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Recently, molecular imaging has been rapidly developed to study physiological and pathological pro-
cesses in vivo at the cellular and molecular levels. Among molecular imaging modalities, optical imaging
has attracted a major attention for its unique advantages. In this paper, we establish a mathematical frame-
work for multispectral bioluminescence tomography (BLT) that allows simultaneous studies of multiple
optical reporters. We show solution existence, uniqueness and continuous dependence on data as well as
the limiting behaviours when the regularization parameter approaches zero or when the penalty param-
eter approaches infinity. Then, we propose two numerical schemes for multispectral BLT and derive error
estimates for the corresponding solutions.
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1. Introduction

The contemporary thinking on biomedical imaging is significantly influenced by the development of
systems biology and molecular medicine (Zerhouni, 2003). Currently, investigations of organisms are
increasingly more focused on underlying systems, their connections and integration, instead of sep-
arate systems and individual parts. In this context, a system can be a gene regulatory mechanism, a
protein structure and dynamics, a cell-based network, a metabolic pathway, a physiological system, a
specific organ or an entire living body. Because this system’s approach deals with numerous interacting
components, it is highly desirable to develop spatially, temporally and spectrally resolving quantita-
tive technologies. Aided by such imaging and sensing tools, the genes that govern various phenotypes
and behaviours will be identified (Bassingthwaighte, 2000; Crampin et al., 2004). Eventually, biology
and medicine will be revolutionized from a science of largely descriptive nature to be quantitative and
predictive, leading to individualized preventive medicine.

With the above grand background, over a past few years molecular imaging has been rapidly
developed to study physiological and pathological processes in vivo at the cellular and molecular levels
(Weissleder & Mahmood, 2001; Wang et al., 2005). While some classic microscopic and spectroscopic
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techniques do reveal information on microstructures of the tissues, only recently have molecular probes
been utilized along with imaging technologies to detect and image molecular targets sensitively, specif-
ically, and in vivo. A molecular probe has a high affinity for attaching itself to a target molecule and a
tagging ability with a marker molecule that can be tracked outside a living body.

Among molecular imaging modalities, optical imaging has attracted a major attention for its uni-
que advantages, especially performance and cost-effectiveness (Contag & Ross, 2002; Weissleder &
Ntziachristos, 2003; Ntziachristos et al., 2005). Fluorescent and bioluminescent probes are commonly
used for optical molecular imaging. Today, fluorescent and bioluminescent imaging modes are most
widely applied in mouse studies, and to a limited extent in clinical research as well. Among various
optical molecular imaging techniques, fluorescence molecular tomography (Niziachristos et al., 2002)
and bioluminescence tomography (BLT) (Wang et al., 2003, 2004; Cong et al., 2005) are two emerg-
ing and complementary modes. In contrast to fluorescent imaging, bioluminescent imaging has unique
capabilities in probing molecular and cellular processes. Furthermore, there is no or little background
auto-fluorescence with bioluminescent imaging. With BLT, quantitative and localized analyses on a bio-
luminescent source distribution become feasible in a mouse, which reveal information important for
numerous biomedical studies.

However, optical imaging of multiple molecular and cellular targets has not been popular because
this type of studies is traditionally performed using a single reporter, instead of multiple reporters of
different spectra. With simultaneous use of multiple optical reporters (Cong & Wang, 2006), it becomes
now feasible to capture and decompose composite molecular and cellular signatures under in vivo con-
ditions. That is, multispectral data can be measured in spectral bands on the body surface of a mouse,
and the distributions of multiple biomarkers can be reconstructed in an integrated fashion using a so-
phisticated algorithm. This is the biomedical motivation and overall concept behind our development of
multispectral BLT. Some theoretical studies, including results from numerical simulations, can be found
in Han et al. (to appear) for a particular formulation of multispectral BLT.

In this paper, we provide a theoretical and numerical analysis on multispectral BLT. We consider
the most general situation of using multiple bioluminescent reporters whose spectral characteristics
may be affected by their in vivo environment. The rest of the paper is organized as follows: In Sec-
tion 2, we present some preliminary materials and introduce notations. In Section 3, we introduce a
mathematical framework for multispectral BLT through Tikhonov regularization and penalization, and
establish the solution existence, uniqueness and continuous dependence on the data. We also study the
limiting behaviours of the solution as the penalty parameter M → ∞ in Section 4 and as the regu-
larization parameter ε → 0+ in Section 5. We then propose two numerical methods for solving the
multispectral BLT problem. In the first method, there is no need to discretize the admissible sets for the
source functions, as detailed in Section 6. In the second method, we discretize the admissible sets for
the source functions, as discussed in Section 7. For both methods, the numerical solution exists uniquely
and depends continuously on the data. Error estimates are derived for the numerical solutions. A con-
cluding remark is given in Section 8.

2. Preliminaries

Experimental evidence shows that the range of light emission peaks is 460–630 nm for characterized
luciferase enzymes (Zhao et al., 2005). For this spectral range, scattering dominates for the photons in
the tissue, and it is appropriate to use the diffusion approximation to describe the photon propagation
(Arridge et al., 1993). Let Ω ⊂ R

d be the biological medium with the boundary Γ . Here, the dimension
d = 3 for applications; however, we develop the theory without this restriction. In multispectral BLT,
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the spectrum is divided into certain numbers of bands, say i0 bands Λ1, . . . ,Λi0 , with

Λi = [λi−1, λi ), 1 � i � i0 − 1, Λi0 = [
λi0−1, λi0

]
.

Here, λ0 < λ1 < · · · < λi0 is a partition of the spectrum range. Let there be j0 biomarkers with
bioluminescent source distributions p jχΩ j , 1 � j � j0. Here, Ω j is a measurable subset of Ω and
χΩ j is the characteristic function of Ω j . The set Ω j is the permissible region for the source p j . For
each biomarker, its bioluminescent source distribution within the band Λ j is ωi j p jχΩ j , 1 � i � i0,

with the weights ωi j > 0 satisfying
∑i0

i=1 ωi j = 1, for any 1 � j � j0. As an example, consider
target cells tagged with reporters encoded with four kinds of luciferase enzymes hRLuc, CNGr68, Fluc+
and CBRed. Based on the experimental results of Zhao et al. (2005), it is proposed in Cong & Wang
(2006) to split the photon emission spectral range [400 nm, 750 nm] into three regions: Λ1 = [400 nm,
530 nm), Λ2 = [530 nm, 630 nm) and Λ3 = [630 nm, 750 nm], with corresponding weights ω1 = 0.29,
ω2 = 0.48 and ω3 = 0.23.

We now turn to a description of the relevant mathematical relations. We denote pi j = ωi j p j , the
portion of the source function p j in the band Λi . We allow variation of the source spectrum caused by

the environment. Thus, we will reconstruct sources pi j such that pi j ≈ ωi j p j , with p j = ∑i0
i=1 pi j .

