Chapter 8

Theory of Differential Approximations
of Radiative Transfer Equation

Weimin Han, Joseph A. Eichholz and Qiwei Sheng

Abstract The radiative transfer equation (RTE) arises in a variety of applications.
The equation is challenging to solve numerically for a couple of reasons: high di-
mensionality, integro-differential form, highly forward-peaked scattering in appli-
cation. In the literature, various approximations of RTE have been proposed in the
literature. In an earlier publication, we explored a family of differential approxi-
mations to RTE, to be called RT/DA equations. In this paper, we study the RT/DA
equations and investigate numerically the closeness of solutions of the RT/DA equa-
tions to that of the RTE.

8.1 Introduction

The radiative transfer equation (RTE) arises in a variety of applications, such as
neutron transport, heat transfer, stellar atmospheres, optical molecular imaging, in-
frared and visible light in space and the atmosphere, and so on. We refer the reader
to [1, 14, 15, 19, 20]. Recently, there is much interest in analysis and numerical
simulation of the RTE and its related inverse problems, motivated by applications in
biomedical optics [4, 7, 8].

We proceed to give a brief description of RTE as follows. Let X be a domain in
k3 with a Lipschitz boundary ¢X. The unit outward normal n(x) exists a.e. on dX.
Denote by £ the unit sphere in R, For each fixed direction @ € €2, introduce a new
Cartesian coordinate system (z;,2z,s) by the relations
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X=z+4+80, =210+ 220,

where (@, @w;, @) is an orthonormal basis of R?, z;, 72, s € R. With respect to this
new coordinate system, we denote by X, the projection of X on the plane s =0 in
R3? and by X, (z € Xp) the intersection of the straight line {z+s@ | s € R} with
X. We assume that the domain X is such that for any (w,z) with z € Xy, X; ; is the
union of a finite number of line segments:
Xy =UNP L 450 |5 € (52,804}

Here s;+ = i+ (®,2) depend on @ and z, and x; 4 := z+ 5; + @ are the intersection
points of the line {z+ s | s € R} with dX. We further assume sup,, , N(®,z) < oo,
known as a generalized convexity condition. As an example, for a convex domain
X, sup,, , N(@,z) = 1. We then introduce the following subsets of dX:

0Xp,- = {z+5,-@0| 1 <i<N(®,2), 7€ Xp},
anH. = {Z+S;‘,+Co | 1<i< N(CO,Z), 2z EX@}

It can be shown that for a.e. z € Xo, n(z+s5;,—0)}-® <0; if x € dX and n(x)-o <
0, then x € dX . Likewise, for a.e. z € Xy, n{z+ s+ 0)-0 > 0; if x € dX and
n(x)-@ >0, then x € dXy 4. Then the incoming boundary I'".. and outgoing boundary
I, are

I ={(x,0) |x€0Xp_, 0 €}, TIi={x0)|xcdXpy,wc)

Denote by do (@) the infinitesimal area element on the unit sphere €2. For the
spherical coordinate system

@ = (sinBcosy, sin@siny, cos#)’, 0<0<m 0<y<2r, (8.1)

do(w) =sinBd8dy. We will need an integral operator S defined by

(Su) (x, @) = / k@) ulx, ®)do () 8.2)
Q
with £ a nonnegative normalized phase function:
fk(co-(b)dc(o’b) —1 Voeo. 8.3)
Q
One well-known example is the Henyey—Greenstein phase function (cf. [10])
1— 2
(t) . re[-1,1], (8.4)

t}) = )
4n(1+ g2 —2gt)3/2

where the parameter g € (—1,1) is the anisotropy factor of the scattering medium.
Note that g = 0 for isotropic scattering, g > 0 for forward scattering, and g < 0 for
backward scattering.
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With the above notation, a boundary value problem of the RTE reads (cf. [1, 13])

o-Vu(x, 0} + o (x)u(x, w) = 05(x) (Su)(x,0) + f(x,0), (x,m)€X xQ, (8.5
u(x, 0) = up(x, ), (x,0)el_. (8.6)

Here 0; = 0, + 0;, 0, is the macroscopic absorption cross section, o; is the macro-
scopic scattering cross section, and f and u;, are source functions in X and on I,
respectively. We assume that these given functions satisfy

0:,0; € L”(X), 0;>0ando;— 0; > ¢pinX for some constant cg >0, (8.7)
FELP(XxQ), uyel?(I). (8.8)

These assumptions are naturally valid in applications; the last part of (8.7) means
that the absorption effect is not negligible. For a vacuum setting around X, the in-
coming flux boundary condition u, (x,0) =0on I_.

It can be shown [1] that the problem (8.5)-(8.6) has a unique solution u &
H) (X xQ), where

H(XxQ)={recl>XxQ)|oVve>(X xQ)}

with @-Vv denoting the generalized directional derivative of v in the direction @.

