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Abstract

Interest in meshfree (or meshless) methods has grown rapidly in recent years in solving boundary value problems (BVPs) arising in
mechanics, especially in dealing with difficult problems involving large deformation, moving discontinuities, etc. In this paper, we
provide a theoretical analysis of the reproducing kernel particle method (RKPM), which belongs to the family of meshfree methods.
One goal of the paper is to set up a framework for error estimates of RKPM. We introduce the concept of a regular family of particle
distributions and derive optimal order error estimates for RKP interpolants on a regular family of particle distributions. The inter-
polation error estimates can be used to yield error estimates for RKP solutions of BVPs. © 2001 Elsevier Science B.V. All rights
reserved.

Keywords: Meshfree methods; Meshless methods; Reproducing kernel particle method (RKPM); Regular particle distributions;
Optimal order error estimates

1. Introduction

The finite element method has been the dominant numerical method in computational mechanics for
several decades. Recently, a new family of numerical methods has attracted much interest in the community
of computational mechanics. This new family of numerical methods shares a common feature that no mesh
is needed and shape functions are constructed from sets of particles. These methods are designed to handle
more effectively problems with large deformations, moving discontinuities and other difficult problems, and
are hailed as numerical methods of the next generation (cf. Preface of [15]).

Currently there is no single universal name for the family of methods, with meshless methods or meshfree
methods as possible choices. For example, Meshless methods is the title of a special issue of the journal
Computer Methods in Applied Mechanics and Engineering [15] in 1996. Recently, however, the name
meshfree methods becomes more popular. Various methods belong to this family, including smooth particle
hydrodynamics (SPH) methods [19,21,22], diffuse element method (DEM) [23], element free Galerkin
(EFG) method [2,3], reproducing kernel particle method (RKPM) [5,16,17], moving least-square repro-
ducing kernel method [14,18], 4#-p-Clouds [8,9], partition of unity finite element method [1,20].

In this paper, we provide a theoretical analysis of the RKPM, which belongs to the family of meshfree
methods. One goal of the paper is to set up a framework for error estimates of RKPM. We introduce the
concept of a regular family of particle distributions and derive error estimates for RKP interpolants on a
regular family of particle distributions. The interpolation error estimates are used to yield optimal order
error estimates for RKP solutions of Neumann boundary value problems. Since the RKP shape functions
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do not have the Kronecker delta property, the treatment of Dirichlet boundary value conditions is more
difficult than in the finite element method. We will show how to derive optimal order error estimates for
RKP solutions of Dirichlet boundary value problems (BVPs) in one dimension. Several approaches are
proposed in the literature to treat Dirichlet boundary value conditions (cf. [6,7,11,24]) numerically. We
discuss error estimates in this paper under sufficient smoothness assumption on the functions being ap-
proximated. Error analysis of the method for singular problems will be given in a forthcoming paper [12].

The paper is organized as follows. In Section 2, we introduce some notations to be used later. For
convenience of mathematics readers, we provide a precise introduction of RKPM in Section 3, emphasizing
the ideas behind the development of the method. In Section 4, we derive optimal order error estimates for
RKP interpolants. These results are comparable to those in the theory of the finite element method. In
Section 5, we discuss error estimates for RKP solutions of boundary value problems. Numerical results
presented in the last section demonstrate convergence orders of RKPM, confirming the theoretical error
estimates.

2. Notations

Throughout the paper, we use the following notations. The letter d is a positive integer and is used for
the spatial dimension. We denote Q C R? to be a nonempty, open bounded set with a Lipschitz continuous
boundary. In the one-dimensional case, d = 1, we choose Q = (0, L) for some L > 0. A generic point in R is
denoted by x = (x1,...,xs), or y = (yi,...,ya)" or z=(z1,...,2z4)". We use Euclidean norm to measure
the vector length:

J 1/2
2
x| = (leil ) :
i—1

It is convenient to use the multi-index notation for partial derivatives. A multi-index is an ordered col-

lection of d nonnegative integers, o« = (o4, ...,a,). The quantity |o| = Zle o; is said to be the length of «.
For z = (zl,...,zd)T € R and o = (ay,...,0), we write a! = o;!---0;;! and z* =z;'---Z;. For any « with
o) <m,
0% (x)
Dv(x) = ——
(x) Oxy' - oy

is the ath order partial derivative. As usual, D’v(x) = v(x).
For x, € R? and r > 0, we use

B,(x0) = {x € R : [|x — xo]| <7}

to denote the (closed) ball centered at x, with radius r. In particular, when x, = 0, the ball is denoted as B,.
Let p be a nonnegative integer. We use the notation 2, = 2,(Q) for the space of the polynomials of
degree less than or equal to p on Q. The dimension of the polynomial space is

p+d) (p+d)!

; —

N,=dim 2, = ( ol

Given ¢, € R for all o with |¢|<p, we arrange them to a vector &< R™ in the lexical order:

2=(0,...,0),(1,0,...,0),...,(0,...,0,1),(2,0,...,0),(1,1,0,...,1),...,(0,...,0,p).

3. Reproducing kernel particle approximation

We first introduce the concept of reproducing kernel approximation at the continuous level, which helps
in understanding derivation of the RKP approximation.
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3.1. Reproducing kernel approximation

Let d(-) denote the Dirac delta function. For u € C(Q), we write formally
u(x) = / o(x—p)u(y)dy VxeQ.
Q
For practical use, the kernel function d(x — y) is approximated by finite-valued functions. A standard

choice is ¢ /®,(x — y) with ¢ > 0 small and

Z

d.(z) = @(—).