For each spectral band Λi , 1 � i � i0, we use the following diffusion equations to describe the photon
density ui in Λi :

−div(Di∇ui j ) + µa,i ui j = pi jχΩ j in Ω. (2.1)

Here, Di (x) = 1/[3 (µa,i (x)+µ′
s,i (x))], where µa,i (x) and µ′

s,i (x) are the absorption coefficient and the
reduced scattering coefficient within the band Λi , respectively. The bioluminescent imaging experiments
are usually performed in a dark environment so that the natural boundary condition takes the form
(Schweiger et al., 1995)

ui j + 2ADi
∂ui j

∂ν
= 0 on Γ. (2.2)

Here, ∂/∂ν stands for the outward normal derivative,

A(x) = 1 + R(x)

1 − R(x)
, R(x) ≈ −1.4399γ −2 + 0.7099γ −1 + 0.6681 + 0.0636γ,

with γ being the refractive index of the medium. With the emission filters of bandpasses Λi , the mea-
sured quantities are the outgoing flux densities (Schweiger et al., 1995)

f̃i = −Di
∂

∂ν

j0∑
j=1

ui j (qi j ) = 1

2A

j0∑
j=1

ui j (qi j ) on Γi , 1 � i � i0. (2.3)

We assume that Γi is a nontrivial part of the boundary, i.e. meas(Γi ) > 0. Thus, we allow the situation
where the measurement of the outgoing flux densities is available only on parts of the boundary Γ . In
most current applications, all the Γi are taken to be equal to Γ .

As noted in Han et al. (2006) in the case of a single type of bioluminescent reporters, the point-wise
formulation (2.1)–(2.3), 1 � i � i0, is ill-posed. In general, there are infinitely many solutions. When
the form of the source function is specified, there is no solution if data are inconsistent. Also, the source
function does not depend continuously on the data. The purpose of the paper is to formulate the problem
in a well-posed fashion that leads to a stable and convergent numerical solution.
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Let us introduce some notations to simplify the exposition. In the rest of the paper, we always let the
range of the index i to be {1, . . . , i0} and that of j to be {1, . . . , j0}; in particular,

∑
i stands for

∑i0
i=1

and
∑

j stands for
∑ j0

j=1. Matrix (Ri0× j0 )-valued variables, as well as their row or column vectors, will
be indicated by Euler Fraktur alphabets, e.g. ppp = (pi j ), qqq = (qi j ), uuu = (ui j ) and

qqq∗ j = (
q1 j , . . . , qi0 j

)	
, qqqi∗ = (

qi1, . . . , qi j0

)
.

Vector-valued variables are indicated by boldface math fonts. We denote

S(qqq∗ j ) =
∑

i

qi j , �i (qqq∗ j ) = qi j − ωi j S(qqq∗ j ), ���(qqq) = (�i (qqq∗ j )),

Ui (qqqi∗) =
∑

j

ui j (qi j ), U(qqq) = (Ui (qqqi∗)).

Then, the boundary measurement equation (2.3) can be written as

f̃i = −Di
∂Ui (qqqi∗)

∂ν
= 1

2A
Ui (qqqi∗) on Γi .

For a vector-valued variable with a subscript, we use ‘, j ’ to indicate its j th component, e.g. pε = (pε, j ).
Similarly, for a matrix-valued variable with a subscript, we use ‘,i j ’ for its (i, j)th component, e.g.
pppεM = (pεM,i j ).

Then, we introduce some function spaces and sets. Let Q j = L2(Ω j ), V = H1(Ω) and Gi =
L2(Γi ); these are Hilbert spaces with their canonical inner products and norms. We denote by Qad, j the
admissible set for pi j . We assume Qad, j is a closed convex subset of the space Q j . Examples include
Qad, j = Q j , or the subset of Q j of nonnegatively valued functions, or a finite-dimensional subspace or
subset of linear combinations of specified functions such as the character functions of certain subsets of
Ω j . Let

QQQ = {qqq = (qi j ): qi j ∈ Q j }
with the inner product and norm

(ppp, qqq)QQQ =
∑
i, j

wi j (pi j , qi j )Q j , ‖qqq‖QQQ = (qqq, qqq)
1/2
QQQ

,

for some positive weighting constants wi j . Then, QQQ becomes a Hilbert space. We seek the unknown
source field ppp = (pi j ) of the multispectral BLT problem in

QQQad = {qqq ∈ QQQ: qi j ∈ Qad, j }.
With possibly different positive weighting constants w�,i j , we let

(���(ppp), ���(qqq))QQQl
=

∑
i, j

w�,i j (�i (ppp∗ j ), �i (qqq∗ j ))Q j , |���(qqq)|QQQl
= (���(qqq), ���(qqq))

1/2
QQQl

.

We also need the Hilbert space G = G1 × G2 × · · · × Gi0 , endowed with the inner product and norm

(f, g)G =
∑

i

wi ( fi , gi )Gi , ‖g‖G = (g, g)
1/2
G ,

with positive constants wi .
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3. The multispectral BLT problem, well-posedness

We assume Ω ⊂ R
d (d � 3) is a nonempty, open, bounded set with a Lipschitz boundary Γ ; A(x) ∈

[Al , Au] for some constants 0 < Al � Au < ∞; Di ∈ L∞(Ω), Di � D0 a.e. in Ω for some constant
D0 > 0; µa,i ∈ L∞(Ω), µa,i � 0 a.e. in Ω and f̃i ∈ L2(Γi ). For any q ∈ Q j , define ui j (q) ∈ V to be
the solution of the problem∫

Ω
[Di∇ui j (q) · ∇v + µa,i ui j (q)v]dx +

∫
Γ

1

2A
ui j (q)v ds =

∫
Ω j

qv dx, ∀ v ∈ V . (3.1)

From the assumptions on the data, we can apply the well-known Lax–Milgram lemma (Atkinson &
Han, 2005; Evans, 1998) to conclude that the solution ui j (q) exists and is unique. Obviously, ui j (q)
depends on q linearly, and for some constant c > 0,

‖ui j (q)‖V � c‖q‖Q j , ∀ q ∈ Q j . (3.2)

We write fi = 2A f̃i and f = ( fi ). Let ε � 0 and M > 0, and define a penalized Tikhonov
regularization functional (Tikhonov, 1963; Engl et al., 1996)

JεM (qqq) = 1

2

[
‖U(qqq) − f‖2

G + ε ‖qqq‖2
QQQ + M |���(qqq)|2QQQl

]
. (3.3)

This functional is smooth and for its first two derivatives, we have

J ′
εM (ppp)qqq = (U(ppp) − f, U(qqq))G + ε (ppp, qqq)QQQ + M(���(ppp), ���(qqq))QQQl

,

J ′′
εM (ppp)(qqq, qqq) = ‖U(qqq)‖2

G + ε‖qqq‖2
QQQ + M |���(qqq)|2QQQl

,

for ppp, qqq ∈ QQQ. In particular, we note that JεM is strictly convex for ε > 0. We then introduce the following
multispectral BLT problem.