It is challenging to solve the RTE problem numerically for a couple of reasons,
First, it is a high-dimensional problem. The spatial domain is three dimensional and
the region for the angular variable is two dimensional. Second, when the RTE is
discretized by the popular discrete-ordinate method, the integral term Su(x, ) on
the right side of the equation is approximated by a summation that involves all the
numerical integration points on the unit sphere. Consequently, for the resulting dis-
crete system, the desired locality property is not valid, and many of the solution tech-
niques for solving sparse systems from discretization of partial differential equations
cannot be applied efficiently to solve the discrete systems of RTE. Moreover, in
applications involving highly forward-peaked media, which are typical in biomedi-
cal imaging, the phase function tends to be numerically singular. Take the Henyey-
Greenstein phase function (8.4) as an example: k(1) = (1+g)/[4x(1 — g)?] blows
up as g — 1—.In such applications, it is even more difficult to solve RTE since accu-
rate numerical solutions require a high resolution of the direction variable, leading to
prohibitively large amount of computations. For these reasons, various approxima-
tions of RTE have been proposed in the literature, €.g., the delta-Eddington approx-
imation [11], the Fokker-Planck approximation [16, 17], the Boltzmann-Fokker—
Planck approximation [5, 18], the generalized Fokker—Planck approximation [12],
the Fokker-Planck—-Eddington approximation, and the generalized Fokker-Planck—
Eddington approximation [6]. In [9], we provided a preliminary study of a fam-
ily of differential approximations of the RTE. For convenience, we will call these
approximation equations as RT/DA (radiative transfer/differential approximation)
equations. An RT/DA equation with j terms for the approximation of the integral
operator will be called an RT/DA ; equation.



124 W. Han, .LA. Eichholz and Q. Sheng

This paper is devoted to a mathematical study of the RI/DA equations, as well
as numerical experiments on how accurate are the RT/DA equations as approxima-
tions of the RTE. We prove the well posedness of the RT/DA equations and provide
numerical examples to show the increased improvement in solution accuracy when
the number of terms, j, increases in RT/DA ; equations.

8.2 Differential Approximation of the Integral Operator

The idea of the derivation of the RT/DA equations is based on the approximation
of the integral operator S by a sequence of linear combinations of the inverse of
linear elliptic differential operators on the unit sphere [9]. The point of departure of
the approach is the knowledge of eigenvalues and eigenfunctions of the operator S.
Specifically, for a spherical harmonic of order », ¥,(®) (cf. [3] for an introduction
and spherical harmonics),

(SY)(0) = knYn(®), (8.9)

1
ky =21 f k(s)Py(s)ds, P,: Legendre polynomial of deg.n. (8.10)
-1

In other words, %, is an eigenvalue of § with spherical harmonics of order n as
corresponding eigenfunctions. The eigenvalues have the property that

{k,} is bounded and k, — 0 as n — oo, (8.11)
Denote by A* the Laplace—Beltrami operator on the unit sphere £2. Then,
—(A* Y (@) =n(n+ 1) Y(w).

Let {¥um | —n < m < n, n > 0} be an orthonormalized basis in L2(£2). We have the
expansion

oo n
u(0)= 3, Y tnmbom(®@) N LHQ), o= [ u(@)Vom(@)do(0).
n=0m=—n Q
With such an expansion of u € L2(£), we have an expansion for Su:
oo n 2
Su(w) = 2 k, 2 UnmYnm(@) in L7(Q).
n=0 m=—n
Suppose there are real numbers {A;, &; };>1 such that

— M —0,1,---. 8.12
i=211+n(n+1)ai mo (8.12)
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Then formally,
5= M{I—oua*)~1. (8.13)
i=1

The formal equality (8.13) motivates us to consider approximating S by

i
Sj= Y Al —a;A*)7, j=1,2,-- (8.14)
i=1
The eigenvalues of §; are YL, A;;(1+n(n+1)a;;)”" with associated
eigenfunctions the spherical harmonics of order n:

(8 Ya ) (@) =

Sty
Sl+n(n+Doy, | ™

Note that for a fixed j,

: Aji

‘ —0 asn—> oo,
gl’ l+nn+1)oy;

Thus, the eigenvalue sequence of §; has a unique accumulation point 0, a property

for the operator S [cf. (8.11)]. Hence, we choose the parameters {4, aj,,-}{=1 SO
that for some integer n; depending on j,

i A
Sltnn+1)ay,

ko, n=0,1,---,n;—1. (8.15)

We require n; — oo as j —» oo,
The following results are shown in [9]:

Theorem 8.1. Under the assumption (8.15) and

j
sup | Az (1+n(n+1)a;) "' | = 0as j— oo, (8.16)

n=>nj =1

we have the convergence ||S; — S| g2(q),12(2)) = © as j = .
A sufficient condition for (8.16) is that all A;; and «;; are positive.