&
The function @, called a generating function or a window function, has the properties:

@ is continuous,

supp @ = By,
&(x) > 0 for ||x]| < 1,
Jp, @(x) dx = 1.

Correspondingly, properties of the function @, are

@, is continuous,
supp®, = B,

@, (x) >0 for ||x|| <,
Jp, @:(x) dx =&

There are infinitely many possible choices for the generating function. We first list some generating
functions in one dimension. A popular choice in engineering computations is the cubic spline ;& with

%—4|z\2—|—4|z|3, 0< |z < 4,
D) =\ 4—4lz| +41 -4, 1<,
0, |lz| > 1.

This function has the smoothness C2. Another popular choice is
o(z) = { e/ <,
0, |zl > 1,
where ¢y > 0 is chosen such that
1
/ &(z)dz=1.
-1
This function is infinitely smooth. One family of generating functions is given by the formula
2N/
7)) _ C1(1_2)7 |Z|<17
@={5 4> 1,

where ¢; = (21 + 1)!/(2*"*11'?). We observe that @, € C'~!.

Any one-dimensional generating function &(z) can be used to create a d-dimensional generating function
either in the form @(||z||) or by a tensor product [[7_, ®(z;). For definiteness in this paper, we consider only
the first form. All the theoretical analysis presented in this paper goes through when a d-dimensional
generating function is constructed as a tensor product of lower-dimensional generating functions.

We can then use

u(x) = /Qe_dtpg(x —y)u(y)dy, xeQ, (3.1)
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to approximate the function u(x). Denote
Q, = {x € Q: dist(x,0Q) > ¢}.
We have the following standard result concerning the convergence of u, to u as ¢ — 0 (see, e.g. [10]).

Theorem 3.1. Assume ® € C"(R"). If u is locally integrable, then u, € C"(Q,). If u € C*(Q) for some k <m,
then for any o with |o| <k,

D*u, — D*u as ¢ — 0+
uniformly on compact subsets of Q.

In the literature on function spaces, e ¢ ®,(-) is called a mollifier. In the development of RKPM, however,
it is more convenient to single out the factor ¢~ in the mollifier as we will see later. The convolution of the
mollifier with a function u, defined in (3.1), is used to generate a sequence of smooth functions approxi-
mating the function u.

The pointwise convergence stated in Theorem 3.1 is the basis for the success of SPH methods for solving
differential equations over the whole spatial space.

Note that the convergence of (3.1) is restricted to the interior of the domain. Near the boundary, u, does
not represent an approximation to u. To have convergence also near the boundary, Liu et al. [17] modified
the approximation formula (3.1) by introducing a correction term to the kernel function:

w() = [ 50~ ) Clrix —p)uly) dy, x <2 (3.2)

where the correction function is

C(x;z) = Z 2"b,(x), p =0 integer.

o <p

With the introduction of the correction function in the kernel of (3.2), it is convenient for us to abandon the
condition

since any scaling factor in the function @,(-) can be absorbed into the correction function. The coefficient
functions {b,(x)}, ., are chosen in such a way that formula (3.2) reproduces polynomials of degree less
than or equal to p,

u(x) = /Qs’dcbn(x —y)Cx;x—y)u(y)dy Yue P, (3.3)
1e.

u(x) = Z bx(X)/QS’dd)s(x —y)(x =y u(y)dy Vue 2,

o] <p

This introduces a system of N, equations for the N, coefficient functions {b,(x)}, .. Taking u(y) =1 in
(3.3), we obtain

S o) [ a0y -9y dy = 1.

o] <p
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Taking u(y) = (x — y)’ with 0 < || <p, we have
> bu(x) [0 e p) -0 dy =0
Q

ol <p
Combining these relations, we get the polynomial reproducing conditions

> digp(x =dpp0, IBlI<p. (3.4)

laf<p

Here
i) = [ 50— (e =)
are the moment functions.
Proposition 3.2. The system (3.4) has a unique solution {b,(x)}, < -

Proof. Consider the quadratic form

0(x;8) = Y Epip(x)¢

| IBI<p

|| o

lo| <p

for & = (&,) € R™. We always have Q(x; &) > 0. Suppose for some x € Q, Q(x; &) = 0. Since @,(x — y) is
positive for |x — y| < ¢, there is a region D containing the origin with meas (D) > 0 such that

Y &z =0 vzeD.

o] <p
Then
& =0 Yoo <p.

Therefore, the coefficient matrix of (3.4) is positive definite and the system (3.4) has a unique solution. [

Proposition 3.3. For x € Q,, m,(x) is constant. Hence the coefficient functions {b,(x)}, ., are constant on
Q..

Proof. Recall that supp @, = B, is the ball with radius ¢ centered at the origin. By a change of variables, we
have

iy (x) = (71)%7‘1/ O(2)tdz, xE€Q,
B,
which is constant. O

One major role played by the correction function is to make the kernel approximation also valid near
and on the boundary.