PROBLEM 3.1 Find pppεM ∈ QQQad such that JεM (pppεM ) = inf{JεM (qqq): qqq ∈ QQQad}.
We comment that other norms can be used in defining (3.3) and indeed, mathematically, it is more

natural to choose G j = H1/2(Γ j ). However, for actual simulation, it is more convenient to use the
L2-norms in the objective function.

We now consider the existence and uniqueness issue.

THEOREM 3.2 Problem 3.1 with ε > 0 has a unique solution pppεM ∈ QQQad, and the solution pppεM ∈ QQQad
is characterized by a variational inequality

(U(pppεM )−f, U(qqq−pppεM ))G+ε(pppεM , qqq−pppεM )QQQ+M(���(pppεM ), ���(qqq−pppεM ))QQQl
� 0, ∀ qqq ∈ QQQad. (3.4)

When Qad, j ⊂ Q j are subspaces, the inequality is reduced to a variational equation

(U(pppεM ) − f, U(qqq))G + ε(pppεM , qqq)QQQ + M(���(pppεM ), ���(qqq))QQQl
= 0, ∀ qqq ∈ QQQad. (3.5)

Proof. The existence and uniqueness are deduced from a standard result on convex minimization (see,
e.g. Atkinson & Han, 2005, Theorem 3.3.12). The space QQQ is a Hilbert space and QQQad ⊂ QQQ is convex
and closed. The functional JεM : QQQad → R is continuous, strictly convex and coercive, i.e.

JεM (qqq) → ∞ as ‖qqq‖QQQ → ∞.
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So there is a unique solution pppεM ∈ QQQad to Problem 3.1. Moreover, pppεM ∈ QQQad is the solution if and
only if it satisfies (see Atkinson & Han, 2005, Theorem 5.3.19)

J ′
εM (pppεM )(qqq− pppεM ) � 0, ∀ qqq ∈ QQQad,

that is precisely (3.4).
Now, assume Qad, j ⊂ Q j are subspaces. We can take qqq = 000 and 2pppεM in (3.4) to get

(U(pppεM ) − f, −U(pppεM ))G + ε(pppεM , −pppεM )QQQ + M(���(pppεM ), −���(pppεM ))QQQl
= 0.

So the inequality (3.4) is equivalent to

(U(pppεM ) − f, U(qqq))G + ε(pppεM , qqq)QQQ + M(���(pppεM ), ���(qqq))QQQl
� 0, ∀ qqq ∈ QQQad.

Since QQQad is a subspace, this inequality is equivalent to the equality (3.5). �
We then consider the continuous dependence of the solution on the data.

THEOREM 3.3 The solution pppεM of Problem 3.1 depends continuously on the data.

Proof. The solution pppεM depends continuously on all the data, including the weighting constants wi ,
wi j and w�,i j . In order to maintain the length of the proof, in the following we only show the continuous
dependence of pppεM on ε, M , A, Di , µa,i and fi .

We write pppεM ∈ QQQad for the solution of Problem 3.1 corresponding to the data ε+δε with |δε| � ε/2,
M + δM with |δM | � M/2, A + δA with ‖δA‖L∞(Γ ) � Al/2, Di + δDi ∈ L∞(Ω) with ‖δDi ‖L∞(Ω) �
D0/2, µa,i +δµa,i ∈ L∞(Ω) with µa,i +δµa,i � 0 a.e. in Ω and fi +δ fi ∈ Gi with ‖δ fi ‖Gi � ‖ fi‖Gi /2.
In the proof, c represents a constant that may depend on ε, M , A, Di , µa,i and fi , but is independent of
δε, δM , δA, δDi , δµa,i and δ fi .

Similar to (3.1), for any q ∈ Q j , we denote by ui j (q) ∈ V the solution of the problem∫
Ω

[(
Di + δDi

)∇ui j (q) · ∇v + (
µa,i + δµa,i

)
ui j (q)v

]
dx +

∫
Γ

1

2(A + δA)
ui j (q)v ds

=
∫

Ω j

qv dx, ∀ v ∈ V . (3.6)

From ui j (q), we similarly define U(qqq). The counterpart of (3.4) is

(U(pppεM ) − (f + δf), U(qqq) − U(pppεM ))G + (ε + δε)(pppεM , qqq− pppεM )QQQ

+ (M + δM )(���(pppεM ), ���(qqq− pppεM ))QQQl
� 0, ∀ qqq ∈ QQQad. (3.7)

We denote ei j (q) = ui j (q) − ui j (q) for the error. Subtracting (3.1) from (3.6), we obtain∫
Ω

[(
Di + δDi

) ∇ei j (q) · ∇v + (
µa,i + δµa,i

)
ei j (q)v

]
dx +

∫
Γ

1

2(A + δA)
ei j (q)v ds

= −
∫

Ω

[
δDi ∇ui j (q) · ∇v + δµa,i ui j (q)v

]
dx +

∫
Γ

δA

2A(A + δA)
ui j (q)v ds, ∀ v ∈ V .

Thus,

‖ei j (q)‖V � c
[∥∥δDi

∥∥
L∞(Ω)

+ ∥∥δµa,i

∥∥
L∞(Ω)

+ ‖δA‖L∞(Γ )

]
‖ui j (q)‖V . (3.8)
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We take qqq = pppεM in (3.4) to get

(U(pppεM ) − f, U(pppεM − pppεM ))G + ε(pppεM , pppεM − pppεM )QQQ + M(���(pppεM ), ���(pppεM − pppεM ))QQQl
� 0,

and take qqq = pppεM in (3.7) to get

(U(pppεM ) − (f + δf), U(pppεM − pppεM ))G + (ε + δε)(pppεM , pppεM − pppεM )QQQ

+ (M + δM )(���(pppεM ), ���(pppεM − pppεM ))QQQl
� 0.

Using these two inequalities, we have

‖U(pppεM − pppεM )‖2
G + (ε + δε)‖pppεM − pppεM‖2

QQQ + (M + δM )|���(pppεM − pppεM )|2QQQl

� (U(pppεM ) − U(pppεM ), U(pppεM − pppεM ))G + (δf, U(pppεM − pppεM ))G

+ (U(pppεM ) − (f + δf), U(pppεM − pppεM ) − U(pppεM − pppεM ))G,

− δε(pppεM , pppεM − pppεM )QQQ − δM (���(pppεM ), ���(pppεM − pppεM ))QQQl
.