Theorem 8.2. Assume (8.15) and A;; > O and a;; >0 fori=1,-.-,j Then (8.16)
holds.

Notice that o;; > 0 is needed to ensure ellipticity of the differential operator
(I — at;;A*). When we discretize the operator S, the positivity of {}Lj,,-}{;l is desir-
able for numerical stability in computing approximations of S ;.

Consider an operator §; of the form (8.14) to approximate §. From now on, we
drop the letter j in the subscripts for A;; and «; ;. As noted after Theorem 8.2, to
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maintain ellipticity of the differential operator (f — o;A*) and for stable numerical
approximation of the operator S;, we require

Recall the property (8.11); for the numbers {,} defined in (8.10), we assume ky >
ki > ---. This assumption is quite reasonable and is valid for phase functions in
practical use.

To get some idea about the operators S;, we consider the special cases j = 1 and
2 next. For j = 1, we have

A
SIYn(CO) = kl,nYn(CO)a kl,n = m (8.18)
Equating the first two eigenvalues of S and 51, we can find
1 (ko
— —_— - — 1 i '1
M=k, o 2(k1 ) (8.19)

Observe that (8.17) is satisfied.
For j=2,8, = A1 (I — 0A*) "1 + A;(I — 0 A*) ! with the parameters satisfying
?1.1 >0, 2,2 >0,00>0,0p >0,and oy 7& cz. We have

M n A2
I+an(n+1) 1+omn(n+1)

SzY,,(a)) = kz,nY,,(a)), kg,n (8.20)

Require the parameters to match the first three eigenvalues ky; = k;, i = 0, 1,2, ie.,

AL+ A = ko, (8.21)
M o
1‘1“2()!1—i_1~|-2a2_kl1 8.22)
A A2

=ky. 23
1+6a1+1+6a2 ) (8.23)

Consider the system (8.21)—(8.23) for a general form solution. Use o as the
parameter for the solution, It is shown in [9] that

_1 Bk —2k—k)+6(ki—k)

= 6 (ky —k1)+2(3ky— k1) oy ’ 8.24)

Ay = 2 [(kl — ko) +2k10!1] [(kp — ko) +6k20¢1] (8.25)
(2ko+hky—3kt) +12(ka—~ ki) ou +12(3ky —ky) &2’

A=1—4,. (8.26)

The issue of positivity of the solution (o, 0, A1, A2) is also discussed in [9].
Next, we take the Henyey—Greenstein phase function as an example; in this case,

kn:gn, n:(),].,“'.
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For the one-term approximation §; = Ay (I — c;;A*)~L, from (8.19), we have

1-g
A.l = 1, oy = ﬁ. (827)

For the two-term approximation S, = Ay (I~ 0y A*) "} + A, (I — 0 A*) ™!, we have

_1-g g—2+6g0y

oty — : , 8.28
" T6g g—1+2(3g- D (8:28)
2eg—1+2 2 1 2
2o — (g—1+2go) (g% —1+6g%m) N (8.29)
(1-g)(2—-g)+12g(g—1)on +12g(3g— 1)y
_ _ 2
A g(1—g)(2g—1) (1480 +120) (8.30)

T (1—92-g)+12e(e— o+ 12g(3g—)oi?

On the issue of positivity of the one parameter solution { o, 0, A1, A2) given by the
formulas (8.28)—(8.30), with ¢ > 0, it is shown in [9] that under the assumption
g > 1/2, valid in applications with highly forward-peaked scattering, the condition
for a positive solution (¢, 0z, A1,42) is

2-¢g

o) > ﬁ‘ (831)

Since a; = 1/2 satisfies (8.31), one solution is

4g% -1

1 _1-g A 4g(l-g)
4g—1"

T2 BT e MT T4

o A= (8.32)

Now consider the case j = 3:
Sy =M — o A*Y V4 (I — oA™Y + AT — 03A*) ! (8.33)

with the parameters o, o, and o3 pairwise distinct. We want to match the first four
eigenvalues

kso=ko, kizi1=ki, kap=ks, k3z=ks,

i.e., for the special case of the Henyey—Greenstein phase function,

M+dat+is=1, (8.34)
Ay A2 A
[T2a 1120 112 2 (8.35)
A . Ay A3 )
14605 14605 1t6w %' (8.36)
Al ZQ n /’L3 _g3. (837)

1+12a1+1+120:2 1+ 1205
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We choose o) and op, positive and distinct, as the parameters and express the
other quantities in terms of them. There are many positive solution sets to the sys-
tem (8.34)-(8.37) with positive parameters ¢;; and o;. For the numerical examples
in Sect. 8.6, we use parameter sets so that overall the eigenvalues of S5 are close to
those of §. In particular, for g = 0.9, we choose

oq = 0.00957621, 0 =0.08, a3 =0.712,
M =0.660947, A, =0.248262, A3 =0.0907913;

for g = 0.95, we choose

o =0.00325598, o =0.06, o3 =0.701,
M =0.78042, A, =0.174622, A3 =0.0449584;

and for g = 0.99, we choose

oy = 0.000306188, o =0.05, 03 =0.95,
A1 =0.940247, 2, =0.0526772, A;=0.00707558.