3.2. Reproducing kernel particle approximation

For practical computations, integrals are replaced by summations. For example, let {xl-}f:1 be a set of
points, called particles, of the domain €. Then we can introduce a numerical integration formula

/Q 1) dy D S
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where w; > 0 are suitable constants. With this numerical integration, we introduce a discrete kernel ap-
proximation

Z e P, (x — x;) C(x;x — x;) wu(x;). (3.5)

i=1

The question is then how to choose the particles {x,}._, and the weights {w;}._, suitably so that the
polynomial reproducing property (3.3) is carried over to the discrete level, i.e. whether the relation

I
x) = Z e @, (x — x;)C(x;x — x;)wu(x;) Yue 2,

holds?
A more plausible approach is achieved by specifying the polynomial reproducing property directly on
the discrete kernel approximation, without recourse to the integral form. Let

¥i(x) = ¢ ®,(x — x;) C(x; x — x;)w;.

Then formula (3.5) can be rewritten as

1

u,(x) = Z Vi(x)u(x;). (3.6)

i=1

By absorbing the weights w; and the factor ¢~ into the coefficients {b.(x)}, <, and recalling the form for
the correction function C(x;z), we write

Pi(x) = @y(x — x1) Y (x — x;)"by(x).

o] <p

To have greater flexibility, for each particle x;, we can allow the support radius ¢ to be dependent on i. Let
us replace ¢ by »; > 0 and write

Yi(x) =&, (x — x;) Z(x —x;)"by(x), 1<i<I, (3.7)
o] <p
where
b, (x —x;) = (p(x—x,-)
T

Since the domain Q is assumed to be Lipschitz continuous, it is locally on one side of the boundary. In case
the particle x; lies on or close to the boundary so that B, (x;) N0Q # @), we redefine the function value
&, (x — x;) to be zero outside that side of Q on which the particle x; lies. This is implicitly assumed
throughout the paper.

Imposing the polynomial reproducing conditions on formula (3.6),

!

u(x) =Y Wix)u(x;) Yue 2, (3.8)

i=1
we have, similar to (3.4), that

Z My p(X =m0, |BI<p, (3.9)

laf <p

where

!

Z@l x—x)(x—x)", |o|<p, (3.10)

i=1
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are the discrete moment functions. Conditions (3.9) can be seen as a consistency condition for the shape
functions {¥;(x)}:

S W) (x—x) =850, IBI<p. (3.11)

i=1
Denote the discrete moment matrix from (3.9) by M(x). Then
1
M(x) = Z @, (x — x;)h(x — x;)h(x — x;)", (3.12)
i=1

1

h(Z) = (zi)Mgp S RNF.

Obviously, the matrix M(x) is symmetric and positive semi-definite.
Since M (x) is a summation of rank-one matrices, for M(x) to be nonsingular, a necessary condition is:
for any x, there are at least

N, = dim 2, — (p;d>

nonzero terms in the summation (3.12).

Definition 3.4. A point x € Q is said to be covered by m shape functions if there are m indices i, . . . , i,, such
that

lx—x;|<ry, j=1,...,m

Proposition 3.5. For any x € Q, a necessary condition for M(x) to be invertible is that x is covered by at least
N, = dim 2, shape functions.

Let us try to find a sufficient condition for nonsingularity of M(x). For any vector & = (¢,) € R",
consider the quadratic form

!

EME)E= D", (x — x,) I(x — x)"E]

i=1
Assuming "M (x) & = 0, then

O, (x—x)>0 = hix—x)'&=0.

Suppose the necessary condition of Proposition 3.5 is satisfied and let ij,...,iy, be indices with
@, (x —x;) > 0. Then
h(x — X )T
&=0. (3.13)
h(x — Xiy, )T

A sufficient condition for invertibility of M(x) follows if the coefficient matrix in (3.13) is nonsingular.
In the one-dimensional case, Q@ = (0,L), we introduce particles xi,...,x; € Q. We have N, = dim 2, =
p + 1. The moment matrix is

M(x) = XI: <15<x _x"> h(x —x;) h(x —x;)",

v

i=1
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Assume the necessary condition of Proposition 3.5 is satisfied and let i,...,i, be indices with
@((x —x;,)/ri;) > 0. Then the system (3.13) is
1 x-— Xiy (x - xio)p
1l x—x, - (x—x,)
E=0.
I x—x, - (x—x,)

The determinant of the coefficient matrix is equal to

[(r =) = (x = x;))] = H (o5, — xz,),

0<1<k<p 0<1<k<p

which is nonzero since the particles are distinct. So we have the following result.

Theorem 3.6. In the one-dimensional case, the discrete moment matrix M(x) is invertible if and only if x is
covered by at least p + 1 shape functions.

For RKPM to work well, we need conditions stronger than the nonsingularity of the discrete moment
matrix. The notion of an (r, p)-regular family of particle distributions to be introduced and discussed in the
following section is one such condition. We will verify the (r, p)-regularity for some important situations,
leading immediately to some sufficient conditions for the nonsingularity of the discrete moment matrix.

3.3. Properties of the shape functions

We list below some properties of the shape functions {¥;}. We assume M (x) is nonsingular so that we
can solve (3.9) uniquely and define the shape functions {'1”,-}52l from (3.7).

Property 3.7. The shape functions have compact supports: supp ¥; = supp @,,.

This property follows immediately from formula (3.7).
Property 3.8. The shape functions {‘I’,»}le form a partition of unity.

Indeed, using (3.8) with u(x) = 1, we obtain

Y(x) =1.

!
i=1

Property 3.9. If @ € C*, then ¥, € C*,i=1,... 1.

