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a b s t r a c t

The Fokker–Planck equation is usually used as an approximation of the linear transport
equation for a highly forward peaked scattering process. In this note, we provide a rigorous
proof for the solution existence and uniqueness of a boundary value problem to the
Fokker–Planck equation. In addition, we present a result on the positivity of the solution.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The linear transport equation arises in a variety of applications, such as neutron transport, heat transfer, stellar
atmospheres, optical molecular imaging, infrared and visible light in space and the atmosphere and so on. We refer the
reader to [2,5,6,10,12]. The equation takes into account absorption and scattering due to inhomogeneities and typically
models particle densities or energy densities. For the steady-state monoenergetic case, it is an integro-differential equation
of the form

ω · ∇u(x, ω) + µt(x)u(x, ω) = µs(x)


Ω

η(ω · ω′)u(x, ω′) dω′
+ f (x, ω), (x, ω) ∈ X × Ω,

u(x, ω) = 0, (x, ω) ∈ Γ−.

Here X ⊂ R3 is a spatial domain and Ω is the unit sphere in R3. We assume the boundary ∂X of the domain X has the C1

smoothness and denote by ν(x) the unit outward normal vector at a point x ∈ ∂X . The symbol ∇ stands for the gradient
operator with respect to the spatial variable x. The optical parametersµt ,µs and the phase function η model the interaction
of the propagating particles with underlying media. The quantity µt = µa + µs is the total attenuation coefficient with
the absorption coefficient µa and the scattering coefficient µs; for an example of typical values in optical tomography,
µa = 0.1 cm−1, µs = 10 cm−1 [11]. The phase function η is non-negative and is normalized

Ω

η(ω · ω′) dω′
= 1 ∀ω ∈ Ω.
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It indicates the amount of particles scattering from a direction ω into a direction ω′ after collision. Γ− is the incoming
boundary, defined by

Γ− = {(x, ω) ∈ ∂X × Ω | ω · ν(x) < 0},

where ν(x) is the unit outward normal vector to X at x ∈ ∂X . f (x, ω) is the source function.
The numerical solution of the transport equation is challenging because of its high dimension and of the integro-

differential form. In many applications, e.g., light propagation within biological tissues, there is a sharp peak in the forward
scattering direction. Forward-peaked scattering corresponds to a sharp peak in the scattering phase function η(ω · ω′) near
ω · ω′

= 1. One well-known example is the Henyey–Greenstein phase function

ηHG(ω · ω′) =
1 − g2

4π(1 + g2 − 2 g ω · ω′)3/2
, (1)

where the parameter g ∈ (−1, 1) is the anisotropy factor of the scatteringmediumwhichmeasures the strength of forward
peakedness of the phase function. Typical values in biological tissues for g are around 0.9, which correspond to quite highly
forward-peaked scattering. This peak makes solving the transport equation even more difficult since the mesh size in such
a calculation must be of the same magnitude as the mean free path, which, in this case, is very small. For this reason, there
have been substantial efforts made to develop simpler approximations. The idea is to approximate the integral Boltzmann
scattering operator

Ku(x, ω) :=


Ω

η(ω · ω′)u(x, ω′) dω′.

One well-established example among these is the so-called Fokker–Planck approximation in which the scattering operator
is approximated by a second-order differential operator, resulting in the Fokker–Planck equation:

−
1
2
µtr(x)∆∗u(x, ω) + ω · ∇u(x, ω) + µa(x)u(x, ω) = f (x, ω), (2)

where ∆∗ is the Laplace–Beltrami operator on Ω , µtr(x) = (1 − g) µs(x) with

g = 2π
 1

−1
t η(t) dt

a measure of the degree of anisotropy. Note that the Henyey–Greenstein phase function ηHG is completely determined by
the anisotropy parameter g , as is seen from the formula (1). Pomraning [8,9] shows that the Fokker–Planck approximation
is an asymptotic limit of the linear transport equation under certain conditions.

In the literature, one can find some papers [3,4,7,13] that discuss properties of the following equation

− ∆u + ∇ · (u F) = f in X, (3)

where X is either a domain or a smooth Riemannianmanifold in the Euclidean space, F and f are given vector field and source
function. This equation is also called a Fokker–Planck equation. However, the Eq. (2) discussed in this paper is different from
(3) in that there are two groups of independent variables: x in a domain and ω from the unit sphere. In (2), the differential
operator ∆∗ is with respect to the angular variable ω whereas ∇ is with respect to the spatial variable x. For the Eq. (3), the
differential operators ∆ and ∇ are both with respect to the same independent variables.

The rest of the paper is as follows. In Section 2, we show rigorously the existence of a unique solution to a boundary
value problem of the Fokker–Planck equation of the form (2). In Section 3, we present maximum principles and a positivity
property of the solution.