For g = 0.9, we compare the eigenvalues of §; for j = 1,2,3 with those of § in
Figs. 8.1, 8.2, and 8.3, respectively. From these figures, we can tell that the approxi-
mation of 53 should be more accurate than that of S5, which should be in turn more
accurate than S1. This observation is valid for other values of g below.

For g = 0.95, the eigenvalues of 51, S, and §3 are shown in Figs. 8.4-8.6.

For g = 0.99, the eigenvalues of §, 1, S, and $3 are shown in Fig. 8.7. Evidently,
because of the strong singular nature of the phase function for g = (.99, a higher
value j will be needed for §; to be a good approximation of §.

8.3 Analysis of the RT/DA Problems

We use S; of (8.14) for the approximation of the integral operator .S. In the following,
we drop the subscript j in the parameters A;; and ¢;; for §; and write

Siu(x,m) = il,-(]— oA ulx, ).

Then the RT/DA; problem is

@-Vu(x, 0) + oy (x)u(x, @) = o4(x) Sjulx, ®) + f(x,0), (x,0)cXxQ, (8.38)
u(x1 (D) = uin(x: CO), (x’ CO) S (8.39)
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Let us consider the well posedness of (8.38)-(8.39). Introduce

wilx,0) = (I — sA*) Mulx,0), 1<i<], (8.40)
i

w(x,0) = Y, diwi(x, @). (8.41)

i=1

Then (8.38) can be rewritten as
®-Vulx, 0) + o (x) u(x, o) = o;{x) w(x, @) + f{x,@), (xo0)cXxQ. (8.42)

For simplicity we limit the analysis to the case where X is a convex domain in R3,
The argument can be extended to a domain X satisfying the generalized convexity
condition without problem [1]. Then for each @ € £2 and each z € X,, X, ; is the
line segment

Xm,z = {Z+SCO [ 5€ (S_,S+)},
where s1 = s+ (®,z) depend on @ and z and x4. := z+ s+ @ are the intersection
points of the line {z+sw | s € R} with 0X.

In the following, we write s instead of s (@, z) wherever there is no danger for
confusion. We write (8.42) as

-g;u(z+sa),co)+0}(z+sa)) u(z+ 50, 0) = O;(z+s0) w(z+sw, ©@) + f(z+ 50, ®)

and multiply it by exp(f*

S—

0;{z+s®)ds) to obtain

d I o{ztsw)ds
3 (e u(z+sa),co))

= el OS5 (7 L sw) Wizt 5@, )+ Fz+ 5@, ).
Integrate this equation from s_ to s:

5 o(ztsw)ds

e u(z+50,0) — up(z+s-0,0)

_ f o MO (5 (4 ) w(z+tw, )+ f(z+to, ))dt.
5

Thus, (8.38) and (8.39) is converted to a fixed-point problem
u=Au+F, (8.43)

where
5 s
Au(z-l—sa),a)):f e~ s (71 10 w(z+ 100, @)d,
5—

5 or{ztsw)ds

F(z+sw,0)=¢e" uin(z+5s—0, ®)

. fs e_ﬁsa,(z+sm)d5f(z+tw, CU) dr.
5.
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We will show that A is a contractive mapping in a weighted L*(X x Q) space.
Denote & = sup{0;(x)/0:{x) | x € X }. By (8.7), we know that x < 1. Consider