Then,

‖U(pppεM − pppεM )‖2
G + (ε + δε) ‖pppεM − pppεM‖2

QQQ + (M + δM )|���(pppεM − pppεM )|2QQQl

� [‖U(pppεM ) − U(pppεM )‖G + ‖δf‖G]‖U(pppεM − pppεM )‖G

+ ‖U(pppεM ) − (f + δf)‖G‖U(pppεM − pppεM ) − U(pppεM − pppεM )‖G,

+ |δε|‖pppεM‖QQQ‖pppεM − pppεM‖QQQ + |δM ||���(pppεM )|QQQl
|���(pppεM − pppεM )|QQQl

.

With the use of (3.2), (3.8) and the inequality ab � δa2 + b2/(4δ) for any δ > 0, we then have

‖U(pppεM − pppεM )‖2
G + ‖pppεM − pppεM‖2

QQQ + |���(pppεM − pppεM )|2QQQl

� c

{
|δε| + |δM | + ‖δA‖L∞(Γ ) + max

i

[∥∥δDi

∥∥
L∞(Ω)

+ ∥∥δµa,i

∥∥
L∞(Ω)

+ ∥∥δ fi

∥∥2
Gi

]}
.

Hence, the solution depends continuously on the data. �

4. Limiting behaviour with respect to penalty parameter

Here, we consider the limiting behaviour of the solution pppεM as the penalty parameter M → ∞, for
some fixed ε > 0. For this purpose, we introduce some more notations. Let

Q = {q = (q j ): q j ∈ Q j }, Qad = {q ∈ Q: q j ∈ Qad, j }.
In the space Q, we use the inner product and norm

(p, q)Q =
∑

j

(∑
i

wi jω
2
i j

)
(p j , q j )Q j , ‖q‖Q = (q, q)1/2.

We adopt the convention that q = (q j ) ∈ Q corresponds to qqq = (ωi j q j ) ∈ QQQ.
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As M → ∞, if {pppεM }M has a limit pppε, then we expect �i (pppε,∗ j ) = 0, i.e. pε,i j = ωi j S(pppε,∗ j ). We
denote pε = (pε, j ) with pε, j = S(pppε,∗ j ). Then, pε,i j = ωi j pε, j and ui j (pε,i j ) = ωi j ui j (pε, j ). For
q ∈ Q, let

W(q) = (Wi (q)), Wi (q) =
∑

j

ωi j ui j (q j ).

Then, W(q) = U(qqq). For any q ∈ Q, we define

Jε(q) = 1

2
[‖W(q) − f‖2

G + ε‖q‖2
Q]

and introduce the following limiting problem.

PROBLEM 4.1 Find pε ∈ Qad such that Jε(pε) = inf{Jε(q): q ∈ Qad}.
Results similar to those presented in Section 3 hold for Problem 4.1.

THEOREM 4.2 Problem 4.1 with ε > 0 has a unique solution pε ∈ Qad that is characterized by a
variational inequality

(W(pε) − f, W(q − pε))G + ε(pε, q − pε)Q � 0, ∀ q ∈ Qad. (4.1)

When Qad, j ⊂ Q j are subspaces, the inequality is reduced to a variational equation

(W(pε) − f, W(q))G + ε(pε, q)Q = 0, ∀ q ∈ Qad. (4.2)

Moreover, the solution pε depends continuously on the data.

The main theoretical result of the section is the following.

THEOREM 4.3 Suppose 0 ∈ Qad, j . Then as M → ∞, pppεM → pppε = (ωi j pε, j ) in QQQ.

Proof. Since 0 ∈ Qad, j and Qad, j is convex, for any q ∈ Qad, qqq = (ωi j q j ) ∈ QQQad. In particular,
pppε ∈ QQQad. Note that JεM (pppε) = Jε(pε). Then,

1

2

[
ε‖pppεM‖2

QQQ + M |���(pppεM )|2QQQl

]
� JεM (pppεM ) � Jε(pε).

So as M → ∞, |���(pppεM )|QQQl
→ 0 and {‖pppεM‖QQQ}M is uniformly bounded. Then, {pppεM }M contains a

subsequence {pppεM ′ }M ′ converging weakly to p̃ppε ∈ QQQ : pppεM ′ ⇀ p̃ppε in QQQ. From

|���(p̃ppε)|QQQl
� lim inf

M ′→∞
|���(pppεM ′)|QQQl

→ 0,

we obtain p̃ε,i j = ωi j p̃ε, j , with p̃ε, j = S(p̃ppε,∗ j ).
We denote p̃ε = ( p̃ε, j ). Let us show that p̃ε is a minimizer of Jε(·) over Qad. For any q ∈ Qad, take

qqq = (ωi j q j ) ∈ QQQad in (3.4) to obtain

(U(pppεM ) − f, U(qqq− pppεM ))G + ε(pppεM , qqq− pppεM )QQQ � M |���(pppεM )|2QQQl
� 0.

Let M = M ′ → ∞, then

(U(p̃ppε) − f, U(qqq− p̃ppε))G + ε(p̃ppε, qqq− p̃ppε)QQQ � 0,
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i.e.

(W(p̃ε) − f, W(q − p̃ε))G + ε(p̃ε, q − p̃ε)Q � 0, ∀ q ∈ Qad.

By the characterization (4.1), p̃ε is a minimizer of Jε(·) over Qad. Since the minimizer is unique, p̃ε = pε.
To show the strong convergence pppεM → pppε in QQQ, we write

‖U(pppεM ′ − pppε)‖2
G + ε ‖pppεM ′ − pppε‖2

QQQ = I + II + III,

where

I = ‖U(pppεM ′) − f‖2
G + ε‖pppεM ′ ‖2

QQQ,

II = −2(U(pppεM ′) − f, U(pppε) − f)G − 2ε(pppεM ′ , pppε)QQQ,

III = ‖U(pppε) − f‖2
G + ε‖pppε‖2

QQQ = 2Jε(pε).

We have

I � 2JεM ′(pppεM ′) � 2JεM (pppε) = 2Jε(pε),

lim
M ′→∞

II = −2‖U(pppε) − f‖2
G − 2ε‖pppε‖2

QQQ = −4Jε(pε).

Thus,

lim sup
M ′→∞

[‖U(pppεM ′ − pppε)‖2
G + ε‖pppεM ′ − pppε‖2

QQQ] � 0.

Consequently,

‖pppεM ′ − pppε‖QQQ → 0 as M ′ → ∞.