2. Existence and uniqueness

Despite the fact that quite a few papers discuss the Fokker–Planck equation, a rigorous study of its solution existence
and uniqueness appears to be missing. The purpose of this section is to fill this gap.

We denote by Γ the boundary of X × Ω: Γ := ∂(X × Ω) = ∂X × Ω . In addition to the incoming boundary Γ−, we
further introduce the boundary subsets

Γ+ = {(x, ω) ∈ Γ | ν(x) · ω > 0}, Γ0 = {(x, ω) ∈ Γ | ν(x) · ω = 0};

Γ+ being known as the outgoing boundary. There holds the decomposition Γ = Γ0 ∪ Γ+ ∪ Γ−.
We consider the BVP

Au = f in X × Ω, (4a)
u = 0 on Γ−. (4b)

Here A is a partial differential operator of the form given by the left side of (2):

Au(x, ω) = −a1(x)∆∗u(x, ω) + ω · ∇u(x, ω) + a2(x)u(x, ω), (5)
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where ∆∗ is the Laplace–Beltrami operator on the unit sphere Ω . We assume

a1, a2 ∈ L∞(X), a1, a2 ≥ c0 in X for some constant c0 > 0, (6)

and

f ∈ L2(X × Ω).

For the Fokker–Planck equation (2), these assumptions are naturally valid; the second part of (6) is automatically satisfied
as long as the scattering and absorption effects are not negligible.

We now introduce a weak formulation for a boundary value problem (4). For this purpose, let u ∈ C2(X × Ω) be a
function satisfying (4). Multiply the Eq. (4a) by a test function v ∈ C1(X ×Ω), integrate over X ×Ω , and apply the boundary
condition (4b) to find

a(u, v) = (f , v) (7)

in which,

a(u, v) =


X×Ω


a1∇∗u · ∇

∗v − uω · ∇v + a2uv

dx dω +


Γ+

ν · ω uv dS dω,

(f , v) =


X×Ω

f v dx dω,

where dS is the infinitesimal area element on ∂X , and (·, ·) denotes the inner product in L2(X × Ω). The bilinear form a(·, ·)
defined on C1(X × Ω) × C1(X × Ω) is not symmetric. So we introduce another bilinear form

a(v, w) =


X×Ω


a1∇∗v · ∇

∗w + a2vw

dx dω +

1
2


Γ

|ν · ω|vw dS dω (8)

which symmetries a(·, ·):

a(v, v) = a(v, v) ∀v ∈ C1(X × Ω).

Under the condition (6), a(·, ·) defines an inner product on C1(X × Ω). We introduce the completion of the space
C1(X × Ω) with respect to the inner product a(·, ·):

V1 :=


v ∈ L2(X × Ω) | |∇

∗v| ∈ L2(X × Ω),


Γ

|ν · ω|v2 dS dω < ∞


, (9)

with the norm

∥v∥V1 =


a(v, v)

which is equivalent to the standard norm
X×Ω


|∇

∗v|
2
+ v2 dx dω +


Γ

|ν · ω|v2 dS dω
1/2

.

We further introduce a subspace of V1:

V2 :=

v ∈ V1 | ω · ∇v ∈ L2(X × Ω)


, (10)

with the norm

∥v∥V2 =


∥v∥

2
V1 +


X×Ω

|ω · ∇v|
2dx dω

1/2

.

Here, all the derivatives are understood to be the generalized (weak) derivatives.
We can extend a(·, ·) continuously with respect to its first argument in V1 and its second argument in V2. Denote the

extension again by a(·, ·). Similarly, the bilinear form a(·, ·) is extended continuously to V1 × V1. Moreover,

a(v, v) = a(v, v) ∀v ∈ V2. (11)

With the above preparation, we can define a weak solution of the BVP (4) as follows.

Definition 1. We say that u ∈ V1 is a weak solution of the BVP (4) if

a(u, v) = (f , v) ∀v ∈ V2.

We now study the weak formulation given in Definition 1. First observe that the bilinear form is bounded: for some
appropriate constant C ,

|a(u, v)| ≤ C ∥u∥V1∥v∥V2 ∀u ∈ V1, v ∈ V2.
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This is proved by applying the Cauchy–Schwarz inequality. Thus, for any fixed v ∈ V2, u → a(u, v) is a bounded linear
functional on V1. Therefore, by the Riesz representation theorem (e.g., [1, Subsection 2.5.2]), there exists a unique element
Tv of V1 such that

a(u, v) = a(u, Tv) ∀u ∈ V1. (12)
We claim T : V2 → V1 is a bounded linear operator. Indeed if λ1, λ2 ∈ R and v1, v2 ∈ V2, we see for each u ∈ V1 that

a(u, T (λ1v1 + λ2v2)) = a(u, λ1v1 + λ2v2) (by (12))
= λ1a(u, v1) + λ2a(u, v2)

= a(u, λ1Tv1 + λ2Tv2).