S+
f :(z+s0) |Au(z + so, @)|* ds
5—

2

5. S 5
=/+cr,(z+sa)) f e~ wlersolds (74t w(z+tw, 0)dt| ds

5 5 5
Sf+6z(2+sw) (f e G’("‘m’)dsds'(z—i—ta))dt)
5— by

s

. (f e oets0)ds g (7 1 1) lw(z+t e, w))? dr) ds.
Since

§ s § 5
/ e c;(z+.wm)dso.s(z+tw) dt < K.f ek G'(Z+sm)ds0';(z+tco)dt
5 5

_ (1 B e__i-‘s_ o-,(z+s£0)ds) < K,
we have
8.1
f 61 (2 + 50) [Au(z + s, )2 ds
S

3 5 5
< xf +ot(z+scu)_/ e~ olzs0)dsg (7 ) w(z+ 1w, ) de ds
5—

5—

= ;cf * os(z+t0) w(z+tw, o) ([ ! e‘ﬂsc‘(”‘“’)‘“ot(z—i—sco)ds) dt.
S t

Now s
f " e_u'rfs"’(”m)dSO}(z-{-sa))ds —1— e kT olztsm)ds 1,
it

we obtain

.§‘+ S+
f Gy (z+ 50} |Au(z+ sw, 0)[>ds < rcf Os(z+tw0) Wiz +10, )| dt

- -

S+
< Kzf 0:(z+10) lw(z+10,®)*dr.
5 e
Thus, we have proved the inequality
1/2 1/2
|6 Aullpcq) < k1103 Wl e (8.44)

Returning to the definition (8.40), we have, equivalently,

(I—oA*}w;=n inX x Q.
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For a.e. x € X, wi{x,") € H'(Q) and
fg (wiv+ aV*w; - V) do (@) = fQ wdo(®) VveH'(Q).  (845)

Since ¢ > 0, this problem has a unique solution by the Lax—Milgram Lemma. Take
v{®) = wi(x, 0} in (8.45):

[ (wi+alVwP) do(@) = [ umdo(a),

Thus,
/ (jwil? + 204 V*wi]2) do(@) < f Iu2do (). (8.46)
Q Q
In particular,
2 2
|“do(® <f do{m).
| wPdo(@) < [ juPdo(@)
Therefore,

1/2 1/2
l6will iz < N0 *ull 2 xxcy- (8.47)
Since A; > 0 and Zf=1 Ai = 1, from the definitions (8.41) and (8.47), we get
1/2 1/2
|6 Wlizgexa < 10: el (8.48)
Combining (8.44) and (8.48), we see that the operator A : L*(X x Q) — L*(X x
£2) is contractive with respect to the weighted norm || o/ 2(Xx0)"
1/2 1/2
lo*Aullzexy < xllo w2k x)- (8:49)

By an application of the Banach fixed-point theorem, we conclude that (8.43) has a
unique solution u € L2(X x Q). By (8.42), we also have @ - Vu(x,) € L*(X x Q).
Therefore, the solution u € Hj (X x Q).

In summary, we have shown the following existence and uniqueness result:

Theorem 8.3. Under the assumptions (8.7), (8.8), (8.15), and (8.17), the problem
(8.38) and (8.39) has a unique solutionu € H’21 (X x Q).

Next we show a positivity property required for the model (8.38) and (8.39) to
be physically meaningful.

Theorem 8.4. Under the assumptions of Theorem 8.3,
f20inXxQ, up>0onl. = u>0inXxQ. (8.50)

Proof. From (8.43),

u=(I-A)"'F=73 AF.
j=0
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By the given condition, F' > 0. So the proof is done if we can show that # > 0 implies
Au > 0. This property follows from the implication u > 0 = w; > 0 for the solution
w; of the problem (8.45). In (8.45), take v = w; = min(w;, 0) to obtain

/{;(walz + ;| V*w; )Y do(w) = fﬂ uw; do(w) <0.
Hence,w; =0,ie,w; >0. O

We now derive an error estimate for the approximation (8.38)—(8.39) of the RTE
problem (8.5)-(8.6). Denote the solution of the problem (8.38)-(8.39) by u; and
consider the error ¢ := u— u;. From (8.38)—(8.39) and (8.5)—(8.6), we obtain the
following problem for the error:

j
w-Ve+ e =Cyeo+ 05 3, (I — A*) re inX x Q, (8.51)
i=1
e=0 inI, (8.52)
where _
J
eo=Su— Y A{I—osA*) lu. (8.53)

i=1

Since A; > 0 and Z{zl A; = 1, we obtain from (8.51) to (8.52) that, as in (8.43),

e=Ae+E
with .
E(z+sw,m)=/s g~ B At ds (5 o Nz 4 1o, @) dr.
Thus,
o ellzgena) <116 Ael 2ixxay + 16 Ell2genca)
< K||0'z1/2£’||L2(x><Q) + ||°'x1/2E||L2(X><Q)-
Therefore,

1
||Gx1/2€||L2(X><n) ST % ||0:1/25||L2(X><Q) < clleollz(xx0)- (8.54)

By expanding functions in terms of the spherical harmonics, we have

J A
leolzgxay < clllzgeeay, e =maxlln— 2 piimmpyl 659

Hencé, from (8.54), we get the error bound
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1/2
o} (u— iz ey < ccillull pxxay- (8.56)

Theorem 8.5. Under the assumptions of Theorem 8.3, we have the error bound
(8.56) with c; given in (8.55).