Since the limit pppε is unique and is independent of the subsequence {M ′} we choose, the entire family
converges: ‖pppεM − pppε‖QQQ → 0 as M → ∞. �

5. Limiting behaviour with respect to regularization parameter

In this section, we explore the solution behaviour when the regularization parameter ε → 0+.
Similar to the characterization (3.4), we can show that a solution ppp = (pi j ) ∈ QQQad of Problem 3.1

with ε = 0 is characterized by the inequality

(U(ppp) − f, U(qqq− ppp))G + M (���(ppp), ���(qqq− ppp))QQQl
� 0, ∀ qqq ∈ QQQad. (5.1)

We denote bySSS0M ⊂ QQQad, the solution set of Problem 3.1 with ε = 0. As in Lions (1971), the following
results hold.

PROPOSITION 5.1 Assume SSS0M is nonempty. Then, SSS0M is closed and convex.

Proof. Assume {pppn} ⊂ SSS0M with pppn → ppp in QQQ. From (3.1),∫
Ω

[Di∇ui j (pn,i j ) · ∇v + µa,i ui j (pn,i j )v]dx +
∫

Γ

1

2A
ui j (pn,i j )v ds =

∫
Ω j

pn,i jv dx, ∀ v ∈ V .

(5.2)
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By (3.2), ‖ui j (pn,i j )−ui j (pm,i j )‖V � c‖pn,i j − pm,i j‖Q j . So {ui j (pn,i j )}n is a Cauchy sequence in V ,
and hence has a limit ui j in V . Let n → ∞ in (5.2) to see that ui j = ui j (pi j ). By the characterization
(5.1), there holds

(U(pppn) − f, U(qqq− pppn))G + M(���(pppn), ���(qqq− pppn))QQQl
� 0, ∀ qqq ∈ QQQad.

Let n → ∞ to obtain

(U(ppp− f), U(qqq− ppp))G + M(���(ppp), ���(qqq− ppp))QQQl
� 0, ∀ qqq ∈ QQQad.

Therefore, ppp ∈ SSS0M and SSS0M is closed.
Now, let ppp1, ppp2 ∈ SSS0M and θ ∈ (0, 1). Then, ui j (θp1,i j + (1 − θ)p2,i j ) = θui j (p1,i j ) + (1 −

θ)ui j (p2,i j ) and

J0M (θppp1 + (1 − θ)ppp2) � θ J0M (ppp1) + (1 − θ)J0M (ppp2).

Thus, θppp1 + (1 − θ)ppp2 ∈ SSS0M and SSS0M is convex. �
Based on Proposition 5.1, we conclude that SSS0M , if it is nonempty, contains a unique minimal

QQQ-norm solution ppp0M ∈ SSS0M :

‖ppp0M‖QQQ = inf{‖qqq‖QQQ: qqq ∈ SSS0M }.
This solution is characterized by the variational inequality

(ppp0M , qqq− ppp0M )QQQ � 0, ∀ qqq ∈ SSS0M .

THEOREM 5.2 Assume SSS0M is nonempty. Then, SSS0M is closed and convex. Moreover,

pppεM → ppp0M in QQQ, as ε → 0. (5.3)

Proof. We take qqq = ppp0M in (3.4) to get

(U(pppεM ) − f, U(ppp0M − pppεM ))G + ε(pppεM , ppp0M − pppεM )QQQ + M(���(pppεM ), ���(ppp0M − pppεM ))QQQl
� 0,

and take qqq = pppεM in (5.1) for ppp = ppp0M to get

(U(ppp0M ) − f, U(pppεM − ppp0M ))G + M(���(ppp0M ), ���(pppεM − ppp0M ))QQQl
� 0.

Adding these two inequalities, we obtain

ε(pppεM , ppp0M − pppεM )QQQ � ‖U(pppεM − ppp0M )‖2
G + M |���(pppεM − ppp0M )|2QQQl

.

Thus, (pppεM , ppp0M − pppεM )QQQ � 0 and

‖pppεM‖QQQ � ‖ppp0M‖QQQ. (5.4)

So {pppεM }ε is uniformly bounded in QQQ. Let {pppε′M }ε′ be a subsequence of {pppεM }ε converging weakly to
some ppp ∈ QQQ. We take the limit ε′ → 0 in (3.4) to see that the limit ppp satisfies (5.1), i.e. ppp ∈ SSS0M . Let
ε = ε′ → 0 in (5.4), then

‖ppp‖QQQ � lim inf
ε′→0

‖pppε′M‖QQQ � ‖ppp0M‖QQQ.

By the uniqueness of the minimizer ppp0M , ppp = ppp0M . Since the limit ppp = ppp0M does not depend on the
subsequence selected, {pppεM }ε converges weakly to ppp0M in QQQ as ε → 0. Strong convergence pppεM →
ppp0M in QQQ as ε → 0 follows from the weak convergence and the boundedness of the family {pppεM }ε. �

As a simple consequence of the theorem, we have the next result.
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COROLLARY 5.3 Suppose that the solution set SSS0M = {pppM } is a singleton. Then,

pppεM → pppM in QQQ, as ε → 0.

The set SSS0M is nonempty when QQQad is bounded. This is shown by applying a standard result on
convex minimization, e.g. Atkinson & Han, 2005, Theorem 3.3.12. Another sufficient condition that
ensures SSS0M 
= ∅ is the following compatible assumption on the data:

∃ p1 ∈ Qad such that Ui (p1) = fi on Γi , 1 � i � i0. (5.5)

6. Numerical method without discretizing admissible set

In this and Section 7, we discuss numerical approximations of Problem 3.1 with ε > 0. The admissible
source function space QQQad may or may not need to be discretized. In this section, we consider the case
without a discretization of QQQad. This is natural where QQQad is a finite-dimensional subspace or subset of
linear combinations of specified functions such as the characteristic functions of certain subsets of Ω .

We introduce the linear finite-element spaces of V for discretization of the constraint (3.1). Let
{T h} (h: mesh size) be a regular family of finite-element partitions of Ω such that each element at the
boundary Γ has at most one nonstraight face (for a 3D domain) or side (for a 2D domain). For each trian-
gulation Th = {K }, let V h ⊂ V be the linear element space. For any q ∈ Q j , we define uh

i j (q) ∈ V h by

∫
Ω

[Di∇uh
i j (q) · ∇vh + µa,i u

h
i j (q)vh]dx +

∫
Γ

1

2A
uh

i j (q)vh ds =
∫

Ω j

qvh dx, ∀ vh ∈ V h . (6.1)

Like (3.1), (6.1) has a unique solution uh
i j (q). For qqq ∈ QQQ, denote Uh

i (qqqi∗) = ∑
j uh

i j (qi j ) and Uh(qqq) =
(Ui (qqqi∗)), and define the approximation functional

J h
εM (qqq) = 1

2

[
‖Uh(qqq) − f‖2

G + ε‖qqq‖2
QQQ + M |���(qqq)‖2

QQQl

]
. (6.2)

We then introduce the following discretization of Problem 3.1.