This follows from the observation
deCt = b,eC Va:|o<p,

using (3.9) and (3.10). So unlike the finite element method, in RKPM it is easy to construct shape functions
of any degree of smoothness. Thus the solution of higher-order differential equations does not present any
special difficulty in the construction of conforming RKP shape functions. This is a common feature shared
by other meshfree methods.
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It is shown in [18] that the consistency condition (3.11) of the shape functions leads to consistency re-
lations of their derivatives.

Property 3.10. Assume @ € C*. Then
1
S D i(x)(x — x) = (-1)"B1o,, Vel <k, B <p. (3.14)
i=1
Here 6,5 equals 1 if p = o, and is zero otherwise.
The question whether the shape functions {'I’i}le are independent seems difficult to answer in general.
Let us consider the one-dimensional case with p = 0. Then the system (3.9) reduces to a single equation
mo(x) bo(x) =1

with

Hence
1

by(x) = —/————

e
and the “basis” functions ¥; from (3.7) are

D, (x —x; D((x —x;) /7,
Vi(x) = D, (x — x;) bo(x) = =7 1 ) = —3 (¢ /) . (3.15)
Zj:l (pr/(x - xj) Zj:l (D((x - xj)/”j)

To see if the set (3.15) is linearly independent, suppose there are constants cy, ..., c; such that

1
Zc,@(x x,-) =0 in Q.
i=1 Ti

In the case p =0, each x must be covered by at least one shape function. Suppose for each i, supp ¥;
contains a nontrivial portion that does not intersect the supports of the remaining shape functions, then
{¥;} as given in (3.15) are independent.

Unlike basis functions in the finite element method, the shape functions {¥;} do not enjoy the Kronecker
delta property, i.e. we do not have ¥;(x;) = 0 for j # i. This lack of the Kronecker delta property is the
source of difficulty in the implementation of Dirichlet boundary conditions and in error analysis of RKPM
for solving Dirichlet BVPs.

4. Interpolation error estimates

We will derive error estimates for the case of quasiuniform support sizes, i.e. there exist two constants
¢1,¢2 € (0,00) such that

ri ..
a<—<c Vij.
Tj

For such particle distributions, there exists a parameter » > 0 such that

v

< =<6 Vi

~ |

The more general case of arbitrary support sizes will be studied in a forthcoming paper.
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4.1. Regularity of particle distributions

Rewrite the system (3.9) in the form

i) - ()

i=1

is the scaled discrete moment matrix.

Definition 4.1. A family of particle distributions {{x,-}le} is said to be (r, p)-regular (or we simply say the
particle distributions are (r, p)-regular) if there is a constant L, such that

max || Mo (x) ' [, < Lo
xeQ

for all the particle distributions in the family.

Since on a finite dimensional space all norms are equivalent, the spectral norm || - ||, in the definition can
be replaced by any other matrix norm. We observe that the essential point is to have Mo(x)f1 uniformly
bounded, or equivalently, the vectors {A((x — x;)/r)}, for which &((x — x;)/r) = ¢y > 0, are “uniformly”
linearly independent.

It is easy to deduce the following result from Definition 4.1.

Proposition 4.2. A family of particle distributions is (v, p)-regular if it is (v, p + 1)-regular, but not conversely.
Let us verify the (r, p)-regularity for two important situations.

First we consider the case of one-dimension. Then b(x) = (bo(x), by (x),. .., rpbp(x))T is the solution of
the system
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Theorem 4.3. Assume there exist two constants ¢y > 0, gy > 0 such that for any x € [0,L], there are
iy < iy < -+ <, with

. X — X,
min @ Y) =0 >0, (4.1)
0<j<p }",',
and
X; — X;
min | ~—"%| > g, > 0. (4.2)
J#k r

Then the family of particle distributions {{x;}'_,} is (r,p)-regular, i.e. there exists a constant L(cy, o) such
that
max || Mo(x) " ||, < L(co, 00). (4.3)

0<x<L

Before proving the theorem, let us make some remarks. The first condition, (4.1), is a strengthened
version of the necessary condition that any point must be covered by p 4 1 shape functions (cf. Proposition
3.5 or Theorem 3.6). Condition (4.2) can be equivalently written as
X, — X
min 21—~ >4, > 0.

0<j<p-1 r
A geometrical interpretation of condition (4.2) is that in any local region, at least p + 1 particles do not
coalesce as the refinement goes (i.e. as r — 0).

As a further remark, assume equal support size »; = --- = r; = r and consider the situation where @ is
increasing on [—1,0] and decreasing on [0, 1], and is symmetric with respect to 0, as is the case in actual
computations. If for any x, we can find i_; < iy < --- < i, such that

v —x; | <r, —1<j<p+1
with

xi/fl N

min =09 > 0,

-1<j<p r
then (4.1) is automatically satisfied with
co = @(1 — O'()).

As one more remark, a set of particles is regularly distributed if it contains a regularly distributed subset of
particles. Thus in a regular distribution, we allow aggregation of particles in any local area where the exact
solution is expected to be rough and more particles are needed to approximate the solution more accurately
(however, see Hypothesis (H) introduced in Subsection 4.3).

Proof of Theorem 4.3. Under the given assumption, the symmetric matrix My(x) is positive definite and is
thus invertible. For a symmetric, positive semidefinite matrix 4 € R?*V*®*D e arrange its eigenvalues in
increasing order:

(0<)40(4) < -+ < 4(4).
Recall that
IAll, = max ix(d) = Ay(a).
When A is symmetric and positive definite, the eigenvalues of 4~! are

(0 <) p(A) "< oo <dp(a) 7,
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and we have
1471y = Zo(4) ™.