8.4 An Iteration Method

We now consider the convergence of an iteration method for solving the problem
defined by (8.42) and (8.39)(8.41). Let w'®) be an initial guess, e.g., we may take
w(® = 0. Then, forn=1,2,---, define u{ and w(® as follows:

@ Vi + gu™ = oo V4 f inXxQ, (8.57)
" — uy on I, (8.58)
wi = (I gAY W, 1<i<, (8.59)
W) — 2 A, (8.60)
i=1
Denote the iteration errors e( n) =u— u(”), e&'f ) — w —w® Then we have the error

relations

@-Vel" + g = 6"V inXxxQ,

eﬁ")—O onl_,
eS;:) (T-oa*) eV, 1<i<,
Zl!e(”)_

Similar to (8.44) and (8.48), we have
n 2
ot e pxxay < 116265 2xa),

1/2 1 .
e VN 2xa) < 160 2el Pl pexay

o
Thus,
o726l 2wy < Kl el ™l gy,
and so we have
||0';1/2€;(¢n)||L2(XXQ) < K”Ilo,l/zel(io) <o) =0 asn—>oo.

Moreover, we also have the convergence of the sequence {w(") }:

1/2 () . 12 {
flo 6’53),|L2(Xxg) <lie” el\tn)“Lz(XxQ) —0 asn—eo
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8.5 Error Analysis of a Hybrid Analytic/Finite
Element Method

To focus on the main idea, in this section, we perform the analysis for the case
of solving an RT/DA; equation with u;; = 0. The same argument can be extended
straightforward to an RT/DA; equation for an arbitrary j > 1. Thus, consider the
problem

o-Vu(x,0) + o, (x)u(x, ) = oy(x}w(x,®) + f(x,0), (x,0)ceXxQ, (8.61)
u(x,0)=0, (xo)el., (8.62)
(I— aA*)w(x,®) = u(x,®), (r,0)cXxQ. (8.63)

A weak formulation of (8.63) is w(x,-) € H'(Q) and
f (wv + V' w- V*v)do(w) = / wvda(w) VveH'(Q) (8.64)

Q Q

for a.e. x € X, where V* is the first-order Beltrami operator. Let V? be a finite ele-
ment subspace of H!(€2). Then a finite element approximation of (8.64) is to find
wi(x,+) € V2 such that

L (Wi + 0V Wy - V*v,) Ao () = fg wpdo(®) VvgeVE  (8.65)

where the numerical solution u;, is defined by (8.61) with w replaced with wy and
(8.62). We have, similar to (8.43),

§ 5
uh(z—f—sco,co):f e olzts@)ds g (7 4 r) wy(z+to, )dt
5—

gl .
+ f e~ haleted)ds £z 4 10, ) dt. (8.66)

Denote the error functions

eu,h(xa (D) = u(x1 0)) - uh(xa (D), ew,h(xs CO) = w(x, O)) - Wh(x7 CD) (867)
Subtract (8.66) from (8.43):
eup(z+ 50, 0) = / ¢ Holerslds (1 4 10)eyplz+io,0)d1. (8.68)

Similar to derivation of (8.44), we then deduce from (8.68) that
S S+ )
/ O (z+50) |ewn(z+ 50, ©) |2ds < x? / 0 (z+ 50) |ewn(z+ 50, ) |2ds.
- 5§

A (8.69)
To bound the error e,, 3, we subtract (8.65) from (8.64) with v = vy:

/Q(ew,hvh-’r- aViey,, - Vivy)do(w) = -/;_leu,hvhdo(w) Vv, € VI, (8.70)
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Thus,
f (lewn?+0V*esl?) do(@) = f (e (W—v)+0V* ey - V<(w—v3) | do (@)
0 0
+ /;2 eun(Vh— W+ ) dO (o).
For any € > 0, we have positive constants C; (¢) and Cz(€) such that
[ ewntw—r)ao(@) <e [ lewaldo(@)+Ci(e) [ w—wido(a)
fe ;,(v;,—w+e h)dO'((D)<—l-f 13 'h|2d0'(60)+-1—,—+—8f |e h|2d0'((t.))
o ity w, =2 /g U, 2 N W,
+Ge) fé Iw — vy 2do(@).
Moreover,
1 1
f VeV (w—vy)do(@) < ~ f Ve, s[2da(@) + = f IV* (w —vs) Pdo(@).
Q ’ 2/a ’ 2Ja
Then,
[ (evaP+alV*en) do@)<(1-+e) [ leusPdo(@)+Crle) [ po—wiPdo(w)
+ozfﬂ|V*(w—v;,)|2d0'(co)
< (1+8) [ lewnPdo(@)+C(e)w =il )
Since v, € V is arbitrary, we have

2 ® 2 2 : . 2
fg (|ew,h| +05|V ew,hl )dc(w)5(1+8)£2|eu,h‘ dc(a))'l'c(e)v:ggg “W vh”Hl(Q)'

(8.71)
We now integrate (8.69) and apply (8.71):

1/2 2 .1/2 2
107 eunl ey < 2l ewnlBaxxay

=@ [ ax)d [ lewalr, 0)Pdo(o)

viEVy

< (1+£)K2)| 67 e pl| 22 ey FCLE) fx [ inf ”W_Vh”%fl(ﬂ)} dx.

