥
∥
L2(Ω0) +

∥
∥pε � phε

∥
∥
L2(Ω0)

(51)

together with (18) and the convergence of phε to pε in L2(Ω0).
A similar statement holds for the convergence of ph,H

ε to p0 �

S0.

4. NUMERICAL SIMULATION

For a numerical simulation of source reconstruction, we con-
sider a cylindrical phantom with a diameter 20 mm and a
height 20 mm. We choose the coordinate system so that the
phantom is represented as

Ω = {x = (x1, x2, x3
)T
� R3 � x2

1 + x2
2 < 100, 0 < x3 < 20

}
.

(52)

The measurement boundary is the entire lateral side of the
cylinder:

Γ0 =
{

x = (x1, x2, x3
)T
� R3 � x2

1 + x2
2 = 100, 0 � x3 � 20

}
.

(53)

Based on the results of the bioluminescent spectral anal-
ysis experiment in [15], we split the spectrum into three
regions: Λ1 = [400 nm, 530 nm), Λ2 = [530 nm, 630 nm),
Λ3 = [630 nm, 750 nm], and quantify the energy distribu-
tion weights to be ω1 = 0.29 in Λ1, ω2 = 0.48 in Λ2, and
ω3 = 0.23 in Λ3. The optical parameters are assigned as fol-
lows (unit: mm�1):

μa =

⎧
⎪⎪⎨

⎪⎪⎩

0.014 in Λ1,

0.0104 in Λ2,

0.0075 in Λ3;

μ�s =

⎧
⎪⎪⎨

⎪⎪⎩

0.75 in Λ1,

0.85 in Λ2,

1.05 in Λ3.

(54)

The refractive index A is 1.37 in the biological tissue.
The phantom is discretized into 58161 tetrahedral ele-

ments and 10778 nodes. A total of 2170 datum nodes are dis-
tributed along Γ0, and simulated measurement data of pho-
ton density at datum nodes are generated from the diffusion
approximation model. Two uniform light sources are em-
bedded into the phantom. The first light source has a power
2.2 nano-Watts and is distributed in those elements whose



8 International Journal of Biomedical Imaging

10 5 0
�5

�10Y (mm)

�5
0

5
10

X (m
m)

0

5

10

15

20

Z
(m

m
)

(a)

�10 �5 0 5 10

X (mm)

�10

�5

0

5

10

Y
(m

m
)

(b)

Figure 1: True light source distribution: (a) 3D view, (b) 2D view.
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Figure 2: Reconstructed light source distribution with a 5% random noise in surface measurement data: (a) 3D view, (b) 2D view.

vertices have a distance less than or equal to 2 mm from
(�4,�3, 10)T . The second light source has a power 2.4 nano-
Watts and is distributed in those elements whose vertices
have a distance less than or equal to 2 mm from (�4, 3, 10)T .
Denote the region where the true light sources are distributed
to be Dtr. Figure 1 shows the finite element mesh, the 3D
and 2D views of the true source distribution in the phan-
tom. Here and in the following figures, the 2D view is for the
midsection (x3 = 10) of the cylinder.

We choose the permissible region

Ω0 =
{

x � Ω � x1 < 0, �6 < x2 < 6, 9 < x3 < 12
}

, (55)

and use piecewise constants to approximate the source den-
sity function. In simulating the difference between dis-
cretized solution uh and solution u of the boundary value
problem (1)-(2), we introduce random noises of the sizes
5%, 10%, and 20% in the datasets on the lateral surface

covering phantom. Then the regularization method with ε =
1.0 � 10�8 is applied to reconstruct source distribution. A
modified Newton method and an active set strategy with
simple constraint are used in solving the discrete Problem 2.
The reconstructed results show that with random noises of
sizes 5%, 10%, and 20%, we have 80%, 77%, and 76% of the
total power of the reconstructed light sources located in Dtr,
the region of the true light source. Figures 2–4 illustrate 3D
and 2D views of the reconstructed light source distribution
with 5%, 10%, and 20% random noises in surface flux den-
sity, respectively. The numerical results show that the numer-
ical method is computationally efficient, stable, and robust
with respect to noise in the measured data.

5. CONCLUDING REMARK

Multispectral bioluminescence tomography is a new de-
velopment in optical imaging and has a great potential
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Figure 3: Reconstructed light source distribution with a 10% random noise in surface measurement data: (a) 3D view, (b) 2D view.
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Figure 4: Reconstructed light source distribution with a 20% random noise in surface measurement data: (a) 3D view, (b) 2D view.

to advance the field of biomedical imaging. In this pa-
per, we have established a mathematical framework for
studies of multispectral bioluminescence tomography. We
have analyzed the theoretical properties of the multi-
spectral imaging model including the solution existence,
uniqueness, and continuous dependence on the data. We
have rigorously demonstrated the convergence and er-
ror bounds for the discrete source functions that are
obtained by minimizing the discretized objective func-
tions subject to the PDE constraints. Numerical exam-
ples have illustrated the performance of the numeri-
cal scheme for multispectral bioluminescence tomogra-
phy.
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