Also recall that if 4 and B are both symmetric and 4 — B is positive semidefinite, then
lk(A) 2/1]{(3), k:(),l,...7p

Using these results, we have
1M ()" Il = Z0(Mo(x)) ™

We will use the notation

X — X;

zZ; =
%

and denote the matrix

1 1 1

ZfO Zil Zip

H(Zi(J,...,Zip) = (h(ZiU),...,h(Zl‘p)) = .
iy i ZZ

Now
X)—co» h(z)hz)" = (D(z) —co)h(z)hz,) + > O()h(z)h(z)"
j=0 Jj=0 i#i;,0<j<p

is positive semidefinite. Then

}uo(Mo(x)) = )»0 (CO Zh(z,-j)h(zi/)T> = C‘O/ALO(I‘I(ZIA07 Ce ,Z,‘p)H(ZiO, e azip)T>'

So

2

] <

(1‘[(2,‘07 e ,Zl'p)H(Z[O, e 7Z[p)T)

-1
—co HH (Zigs - -+ 2i,) )

With condition (4.2), which is rewritten as

min |z,~1. —z;| = a9 >0,
J#k

the formula

detH(Z,-O, e 7Zip) = H (Zik — Zii)

and the Cramer formula for an inverse matrix, we conclude that the entries of the matrix H(z,, ...,
are uniformly bounded in x. Therefore, ||H(z;,...,z,)" "I, is uniformly bounded and (4.3) holds.
Next we consider the case p =1 in d dimensions Thls is the case in many engineering calculations. Let

X — X;
- - (ZiAla e 7Zi«,d)T7

i =
B

and

h(z,-) = (I,Zi.]7 e ,ZiAd)T.
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Let us evaluate the determinant of

1 1 1
Z11 221 Zd+1,1
H(zi,.. . 2a01) =
Z1d 224 " Zd+ld

After some elementary manipulations, we have

1 1 .- 1
_1)”’ X1 X210 o Xayld
detH(zl,. .. 7zd+]) :T
X1d X244 0 Xayld
So the determinant is nonzero if and only if the points xi,...,x;, | are the vertices of a nondegenerate d-
simplex, or equivalently, the (d + 1) points xi,..., X, are not contained in a hyperplane in R¢.

After translating (negatively) by x and scaling by r, we obtain a d-simplex with the vertices zj, ..., Zs1-
The value det H(zy,...,24s+1) is proportional to the volume of the scaled d-simplex. Thus the regularity
requirement (cf. the proof of Theorem 4.3) is that

|detH(z1, R 7Zd+1)| =7cy >0,
or
1 1 ... 1
X11 X210 Xg+11 4
. . .|l =G
X1d X244 " Xa+ld
That is, the d-simplex with the vertices xi,..., X,y has a volume larger than ¢ for some ¢, > 0. This

condition is satisfied if the largest sphere inscribed in the d-simplex has a diameter bounded below by some
constant times r.
Summarizing, we have shown the following result.

Theorem 4.4. A family of particle distributions {{x;}_,} in RY is (r, 1)-regular if there exist two constants
o, Co > 0 such that for any x € Q, there are d + 1 particles x;,, . .., x;, satisfying

. x_xi,'
min @( ’)Zco>0,
0<j<d r

and the d-simplex with the vertices x;,, ..., x,;, has a volume larger than cor’.

4.2. Bounds on the shape functions and their derivatives

Since
b(x) = Mo(x) er,
we have the following result.

Theorem 4.5. Assume the distributions of the particles are (r, p)-regular. Then there is a constant ¢ < co such
that

max #*||b, ||, <ec.
o <p
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Under the assumptions of Theorem 4.5, we see that ||b,||, <cr . So as r — 0, only b...0) stays
bounded, while for o # (0, ...,0), ||b,||, tends to infinity at the rate of 7. The phenomenon is observed in
actual computations. This gives us a warning of possible numerical instability of a code implementing
RKPM with high degree p, and partially explains that most engineering computations with RKPM are
done with a low degree p.

Recall that the shape functions are given by the formulas

Pi(x) = ‘p(x;,-n) > (x_rxi)ir‘“‘bxx), 1<i<l.

o] <p

We immediately have the following result.

Theorem 4.6. Assume ® € C and the particle distributions are (r,p)-regular, then there is a constant ¢ < oo
such that
max || ¥l

1<i<N

To bound the first derivatives of the shape functions, we need to assume the generating function @ to be
continuously differentiable in R?,

|D®|, = n‘}ax max||Dﬁ<15( )| < oo.

=1
For any multi-index f with || = 1, we differentiate the equation
Mo(x)b(x) = e,
to obtain
Mo(x) D'b(x) = —D'My(x) b(x).
Easily,

max max || DMy (x)]|, < =
BIBI=1  xeq r

Then under the assumption that the distribution of the particles is (r, p)-regular, we have

max max Db, < S
BilBI=1 oclo| <p r

In general, under the assumption that @ is k-times continuously differentiable,

max ||D'®|, = max max max ||D'®(x)| < oo,
0<I<k T 0<I<k plfl=I xeB

it can be shown inductively that

max max 7| Db, %
wloal<p BBl <k r

Then from the expressions
X —Xx; X — X;\*
W (x) = q>( ) =) Mbu(x),
|a\z<p ( d )

we obtain the following result.
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Theorem 4.7. Assume the particle distributions are (r,p)-regular and the generating function ® is k-times
continuously differentiable. Then

max max ||DP¥| %, 0<I<k.
1<i<I Blpi=l r

4.3. Error estimates for interpolants

Throughout this subsection, we assume @ € C, k > 1.