So T is linear. Furthermore
∥Tv∥

2
V1 = a(Tv, Tv) = a(Tv, v) 6 C∥Tv∥V1∥v∥V2 .

Consequently ∥Tv∥V1 6 C ∥v∥V2 for all v ∈ V2, and so T : V2 → V1 is bounded.
Since a(v, Tv) = a(v, v) by (11) and (12), we have

∥v∥V1 ≤ ∥Tv∥V1 if v ∈ V2.

So, T is a one-to-one mapping from V2 into V1.
Furthermore, define subspaces

V1,T := completion of {Tv | v ∈ V2} in V1,

V2,T := completion of V2 with respect to v → ∥Tv∥V1 .

Then V1,T is a closed subspace of V1, V2 ⊂ V2,T ⊂ V1, and T can be extended to an isomorphism from V2,T onto V1,T (the
extension is again denoted by T ). Moreover, the equality

a(Tv, w) = a(Tv, Tw)

is extended from V2 × V2 to V2,T × V2,T .
Now, given f ∈ L2(X × Ω), the linear form v → (f , v) is a continuous functional on V2,T , and aT (u, v) := a(Tu, Tv) is an

inner product on V2,T . So there exists a unique u′
∈ V2,T such that

(f , v) = aT (u′, v) = a(Tu′, Tv) = a(Tu′, v) ∀v ∈ V2,T .

Because T is a one-to-one map, we set u = Tu′
∈ V1 and then

(f , v) = a(u, v) ∀v ∈ V2,T .

This implies that u ∈ V1 is a weak solution of the BVP (4). If u ∈ V2, then it is also unique. This is shown as follows. Let ũ ∈ V2
be another weak solution. Then

a(u − ũ, v) = 0 ∀v ∈ V2.

Take v = u − ũ and apply the relation (11), we conclude that u − ũ = 0.
We summarize the above discussion as the following theorem.

Theorem 2. Assume (6). Then, for an arbitrary f ∈ L2(X × Ω), there exists u ∈ V1 satisfying

a(u, v) = (f , v) ∀v ∈ V2.

Moreover, if u ∈ V2, then it is unique.

If the solution u thus obtained is of C2 on X ×Ω , then it can be verified directly that u solves the boundary value problem
Au = f in X × Ω, u = 0 on Γ−.

3. Maximum principle and positivity of the solution

In this section, we present maximum principles for the Fokker–Planck equation (4), and as a consequence, we show a
positivity property of the solution. We first introduce a lemma.

Lemma 3. Let w ∈ C2(Ω). If w achieves its maximum at a point ω0 ∈ Ω , then

∆∗w(ω0) ≤ 0.

Proof. Define w∗(x) = w(x/|x|) for x ∈ R3
\ {0}. If w achieves its maximum at ω0 ∈ Ω , then w∗ achieves its maximum at

any x0 ≠ 0with ω0 = x0/|x0|. Then by the definition of Laplace–Beltrami operator on Ω , we have

∆∗w(ω0) = ∆w


x0
|x0|


= ∆w∗(x0) ≤ 0.

Therefore, the stated result holds. �
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To simplify the notation, we introduce the set

XΩ = Γ+ ∪ Γ0 ∪ (X × Ω),

and define C1,2(XΩ) to be the space of all functions v ∈ C(XΩ) such that ∇
∗v, ∆∗v and ∇v are all continuous on XΩ . We

have the following maximum principle.

Theorem 4. Assume u ∈ C1,2(XΩ) ∩ C(X̄ × Ω) and

a1(x) > 0, a2(x) = 0 for x ∈ X .

(i) If

Au < 0 in XΩ , (13)

then

max
X̄×Ω

u = max
Γ−

u.

(ii) Likewise, if

Au > 0 in XΩ ,

then

min
X̄×Ω

u = min
Γ−

u.

Proof. We first prove (i). Let (x0, ω0) ∈ XΩ be a point with u(x0, ω0) = maxX×Ω u. By Lemma 3,

− a1∆∗u(x0, ω0) ≥ 0. (14)

We distinguish three cases according to the location of the point (x0, ω0).
First, if (x0, ω0) ∈ X × Ω , then

∇u(x0, ω0) = 0. (15)

Next, if (x0, ω0) ∈ Γ+, then

ω0 · ∇u(x0, ω0) ≥ 0. (16)

Indeed, the condition (x0, ω0) ∈ Γ+ implies ω0 · ν(x0) > 0. For t > 0 sufficiently small,

u(x0 − tω0, ω0) ≤ u(x0, ω0).