Choose £ > 0 small enough to obtain

1/2 2 : _ 2
“Gt eu,h“LZ(XXQ) S CfX |:v;,12\i;£', ||W Vh“Hl(_Q)] dx. (8-72)
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In a typical error estimate, if w € L2(X,H*1(£2)) and piecewise polynomials of
degree less than or equal to & are used for the finite element space V2, then

. : 2 2k
fx [":250}5 j[w— vh“Hl(Q)] dx<ch HW”iz(X,HkH(Q))- (8.73)

From (8.72), we then have the error bound

lewrll 2y < eR¥ Wl 2gx aree (- (8.74)

8.6 Numerical Experiments

Here we report some numerical results on the differences between numerical solu-
tions of RTE and those of RT/DA equations. For definiteness, we use the Henyey—
Greenstein phase function and consider the approximations §;, 1 < j < 3, specified
in Sect. 8.2.

For the discretization of the unit sphere £2 for the direction variable @, we use
the finite element method described in [2]. The angular discretizations used all have
ng = 8 and have various values of ng. For reference, the total number of angular
nodes in each discretization is listed in Table 8.1.

Table 8.1: Number of angular nodes

6 [Nodes|
4] 26
8| 98
16| 386
32| 1538
64| 6146
128{24578

Experiment 8.6.1. We first make sure that the numerical methods behave as
expected. Let us comment on the discretization of S used in. approximating the
RTE. For ease, we compare the numerical solution of the RTE with the numerical
solutions to the RT/DA| equation calculated on the same mesh. This leaves us
with a choice of weights when solving the RTE. Initially, the choice was made
that w; = %‘_ where N is the number of angular nodes. However, this is not a good
quadrature rule, as the nodes are not quite evenly spaced on the sphere. This point
is illustrated in Table 8.2. In this table, we numerically integrate

[Q Yi (0 )k s (0 @')do (@)



& Theory of Differential Approximations of Radiative Transfer Equation 137

using both uniform weights and the weights introduced below. Here &5 is the HG
phase function with anisotropy factor g = 0.5, ax is rather arbitrarily chosen to be
% (1,1,1)7, and ¥; () is the order 1 spherical harmonic:

Y1(o) = %Vgcos(ﬂ).

The true value of this integral is .5Y1(ap) =~ 0.14105.
When solving the approximation to the RT/DA,; equation, a matrix A is formed
with the property that

flag= /Q f(@)g(w)do(w)

if f is a vector containing function values of f at the nodes @; and f, g are elements
of the finite element space associated with the angular mesh. We choose the weight
vector w to be w = Ae, where ¢ is the vector with all components 1. This quadrature
rule will be exact for all functions in the finite element space associated with the
angular mesh. Since this rule will correctly integrate any piecewise linear function
in the finite element space, it may be thought of as an analogue of the trapezoidal
rule for the sphere. Quick investigation shows that for the example integral above,
this method is order 2 in terms of ng, which makes it order 1 in terms of the number
of nodes. It seems likely that this is true in general.

Table 8.2: Comparison of trapezoidal weights vs. uniform weights in evaluating
JaYi {0 Yes(ap - 0")do (') for specific choice of ax

ng | Trapezoidal rule[Trapezoidal error[Uniform rule[Uniform error|
4] 1.51038e-01 0.99030e-03| 1.29518e-01| 1.15298e-02
8 1.42538e-01 1.49073e-03| 1.28156e-01| 1.28914e-02
16 1.41424e-01 3.76434e-04| 1.28242e-01| 1.28050e-02
32 1.41141e-01 9.39943e-05| 1.28244e-01| 1.28030e-02
64 1.41071e-01 2.34917e-05| 1.28244e-01] 1.28035e-02

We take p(x) =2, ps(x) = 1, g = 0.9, and f = (g — gits)¥1(@). Under these
choices and with appropriate choice of boundary conditions, the solution to both the
RTE and RT/DA; equation is Y;. We report the errors

1/2
ey = {ZW,‘/X(HS(JC, ;) —_Yl(wi))de}

1/2
es; = {Xw,-/};(us] (x, @) — Yl(a),-))zdx}

(8.75)

(8.76)
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in Tables 8.3 and 8.4. We see that both methods converge in the above norm. We
report the maximum difference between ug and ug, in Table 8.5. Unless specified
otherwise, all meshes have 96 space elements. A “—” in the tables reflects the fact
that the iteration algorithm used to solve the discrete systems does not converge
within a fixed (large) number of iterations.