We will need some results concerning polynomial approximations of Sobolev functions found in [4,
Chapter 4]. For this purpose, we first introduce some concepts. Let B be a ball. Then a domain Q) is said to
be star-shaped with respect to B if for any x € @y, the closed convex hull of {x} U B is a subset of Q. The
chunkiness parameter of Q, is defined to be diam(€Q,)/p,...» where

Pmax = SUp{p : Q; is star-shaped with respect to a ball of radius p}.

Letu € W"4(Q), m >0, g € [1,00]. We assume (m + 1)g >d if ¢ > 1,0or m+ 1> d if ¢ = 1. Then by
the Sobolev embedding theorem, u € C(R2), and it is meaningful to use pointwise values of u(x). We define
the RKP interpolant of u(x) by the formula

u(x) Pi(x), x€Q.

1
i=

Note that in general, u/(x;) # u(x;), so u! is an interpolant of u in a generalized sense.

We are interested in estimating the error u —u' in various Sobolev norms. Denote
p1 =min{m + 1,p+ 1}. For error analysis, we assume that the family of particle distributions is (»,p)-
regular and the following hypothesis is satisfied.

Hypothesis (H). There is a constant integer /y such that for any x € Q, there are at most /, of x; satisfying
the relation ||x — x;|| < r;, i.e. each point in @ is covered by at most I, shape functions.

Hypothesis (H) is quite natural since otherwise as the number of shape functions covering a local area
increases, the shape functions tend to be more and more linearly dependent in the local area.

To simplify the notation, we write B, = B,.(x;), 1 <i</I. We first bound the error u — «/ in Sobolev
norms over B;NQ for j = 1,...,I. Define

Q= {x e = xgll <ry A+ &l?'gxln}’

and let
S; = {i: dist (x;,B;) < r;}.

Then by Hypothesis (H), card (S;), 1 <,j<1, are uniformly bounded. If Q; C Q, then Q,N Q = Q; is star-
shaped with respect to B = B;, and the chunkiness parameter of Q N Q is un1form1y bounded Now
suppose Q; ¢ Q. Then since 0Q is Lipschitz continuous, if r is sufﬁ01ently small, we can choose a ball B of
radius r;/ 2 with x; on its boundary such that Q; N Q is star-shaped with respect to B Again we see that the
chunkiness parameter of Q; N Q is uniformly bounded

Let Q7'u be the Taylor polynomlal of degree p; — 1 of u averaged over Bj (cf. [4, Section 4.1]), and
denote

R u(x) = u(x) — O'u(x).
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Then since the chunkiness parameters of Q; N Q are uniformly bounded when r is sufficiently small, from
the results of [4, Section 4.3], we have the estimates:

||R§1“||w1,tz(gjmg) < CW171|M|W1’1~7(Qij)7 [=0,....p, (4.4)
||R§)l”||L>o(Q,-mQ) < crpl_d/q|u|Wl’1"1(QjﬁQ)7 (4.5)

where the constant ¢ depends only on p;, d and ¢, and is independent of ;.
Now for x € B; N Q, we write

u(x) —u'(x) = Of'u(x) — Z O u(x;) Vi(x) + R u( ZR”‘ u(x;) Pi(

i=1 i€S;

By the polynomial reproducing property (3.8),
Z O u(xy) i(x) = O u(x).

Thus
u(x) — u'(x) = R u( ZR”‘ u(x;) ¥i(

i€S;

Note that x; € 2,N Q fori € S;. So

[l — “]HWM(B,-nQ) < HRj')luHW’-‘i(B,ﬂQ) + HR;)I“HLX(QJ-DQ) Z ||lPiHW1-4(B,nQ)~
iGS/'

Since card (S;) is uniformly bounded, applying the estimates (4.4), (4.5) and Theorem 4.7, we have
[ =t [l yrags 00y < €™ ulymaggry,  0<I< min{py,k}, 1</<I.

Therefore, recalling again Hypothesis (H),
lJu — MIHW/-‘I(Q) < Crp17/|“|wm-q(sz)a 0< /< min{p;, k}.

Summarizing, we have shown the following theorem.

Theorem 4.8. Assume the particle distributions are (r,p)-regular, ® € C*, and Hypothesis (H) holds. Let
m=0,q¢€[l,00] with(m+1)g>difg>1,orm+1>=difq=1. Then for any u € W"19(Q), we have the
optimal order interpolation error estimates

||u . “]HWI-q(Q) < crmin{m+1,[1+l}f/‘ulWmin{m+1,p+1},q(9> Vi< l’l’lll’l{m + 1,p + l,k} (46)

Note that when m > p, the error estimate (4.6) reduces to

lJu — ulHW’-‘I(Q) < Crp+lil|u|W1’+l-4(Q) VI< min{p+ 1,k}.