PROBLEM 6.1 Find ppphεM ∈ QQQad such that J h
εM (ppphεM ) = inf{J h

εM (qqq): qqq ∈ QQQad}.
Similar to Problem 3.1, we can show the following results for the discrete problem.

PROPOSITION 6.2 Problem 6.1 with ε > 0 has a unique solution ppphεM ∈ QQQad, and it is characterized by
a discrete variational inequality

(Uh(ppphεM ) − f, Uh(qqq− ppphεM ))G

+ ε(ppphεM , qqq− ppphεM )QQQ + M(���(ppphεM ), ���(qqq− ppphεM ))QQQl
� 0, ∀ qqq ∈ QQQad. (6.3)

When Qad, j ⊂ Q j are subspaces, (6.3) reduces to a variational equation

(Uh(ppphεM ) − f, Uh(qqq))G + ε(ppphεM , qqq)QQQ + M(���(ppphεM ), ���(qqq))QQQl
= 0, ∀ qqq ∈ QQQad.

The solution ppphεM depends continuously on the data.
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We denote Wh(q) = Uh(qqq) for q ∈ Q. If 0 ∈ Qad, j , then ppphεM → ppphε = (ωi j ph
ε, j ) in QQQ as M → ∞,

where ph
ε = (ph

ε, j ) ∈ Qad is the unique minimizer of the functional

J h
ε (q) = 1

2
[‖Wh(q) − f‖2

G + ε ‖q‖2
Q] (6.4)

over Qad.
Suppose Problem 6.1 with ε = 0 has a solution, and we denote by SSSh

0M the solution set. Then,
SSSh

0M ⊂ QQQad is closed and convex, and ppphεM → ppph0M in QQQ as ε → 0, where ppph0M ∈ SSSh
0M is the minimal

norm solution:

‖ppph0M‖QQQ = inf{‖qqq‖QQQ: qqq ∈ SSSh
0M }.

For error estimation, we further assume

Γ ∈ C1,1, A ∈ C0,1(Γ ), Di ∈ C0,1(Ω), µa,i ∈ L∞(Ω). (6.5)

Then, ui j (q) ∈ H2(Ω) and

‖ui j (q)‖H2(Ω) � c‖q‖Q j , q ∈ Q j (6.6)

(Grisvard, 1985, Theorems 2.3.3.6 and 2.4.2.6). The assumptions (6.5) are made to ensure the validity
of the solution regularity (6.6) used below in error estimation. Without the solution regularity property,
error estimates with lower convergence orders can still be derived.

Let us now recall the finite-element interpolation error estimate

‖v − ΠV h v‖L2(Ω) + h‖v − ΠV h v‖H1(Ω) � ch2‖v‖H2(Ω), ∀ v ∈ H2(Ω), (6.7)

where ΠV h v ∈ V h is the piece-wise linear interpolant of v . This error estimate is usually proved when
Ω is a polyhedral/polygonal domain so that each element K in a finite-element partition Th has straight
faces/sides on its boundary (e.g. Brenner & Scott, 2002; Ciarlet, 1978). For applications in BLT, Ω is
a smooth domain and is not polyhedral. In such an application, the error estimate (6.7) still holds (Han
et al., 2006). Using an argument similar to that in Han et al. (2006), we can show that there is a constant
c > 0 independent of h, ε and M such that

‖ui j (q) − uh
i j (q)‖Gi � ch3/2‖q‖Q j , ∀ q ∈ Q j .

Then,

‖U(qqq) − Uh(qqq)‖G � ch3/2‖qqq‖QQQ, ∀ qqq ∈ QQQ. (6.8)

A starting point for deriving error bounds is the following result.

THEOREM 6.3 There is a constant c > 0 independent of h, ε and M such that

‖U(pppεM ) − Uh(ppphεM )‖G + ε1/2‖pppεM − ppphεM‖QQQ + M1/2|���(pppεM − ppphεM )|QQQl

� c h3/4‖U(pppεM ) − f‖1/2
G ‖pppεM − ppphεM‖1/2

QQQ
+ c h3/2‖pppεM‖QQQ. (6.9)
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Proof. We take qqq = pppεM in (6.3) to get

(Uh(ppphεM ) − f, Uh(pppεM − ppphεM ))G + ε(ppphεM , pppεM − ppphεM )QQQ + M(���(ppphεM ), ���(pppεM − ppphεM ))QQQl
� 0,

and take qqq = ppphεM in (3.4) to get

(U(pppεM ) − f, U(ppphεM − pppεM ))G + ε(pppεM , ppphεM − pppεM )QQQ + M(���(pppεM ), ���(ppphεM − pppεM ))QQQl
� 0.

Adding the two inequalities, we can derive the following:

‖U(pppεM ) − Uh(ppphεM )‖2
G + ε‖pppεM − ppphεM‖2

QQQ + M |���(pppεM − ppphεM )|2QQQl

� (U(pppεM ) − Uh(ppphεM ), U(pppεM ) − Uh(pppεM ))G

+ (U(pppεM ) − f, U(ppphεM − pppεM ) − Uh(ppphεM − pppεM ))G.

We bound the right-hand side by

c‖U(pppεM ) − Uh(pppεM )‖2
G + 1

2
‖U(pppεM ) − Uh(ppphεM )‖2

G

+ c‖U(pppεM ) − f‖G‖U(ppphεM − pppεM ) − Uh(ppphεM − pppεM )‖G,

and then apply (6.8) to get (6.9). �
Further error bounds require more information on the data. We present two sample results as conse-

quences of Theorem 6.3.
First assume Qad, j ⊂ Q j are bounded, an assumption valid in applications. Then, there is a constant

c > 0 independent of h, ε and M such that

‖U(pppεM ) − Uh(ppphεM )‖G + ε1/2‖pppεM − ppphεM‖QQQ + M1/2|���(pppεM − ppphεM )|QQQl
� ch3/4. (6.10)

Next, assume the compatibility condition (5.5). Then, there is a constant c > 0 independent of h, ε
and M such that

‖U(pppεM ) − Uh(ppphεM )‖G + ε1/2‖pppεM − ppphεM‖QQQ + M1/2|���(pppεM − ppphεM )|QQQl
� ch3/2. (6.11)

This is proved as follows: From

‖U(pppεM ) − f‖2
G + ε‖pppεM‖2

QQQ + M |���(pppεM − ppphεM )‖2
QQQ � 2Jε(ppp1) = ε‖ppp1‖2

QQQ,

we know that for all ε, M > 0, ‖pppεM‖QQQ � ‖ppp1‖QQQ and ‖U(pppεM ) − f‖G � ε1/2‖ppp1‖Q. Then, from (6.9),
we obtain

‖U(pppεM ) − Uh(ppphεM )‖G + ε1/2‖pppεM − ppphεM‖QQQ + M1/2|���i (pppεM − ppphεM )|QQQl

� ch3/4ε1/4‖pppεM − ppphεM‖1/2
QQQ

+ ch3/2.