Rearranging and dividing by t , we get

u(x0, ω0) − u(x0 − tω0, ω0)

t
≥ 0.

Letting t → 0+, we obtain (16).
Finally, suppose (x0, ω0) ∈ Γ0. Let us show that

ω0 · ∇u(x0, ω0) = 0. (17)

For this purpose, we choose a continuous boundary curve segment {x(t) | |t| < t0} ⊂ ∂X , t0 > 0 sufficiently small, such
that x(0) = x0, and the direction ω(t) := (x(t) − x0) /∥x(t) − x0∥ has the properties that ω(t) · ω0 > 0 for t ∈ (0, t0) and
ω(t) → ω0 as t → 0+, and ω(t) · ω0 < 0 for t ∈ (−t0, 0) and ω(t) → −ω0 as t → 0−. Since u attains its maximum over
X̄ × Ω at (x0, ω0), we have u(x(t), ω0) ≤ u(x0, ω0). Thus,

u(x0 + ∥x(t) − x0∥ω(t)) − u(x0, ω0)

∥x(t) − x0∥
≤ 0.

Taking the limits t → 0+ and t → 0−, we get

ω0 · ∇u(x0, ω0) ≤ 0, −ω0 · ∇u(x0, ω0) ≤ 0,

respectively. Therefore, (17) holds.
Combining (14) with (15) or (16) or (17), we know that in any case, Au(x0, ω0) ≥ 0, contradicting to the condition (13).

Therefore, (i) holds. As A(−u) < 0 whenever Au > 0, assertion (ii) follows from (i). �

Next we include the zeroth-order term. Denote u+
= max{u, 0}, u−

= min{u, 0}.
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Theorem 5. Assume u ∈ C1,2(XΩ) ∩ C(X̄ × Ω) and

a1(x) > 0, a2(x) > 0 for x ∈ X .

(i) If

Au ≤ 0 in XΩ , (18)

then

max
X̄×Ω

u ≤ max
Γ−

u+.

(ii) Likewise, if

Au ≥ 0 in XΩ ,

then

min
X̄×Ω

u ≥ min
Γ−

u−.

Proof. As in the proof of Theorem 4, we only prove (i). Thus, assume (18) and let u attain a positive maximum at a point
(x0, ω0) ∈ XΩ . As in the proof of Theorem 4, we have

Au(x0, ω0) ≥ a2(x0) u(x0, ω0) > 0.

This contradicts to the assumption (18). �

An immediate consequence of the above theorem is the following result, which is an important property for the
Fokker–Planck equation to make physical sense.

Corollary 6. Assume a1(x) > 0 and a2(x) > 0 for x ∈ X. If u ∈ C1,2(XΩ) ∩ C(X̄ × Ω) satisfies (4) with f ≥ 0 in X × Ω , then
u ≥ 0 in XΩ .

Acknowledgments

We thank the anonymous referees for their valuable comments and suggestions.

References

[1] K. Atkinson, W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework, third ed., Springer-Verlag, 2009.
[2] K.M. Case, P.F. Zweifel, Linear Transport Theory, Addison-Wesley, Reading, 1967.
[3] L. Chupin, Fokker–Planck in bounded domain, Ann. Inst. Fourier 60 (2010) 217–255.
[4] J. Guinez, A.D. Rueda, Steady states for a Fokker–Planck equation on Sn , Acta Math. Hungar 94 (2002) 211–221.
[5] M.F. Modest, Radiative Heat Transfer, second ed., Academic Press, 2003.
[6] F. Natterer, F. Wübbeling, Mathematical Methods in Image Reconstruction, SIAM, Philadelphia, 2001.
[7] A.I. Noarov, Generalized solvability of the stationary Fokker–Planck equation, Differ. Uravn. 43 (2007) 813–819.
[8] G.C. Pomraning, The Fokker–Planck operator as an asymptotic limit, Math. Models Methods Appl. Sci. 2 (1992) 21–36.
[9] G.C. Pomraning, Higher order Fokker–Planck operators, Nucl. Sci. Eng. 124 (1996) 390–397.

[10] G.E. Thomas, K. Stamnes, Radiative Transfer in the Atmosphere and Ocean, Cambridge University Press, 1999.
[11] L. Wang, H. Wu, Biomedical Optics: Principles and Imaging, John Wiley & Sons, 2007.
[12] W. Zdunkowski, T. Trautmann, A. Bott, Radiation in the Atmosphere: A Course in Theoretical Meteorology, Cambridge University Press, 2007.
[13] E.C. Zeeman, Stability of dynamical systems, Nonlinearity 1 (1988) 115–155.


	Well-posedness of the Fokker--Planck equation in a scattering process
	Introduction
	Existence and uniqueness
	Maximum principle and positivity of the solution
	Acknowledgments
	References