5. Reproducing kernel particle method and error analysis

The RKPM is a Galerkin method combined with the use of RKP spaces. To explain the method in a
concrete problem setting, we take a linear elliptic boundary value problem as an example. It is equally fine
to consider nonlinear elliptic BVPs if we wish. Since nonhomogeneous Dirichlet boundary conditions can
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be rendered homogeneous in a standard way (see [13, Chapter 6] or one of many texts on modern PDE), we
will assume Dirichlet boundary conditions, if any, are homogeneous. The weak formulation is

ueV: a(uv)=~Lv) YveV. (5.1)
Here V'is a Sobolev space. For Neumann BVPs, V'is a complete Sobolev space without boundary condition
constraints, e.g. H'(Q) for second-order problems, and H*(Q) for fourth-order problems, Q being the
spatial domain of the differential equation. Otherwise, V' is a subspace of a complete Sobolev space (e.g.
H}(Q)). The bilinear form a(-, -) is an elliptic bilinear form on ¥, and ¢ is a linear continuous form on V. By

the Lax-Milgram lemma, the variational problem (5.1) has a unique solution u € V.
On Q, introduce a set of particles {x;}._,, some of the particles lic on the boundary. Also introduce

{r}_,, r; >0, and construct functions {'}’;i:l in the form of (3.7) where {b,(x)}, ., are computed from
(3.9). The RKP space is

Ve =span{¥;, 1 <i<I}NV.
Then the RKPM is
Wk eV a(hv)=L0) Yve k. (5.2)

This problem admits a unique solution u® € V%, again following the Lax-Milgram lemma. For error esti-
mates of the RKP solution u® € V; defined in (5.2), we have Céa’s inequality

=l < inf lu— ol (53)
veEVR

In the rest of the section, we assume the (r, p)-regularity and Hypothesis (H). Then we can use the error
estimates for RKP interpolants derived in the previous section.

5.1. Error estimates for BVP without Dirichlet condition

For a BVP without Dirichlet boundary condition,
Vr = span{¥;, 1<i<I}.

Assume the solution u is continuous. Then its RKP interpolant
1

W (x) = ulx;) Vilx)

i=1
is well defined and « € V;. Then from (5.3), we have
[l — uf|], <cllu—d|l, (5.4)

and the question of error estimation for the RKP solution u is reduced to that for the RKP interpolant u’.
As a sample result, we can state the following.

Theorem 5.1. Let us employ the RKPM to solve a (2n)th-order elliptic BVP of the type (5.1) without Dirichlet
boundary condition. Assume ® € C*, p=n, p>d/2— 1, and the (r,p)-regularity and Hypothesis (H) are
valid. Then if u € HP*'(Q), we have the error estimate

lJu — uR”H"(Q) < Crp+17n|”|m+l(g)' (5.5)

5.2. Error estimates for BVP with Dirichlet condition

When the BVP includes a Dirichlet condition, derivation of rigorous error estimates is much more
difficult. Since in general u’ ¢ V;, and we need to replace (5.4) by

=, <cllu—i,, (5.6)
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where & € V is a modification of /. This approach cannot be carried out in case d > 2, since a function
from ¥V, does not vanish on a part of the boundary even when it is zero at all the particles on that part of the
boundary. Much more needs to be done on employing and analyzing RKPM for solving BVPs involving
Dirichlet conditions.
In the one-dimensional case, however, it is possible to derive rigorous error estimates. In the following,

we consider a general linear elliptic BVP on [0, L] with Dirichlet boundary conditions

u(0) =up, u(l)=us. (5.7)
Let the weak form of the problem be: find u € H'(0, L) satisfying (5.7) such that

a(u,v) = £(v) Yve H(0,L). (5.8)
Let the RKP space be

Ve = span{¥;, 1<i<I}.
Then the RKPM for the problem is: find u® € V; satisfying such that «®(0) = uy, u®(L) = u;, and

a(u®,v) = €(v) Vve VrNH(0,L). (5.9)
For an error estimate, Céa’s inequality (5.3) is modified to

lu—u®||, <cinf{|ju—v|, :vE Vi, v(0)=uy, v(L) =u}. (5.10)
For the RKP interpolant, we can use the ordinary Taylor formula and Property 3.10 to obtain

u'(x) = u(x) + Ry(x),

where

Then

1 (0) — u(0)| <c 3 rf/ori‘u@+l)(t)|dt.

il <
Since there are at most I points x; with |x;| <r;, we have

1/(0) = u(0)] < 2V 13- (5.11)
Similarly,

' (L) = u(L) < er P[u V] 2 - (5.12)
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Define a corrected RKP interpolant,

L—x / X ;
2 (w(0) — o (0)) + 7 (L) — o (1),

We have @/ (0) = u(0), &/ (L) = u(L). Since linear functions can be reproduced, & € V. By (5.11) and (5.12),
we have

i@ — ' iy < e PV 2oy, 1

V

0. (5.13)

The definition of the corrected RKP interpolant and the related error estimate can be easily modified
to adapt to the case with a Dirichlet condition at only one end of the interval [0,L]. Then from (5.10),
we have

ot = 1 0.y < €l = @ s 0y < [l = 0 oy + 1 = 0l - (5.14)

Using (5.14), (5.13) and the estimate for u — u’ from the previous section we get the following result.