Bound the first term on the right-hand side as follows:

ch3/4ε1/4‖pppεM − ppphεM‖1/2
QQQ
� 1

2
ε1/2‖pppεM − ppphεM‖QQQ + ch3/2.

Thus, (6.11) holds.
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When the regularization parameter ε is chosen related to the discretization parameter, we may bound
the error ‖pppεM − ppphεM‖QQQ in terms of the discretization parameter only. For example, in the context of
(6.11), let ε = chβ , 0 < β < 3. Then,

‖pppεM − ppphεM‖QQQ � ch(3−β)/2.

Finally, we comment that when the solution set SSS0M is nonempty, convergence of the numerical
solution ppphεM to the solution ppp0M ∈ SSS0M follows from the triangle inequality

‖ppphεM − ppp0M‖QQQ � ‖pppεM − ppp0M‖QQQ + ‖pppεM − ppphεM‖QQQ
together with (5.3) and the convergence of ppphεM to pppεM in QQQ.

7. Numerical method with discretized admissible set

In this section, we study a numerical method where QQQad is also discretized. This is necessary where
QQQad is a general subset of QQQ. In addition to the regular family of finite-element partitions {Th} of Ω ,
let {T j,H } be a regular family of finite-element partitions of Ω j such that each element at the boundary
∂Ω j has at most one nonstraight face (for a 3D domain) or side (for a 2D domain). The partitions Th and
T j,H do not need to be related; however, Th can be constructed based on T j,H . We may allow the mesh
size of the partition on Ω j to depend on j . However, to simplify the notation, we limit our discussion to
the situation where mesh sizes of the partitions on all the subdomains are comparable.

Let QH
j ⊂ Q j be the piece-wise constant function space corresponding to the partition T j,H ,QQQH =

{qqqH ∈ QQQ: q H
i j ∈ QH

j } andQQQH
ad = QQQH ∩QQQad. Using the functional J h

εM of (6.2), we define the following
discretization of Problem 3.1.

PROBLEM 7.1 Find ppphH
εM ∈ QQQH

ad such that J h
εM (ppphH

εM ) = inf{J h
εM (qqqH ): qqqH ∈ QQQH

ad}.
Similar to Problem 6.1, we have the following result for Problem 7.1.

PROPOSITION 7.2 Problem 7.1 with ε > 0 has a unique solution ppphH
εM ∈ QQQH

ad, and it is characterized by
a discrete variational inequality

(Uh(ppphH
εM ) − f, Uh(qqqH − ppphH

εM ))G + ε(ppphH
εM , qqqH − ppphH

εM )QQQ

+ M(���(ppphH
εM ), ���(qqqH − ppphH

εM ))QQQl
� 0, ∀ qqqH ∈ QQQH

ad. (7.1)

When Qad, j ⊂ Q j are subspaces, (7.1) reduces to a variational equation

(Uh(ppphH
εM ) − f, Uh(qqqH ))G + ε(ppphH

εM , qqqH )QQQ + M(���(ppphH
εM ), ���(qqqH ))QQQl

= 0, ∀ qqqH ∈ QQQH
ad.

The solution ppphH
εM depends continuously on the data.

We denote QH
ad = {qH ∈ Qad: q H

j ∈ QH
j }. If 0 ∈ Qad, j , then ppphH

εM → ppphH
ε = (ωi j phH

ε, j ) in QQQ as

M → ∞, where phH
ε = (phH

ε, j ) ∈ QH
ad is the unique minimizer of the functional J h

ε (qH ), defined in

(6.4), over QH
ad.

Suppose Problem 7.1 with ε = 0 has a solution, and we denote by SSShH
0M the solution set. Then,

SSShH
0M ⊂ QQQH

ad is closed and convex, and ppphH
εM → ppphH

0M in QQQ as ε → 0, where ppphH
0M ∈ SSShH

0M is the minimal
norm solution:

‖ppphH
0M‖QQQ = inf{‖qqqH‖QQQ: qqqH ∈ SSShH

0M }.
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For error estimation, we again assume (6.5). Then, we have the regularity bound (6.6). Introducing
the orthogonal projection operator Π H

j from Q j onto QH
j , we obtain

Π H
j q ∈ QH

j , (Π H
j q, q H )Q j = (q, q H )Q j , ∀ q H ∈ QH

j , q ∈ Q j . (7.2)

We denote Π H for the orthogonal projection operator from QQQ to QQQH . Easily,

Π H (qqq) = (Π H
j qi j ), ∀ qqq ∈ QQQ.

The following properties will be needed:

‖Π Hqqq‖QQQ � ‖qqq‖QQQ, ∀ qqq ∈ QQQ, (7.3)

‖qqq− Π Hqqq‖QQQ � cH
∑
i, j

|qi j |H1(Ω j )
, ∀ qqq with qi j ∈ H1(Ω j ). (7.4)

Since QQQad ⊂ QQQ is convex, the element-wise formula

Π H
j q|K = 1

|K |
∫

K
q dx, ∀ K ∈ T j,H , q ∈ Q j ,

guarantees that Π H : QQQad → QQQH
ad, i.e. for qqq ∈ QQQad, its piece-wise constant orthogonal projection

Π Hqqq ∈ QQQH
ad.

We also have∫
Ω j

(q − Π H
j q)v dx � cH‖q − Π H

j q‖Q j ‖v‖H1(Ω j )
, ∀ v ∈ H1(Ω j ), q ∈ Q j . (7.5)

Recalling the definition (6.1), we obtain

‖Uh(qqq− Π Hqqq)‖G � cH‖qqq− Π Hqqq‖QQQ, ∀ qqq ∈ QQQ. (7.6)

We now introduce a preparatory result.

LEMMA 7.3 There is a constant c > 0 independent of h and H such that

‖U(qqq) − Uh(Π Hqqq)‖G � cH‖qqq− Π Hqqq‖QQQ + ch‖qqq‖QQQ, ∀ qqq ∈ QQQ. (7.7)

Proof. We denote ei j (q) = ui j (q) − uh
i j (Π

H
j q). Using the definition (3.1) for ui j (q) ∈ V and (6.1) for

uh
i j (q), we have

∫
Ω

[Di∇ei j (q) · ∇vh + µa,i ei j (q)vh]dx +
∫

Γ

1

2A
ei j (q)vh ds

=
∫

Ω j

(q − Π H
j q)vh dx, ∀ vh ∈ V h .
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Then, for any vh ∈ V h ,∫
Ω

[Di |∇ei j (q)|2 + µa,i |ei j (q)|2]dx +
∫

Γ

1

2A
|ei j (q)|2 ds

=
∫

Ω
[Di∇ei j (q) · ∇(ui j (q) − vh) + µa,i ei j (q)(ui j (q) − vh)]dx

+
∫

Γ

1

2A
ei j (q)(ui j (q) − vh)ds +

∫
Ω j

(q − Π H
j q)(vh − uh

i j (Π
H
j q))dx .