Table 8.3: Eﬁperiment 8.6.1: error between us, us, , and ¥,

[ne] es| es |
2 —[0.301621
8 ~|0.236104

16/0.227244)0.172195
3210.129529]0.123071
64]0.088994(0.087421

Table 8.4: Experiment 8.6.1: different errors

[rg|max |us — Y1 ||Mean|ug — ¥1||max |us —Y;||Mean|us, —¥;
4 - - 6.070e-03 8.433¢-04
8 - | 3.363e-03 1.668e-04
16] 1.077e-01|  1.275¢-02|  1.306e-03 3.851e-05
32| 1.558-02|  3.707¢-04| 4.410e-04 9.002e-06
64| 4.315e-03]  4.332e-05| 1.381e-04 2.212e-06

Table 8.5: Experiment 8.6.1: maximum error at the nodes of the mesh between us and us,

g maxlus—uSIH
16 0.127953
32 0.019912
64 0.007467

To investigate the relative error, we introduce new notation. Define the set of all
nodes as

A = {(x,w) | xis a node of the spatial mesh, @ is a node of the angular mesh}.
For a given relative error level e, define
Mo ={(x,0) € A | |us(x, 0} — us, (x, ®)|/|us(x, w})| < e}.

Finally, define f{e) = |.#|/|#"| for the fraction of nodes at which the solution to
the RT/DA, equation agrees with the RTE within relative error e. Here we use the
convention that | - | applied to a set denotes cardinality,
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We plot f(e) in Fig.8.8. Note that there is no logical upper bound on the
domain e. However, we will only plot 0 < ¢ < 1, as it makes the graphs more
readable. ' O

Experiment 8.6.2. The spatial domain is X = [0, 1]3. We choose g, = 2, 4, = 1, and
the Henyey—Greenstein phase function with several different choices of scattering
parameter g. The source function f is taken to be

f(x’w)z{lifxeR

0 otherwise

where R is approximately a sphere of radius 1/4 centered at (0.5,0.5,0.5). To do
the numerical simulations the domain X is partitioned into 324 tetrahedrons and we
use various angular discretizations to investigate the effect of angular discretization,

Again let 4 be the set of all nodes of the mesh. Let u% be the numerical solution
to the RTE and let ugj be the numerical solution to the RT/DA ; equation. For a given

relative error level, ¢, define the set of all nodes on which the numerical solution to
the RT/DA ; equation agrees with the RTE within relative error e. That is,

Hej={{x,w) € A | |ul(x,0)— u’s‘vj(x, 0)| < elul(x, ®)]}.

Define fj(e) = |42,;|/|-4|, giving the fraction of nodes at which the solution to the
RT/DA; equation agrees with the RTE within relative error e. Obviously, we would
like f{e) = 1 for as small e as possible.

Plots of f;(e) are shown with scattering parameter = 0.9, 0.95, and 0.99 for the
RT/DA; (j = 1,2,3) equations in Figs. 8.9-8.16. We observe that (1) as j increases,
the RT/DA; equation with properly chosen parameter values provides increasingly
accurate solution to the RTE, and (2) as g gets close to 1—, higher value of j will be
needed for the RT/DA ; equation to be a good approximation of the RTE. O
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Fig. 8.9: Experiment 8.6.2: f vs. e for g = 0.9 using one-term approximation 5;
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Fig. 8.10: Experiment 8.6.2: f vs. e for g = 0.9 using two-term approximation Sz
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Fig. 8.11: Experiment 8.6.2: f vs. e for g = 0.2 using three term approximation 53
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Fig. 8.13: Experiment 8.6.2: f vs. ¢ for g = (.95 using two-term approximation 5>
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Fig. 8.14: Experiment 8.6.2: f vs. e for g = 0.95 using three term approximation S



148 W. Han, I.A. Eichholz and Q. Sheng

9=0.99 1 terms

0.9f
0.8}
0.7}

05}
04}
0.3}
0.2f
01+

% of nodes

0 sbeace-0 0P ~ L L . 1 . . !
0 01 02 03 04 05 06 07 08 09 1
relative error

Fig. 8.15: Experiment 8.6.2: f vs. e for g = 0.99 using one-term approximation §;

1 g=0.99 2 terms

0.9}
0.8}
07t
0.6}
05}
0.4}
0.3}
0.2}
01}
9501 02 0.3 04 05 06 07 08 09 1
relative error

% of nodes

Fig. 8.16: Experiment 8.6.2: f vs. e for g = 0.99 using two-term approximation Sz