Theorem 5.2. Let us employ the RKPM to solve the BVP (5.8). Assume ® € C', and the (r, p)-regularity and
Hypothesis (H) are valid. Then if u € H?™'(Q), we have the error estimate

[[u — ”R”HI(Q) < crp|u|Hﬁ+](Q)' (5.15)

6. Numerical results

In this section, we present some numerical results on convergence orders of RKPM. The numerical
results confirm the theoretical prediction. We thank J.S. Chen and C.T. Wu of the University of lowa for
providing us a preliminary code for solving a one-dimensional model problem by RKPM.

We choose the differential equation

' +ku=0 in(0,1) (6.1)

for our calculations. The general solution of Eq. (6.1) can be expressed in terms of exponential functions
and is therefore smooth. The differential equation (6.1) is supplemented by one of the following three sets of
boundary conditions:

u(0) =up, u(l)=u, (6.2)
—u'(0) =q, u(1)=gq, (6.3)
u(0) = up, u'(1) = q1. (6.4)

The corresponding BVPs are called the Dirichlet, Neumann and mixed BVPs. We choose &k =1,
Uy = qo = 0, and u =4qi = 1 below.

For our examples, we divide the interval [0, 1] into N = 20, 30, 40, 50 and 60 equal parts, and let
h=1/N. We use r=(p+2.1)h as the support size. This choice of the support size guarantees the
satisfaction of both (r,p)-regularity and Hypothesis (H). Since r is proportional to 4, we show figures
for errors compared against & (rather than r itself) in the log-log scale. The generating function is
chosen to be

2 <
ox) = (I —=x%) if |x| \.1,
0 otherwise.
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In Figs. 1 and 2, we report numerical results on the RKPM for the Dirichlet BVP (6.1) and (6.2). We report
errors for both the RKP solution and the RKP interpolant, and in both the maximum norm and the L?
norm for the error as well as its derivative. The numerical results suggest the following empirical error
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estimates (the parameters /# and r are interchangeable in our examples):

meshfree solution

1

IlElimax

|lElimax

-
o,

meshfree derivative
C6—6—6—6—00.0035,p=0 ;

(}W@ .0068,p=1 !

interpolation derivative
G6—6—6—6—0.0044,p=0;

51.9908,p=2 :

Fig. 1. Errors in maximum norms: the Dirichlet BVP.
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107" 4
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10° 10
h
o interpolation
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1070 . ; Lol
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10° 10

h

1

lEl2

IIEI2

meshfree derivative

o-6—0—6—©6——00.0593,p=0

-10
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h

Fig. 2. Errors in integral norms: the Dirichlet BVP.
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e = ] e <Pt
= ]| e < e,
= ]| 2 < e,

e = w2 < er?*,

(= )] < er”,
=Y <,
e = ¥ <,

lu— || <cr”.

The numerical convergence orders match our theoretical results on |u — u®||,1, |lu — v/ ||,~, |Ju — «'||,> and

|lu — ||, Nitsche’s trick in the theory of the finite element method can be adapted straightforwardly to
error estimates in L2-norm (cf. [18]), yielding |lu — u®|,» <crP*l.

We observe similar error behaviors on the RKPM for the Neumann BVP (6.1)—(6.3) in Figs. 3 and 4, and
the mixed BVP (6.1)-(6.4) in Figs. 5 and 6.

We have also done numerical experiments for higher-dimensional boundary value problems, and the
numerical results all confirm the theoretical error estimates. In Figs. 7 and 8, we show the error be-
havior of the meshfree interpolants and meshfree solutions for the pure Neumann BVP for the dif-

ferential equation

—Au+u=f in (0,1) x (0,1).
meshfree solution meshfree derivative
10° 10° ‘
: A G-6—6—6—6—60.0073,p=0 ;
o-o—6—0—o0——60.1661,p=0" : PV
: : Do 1:66:1 p 0 W‘I.QO‘W@J :
10° o oo—0—o—O1-e%E0p=1: : o
x . : L ¢ : x o’e/é/e/-e-/»€>2.0077,p=2l
% : : 3 : —2.0077,p=2:
£ M E 10° - Dol
] : Y o : | o——2-9955p=5
107 R
.9217,p=4 .
10-15 - ‘1 10-10 - ;
10° 10° 10° 10°
h h
interpolation interpolation derivative
0 0
10 10 G-6—6—6——6——60.0076,0=0 ;
: o——0.9898p=0 " o0 6—0—0——00.9961,p=1
- " 1.9838,p=1: E . S
g M 9e2Bp=3 - § T e r
£ i X 3 p=d £10 . - [
o - . —< -9.37.3'9—.‘& o
10™ S
10-15 - 1 10-10 - 1
10° 10° 10° 10°

h

h

Fig. 3. Errors in maximum norms: the Neumann BVP.
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We choose the exact solution to be €. For the numerical results reported, we use uniform particle dis-
tribution by dividing the interval [0, 1] into N equal parts. We define 2 = 1/N and use r = (p + 0.6) / as the

IIEI2

IEN2

I[ElImax

IIElimax

W. Han, X. Meng | Comput. Methods Appl. Mech. Engrg. 190 (2001) 61576181

meshfree solution

meshfree derivative
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Fig. 4. Errors in integral norms: the Neumann BVP.
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Fig. 5. Errors in maximum norms: the mixed BVP.

support size. The generating function used is as follows.
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Fig. 6. Errors in integral norms: the mixed BVP.
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Fig. 7. Errors in maximum norms for a two-dimensional Neumann BVP.
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, meshfree solution ; meshfree derivative
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Fig. 8. Errors in integral norms for a two-dimensional Neumann BVP.
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