We bound ‖vh − uh
i j (Π

H
j q)‖V by ‖vh − ui j (q)‖V + ‖ei j (q)‖V . After some manipulations with the use

of (7.5), we obtain

‖ei j (q)‖V � c

[
inf

vh∈V h
‖ui j (q) − vh‖V + H‖q − Π H

j q‖Q j

]
. (7.8)

Then, using the error bound

inf
vh∈V h

‖ui j (q) − vh‖V � ch|ui j (q)|H2(Ω)

and the regularity bound (6.6) in (7.8), we obtain

‖ui j (q) − uh
i j (Π

H
j q)‖V � cH‖q − Π H

j q‖Q j + ch‖q‖Q j , ∀ q ∈ Q j .

So (7.7) holds. �
The main result on error estimate is the following.

THEOREM 7.4 There is a constant c > 0 independent of h, H , ε and M such that

‖U(pppεM ) − Uh(ppphH
εM )‖G + ε1/2‖pppεM − ppphH

εM‖QQQ + M1/2|���(pppεM − ppphH
εM )|QQQl

� c‖U(pppεM ) − f‖1/2
G (H1/2‖pppεM − Π HpppεM‖1/2

QQQ
+ h3/4‖pppεM − ppphH

εM‖1/2
QQQ

)

+ c(H‖pppεM − Π HpppεM‖QQQ + h|pppεM‖QQQ). (7.9)

Proof. We take qqqH = Π HpppεM in (7.1) to get

(Uh(ppphH
εM ) − f, Uh(Π HpppεM − ppphH

εM ))G

+ ε(ppphH
εM ,Π HpppεM − ppphH

εM )QQQ + M(���(ppphH
εM ), ���(Π HpppεM − ppphH

εM ))QQQl
� 0.

and take qqq = ppphH
εM in (3.4) to get

(U(pppεM ) − f, U(ppphH
εM − pppεM ))G + ε(pppεM , ppphH

εM − pppεM )QQQ + M(���(pppεM ), ���(ppphH
εM − pppεM ))QQQl

� 0.

Using these inequalities, we have

‖U(pppεM ) − Uh(ppphH
εM )‖2

G + ε ‖pppεM − ppphH
εM‖2

QQQ + M |���(pppεM − ppphH
εM )|2QQQl

� (U(pppεM ) − f, U(ppphH
εM − pppεM ) − Uh(ppphH

εM − ΠhpppεM ))G

+ (U(pppεM ) − Uh(ppphH
εM ), Uh(Π HpppεM ) − U(pppεM ))G.
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Hence,

‖U(pppεM ) − Uh(ppphH
εM )‖2

G + ε‖pppεM − ppphH
εM‖2

QQQ + M |���(pppεM − ppphH
εM )|2QQQl

� c‖U(pppεM ) − f‖G[‖U(ppphH
εM − pppεM ) − Uh(ppphH

εM − pppεM )‖G + ‖Uh(ΠhpppεM − pppεM )‖G]

+ c‖Uh(Π HpppεM ) − U(pppεM )‖2
G.

Applying the error bound (6.8), (7.6) and (7.7), we can then deduce (7.9). �
Similar to (6.10) and (6.11), we have the next two sample results as consequences of Theorem 7.4.
If Qad, j ⊂ Q j are bounded, then there is a constant c > 0 independent of h, H , ε and M such that

‖U(pppεM ) − Uh(ppphH
εM )‖G + ε1/2‖pppεM − ppphH

εM‖QQQ + M1/2|���(pppεM − ppphH
εM )|QQQl

� c(H1/2‖pppεM − Π HpppεM‖1/2
QQQ

+ h3/4). (7.10)

If the compatibility condition (5.5) holds, then there is a constant c > 0 independent of h, H , ε and M
such that

‖U(pppεM ) − Uh(ppphH
εM )‖G + ε1/2‖pppεM − ppphH

εM‖QQQ + M1/2|���(pppεM − ppphH
εM )|QQQl

� c(h + H1/2ε1/4‖pppεM − Π HpppεM‖1/2
QQQ

+ H‖pppεM − Π HpppεM‖QQQ). (7.11)

These error bounds involve the projection error ‖pppεM −Π HpppεM‖QQQ. This is usually a small quantity,
as the next result shows.

PROPOSITION 7.5 IfSSS0M 
= ∅, then ‖pppεM −Π HpppεM‖QQQ → 0 as H, ε → 0. If pεM,i j ∈ H1(Ω j ), then

‖pppεM − Π HpppεM‖QQQ � cH
∑
i, j

|pεM,i j |H1(Ω j )
.

Proof. We write

‖pppεM − Π HpppεM‖QQQ � ‖pppεM − ppp0M‖QQQ + ‖Π H (pppεM − ppp0M )‖QQQ + ‖ppp0M − Π Hppp0M‖QQQ
� 2‖pppεM − ppp0M‖QQQ + ‖ppp0M − Π Hppp0M‖QQQ.

Since ‖pppεM − ppp0M‖QQQ → 0 as ε → 0, ‖pppεM − Π HpppεM‖QQQ → 0 as H, ε → 0. The error bound follows
from (7.4). �

Remarks similar to those at the end of Section 6 are valid concerning error bounds and convergence
when ε is related to h and H .

8. Concluding remark

Multispectral BLT represents a new development in optical imaging with profound potential in biomed-
ical applications. This paper introduces a general mathematical framework for multispectral BLT and
provides a thorough analysis for its properties. The formulation is based on Tikhonov regularization
and penalization. Theoretical results are rigorously established for solution existence, uniqueness, con-
tinuous dependence on the data as well as limiting behaviours of the solution as the penalty parameter
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goes to infinity and as the regularization parameter approaches zero. The multispectral BLT problem
can be solved only numerically, and numerical methods are introduced and studied distinguishing two
cases. In the first case, there is no need to discretize the admissible sets for the source functions. In
the second case, the admissible sets need to be discretized for the source functions. For both cases, the
numerical solution exists uniquely and depends continuously on the data. Error estimates are derived
for the numerical solutions. All these results provide a solid foundation for further research on the
multispectral BLT, such as efficient numerical simulations and comparison of the numerical results with
experimental results.
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