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1. Introduction

The pioneering work of virtual element methods (VEMs), which are a generalization of the finite element method, can
be found in [1-3]. Subsequently, VEMs have been extended to solving many different kinds of boundary value problems
and initial-boundary value problems thanks to their advantages in handling problems with complex geometries and high
solution regularity requirements. For example, conforming and nonconforming VEMs are presented for second-order elliptic
problems in [4,5], fourth-order problems in [6,7], polyharmonic problems in [8], elasticity problems in [9,10], and Stokes or
Navier-Stokes problems in [11-16], and so on.

An important family of nonlinear boundary value and initial-boundary value problems in a wide variety of applications
is provided by variational inequalities, which describe physical and engineering problems with more complicated features.
A partial list of the applications of variational inequalities includes contact mechanics, flows of non-Newtonian fluid or
with nonlinear leak/slip boundary conditions of friction type, mathematical finance, obstacle problems, plasticity, Stefan
problems, unilateral problems, and so on. Rigorous mathematical analysis of variational inequalities started in 1960s. Some
comprehensive references on the mathematical theory, numerical methods and applications of variational inequalities are
[17-23]. Recently, VEMs have also been applied to solve variational inequalities (cf. [24-27]) and closely related hemivari-
ational inequalities (cf. [28-32]). The goal of this paper is to study conforming and fully nonconforming VEMs for solving
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a fourth-order elliptic variational inequality arising in an obstacle problem of a Kirchhoff-Love plate. We note that numer-
ical approximation of fourth-order obstacle plate problems has been previously studied in a couple of publications, e.g.,
[33-37]. Conforming, nonconforming and discontinuous Galerkin methods were analyzed in [35]; several results proved in
[35] will be quoted and used in our analysis of VEMs for the fourth-order elliptic variational inequality, cf. Sections 3 and
4. A quadratic C° interior penalty method [34] and the Morley finite element method [33] were considered for the obstacle
plate problem.

It is known that for numerical analysis of variational inequalities, due to the inequality feature, it is possible to derive
optimal order error estimates only for the lowest order elements (cf. [38]). Moreover, since in general, the solution of a
variational inequality does not have high regularity, high order elements are rarely used in solving a variational inequality.
Therefore, in this paper, we only study lowest order conforming and fully nonconforming virtual element methods for the
fourth-order elliptic variational inequality. We first propose an abstract numerical method and develop its error estimate (see
(3.9) and Lemma 3.2). Then, in order to bound a key quantity R, (u, u;) in Lemma 3.2, we extend an abstract framework of
error analysis regarding triangular meshes in [35, Section 3] to polygonal meshes (see (3.17) and (3.23)). The technique is
mainly based on the harmonic property of the lowest order conforming virtual element space and the maximum principle
for harmonic functions. Incorporated with the conforming and fully nonconforming VEMs for fourth order elliptic problems,
we can propose the conforming and fully nonconforming VEMs for the obstacle problem (2.2) in a unified way, and derive
optimal order error estimates for the two methods under appropriate solution regularity assumptions. In particular, for
deriving the error bound of the latter method, an enriching operator is introduced and its error estimates are developed as
well. We mention in passing that the fully nonconforming virtual element method has fewer degrees of freedom than the
conforming method at each element of a given mesh, but both methods have the same convergence order in the discrete
energy norm in theory which is demonstrated by our numerical experiments too.

The rest of this paper is organized as follows. In Section 2, we introduce the fourth order variational inequality for
the plate obstacle problem. The variational inequality is of the first kind, more precisely, it is an inequality posed over a
convex constraint set. In Section 3, we present an abstract framework of the VEMs for the obstacle problem. A preliminary
result on error estimation is established too. In Section 4, we discuss conforming as well as fully nonconforming VEMs
for the obstacle problem, and derive optimal order error bounds under certain solution regularity assumptions. In Section 5,
numerical results are presented to show the performance of the VEMs in solving a sample fourth order variational inequality
and to provide numerical convergence orders that match the theoretical predictions.

2. A fourth-order variational inequality for the plate obstacle problem

Let Q c R? be a bounded convex polygonal domain with the boundary I' = 9Q2. We will use (-,-) for the [?(R2) inner
product, and use || - [|o for the standard norm in 12(R2). To define the obstacle problem, we introduce an obstacle function
¥ e C2(R) NC(R) such that ¥ < 0 on the boundary I' and a corresponding function set

K={veV|v>vy in Q}, (2.1)
where V = Hg (). It is easy to check that K is a non-empty, closed and convex subset of V. For any f e L2(2), similar to
[39], we consider the variational inequality

uek, a(wv—-u)>((f,v—u) Vvek, (2.2)

where
a(u, v):/ Dzu:Dzvdx:/ 9;ju 0yjv dx. (2.3)
Q Q

Here and below, i, j take their values in the set {1,2}, D?v denotes the Hessian of a given function v, the symbol “:” means
the Frobenius inner product between two matrices, d;v = dx,v and ;v = 8,(1.,(].1/. We also use Einstein’s convention for sum-
mation.

The variational inequality (2.2) can be used to model an obstacle problem for a horizontal, elastic thin plate which is
clamped on the boundary and is subject to the action of a vertical force with a re-scaled density f e L2(S2). In this case, the
unknown u stands for the vertical displacement of a Kirchhoff-Love plate and the constraint u > ¢ in € reflects the fact
that the plate lies above the obstacle with the height function .

Since a(-,-) :V xV — R is bounded and elliptic, and f € V*, the variational inequality (2.2) admits a unique solution
u e K (cf. [18,40]).

Let n = (ny,ny), T = (71, T3) be the unit outward normal and the unit tangent vector on I' such that (n, T) forms a
right-hand system. Then, write dnn¥ = 9;jvn;n; and dnzv = 9;;v T;n;. Note that

0;V = N0V + T;0-V.

Consequently, by a direct manipulation, for sufficiently smooth functions u and v,
3,1 dyv dx :/ 3y v ds —/ Oy B dx.
/Q ij ij 99 ij iViItj o iV Oijj
= / Onnl Opv ds +f OnzU OV dS —/ Vv. V(Au)dx. (2.4)
aQ Ele) Q

2
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Choosing v € H2(R2), (2.4) leads to

/Qa,ju 3y dx = —/Q V. V(Au)dx. (2.5)
The above two identities will be used frequently in the forthcoming error estimation.
3. Virtual element method for the obstacle problem of a clamped Kirchhoff plate

Let {Thtn, Th = {T}TETh, be a family of partitions of  into polygons. A generic element in the partition 7 is denoted
by T. The boundary of T is denoted by dT. Define hy := diam(T) and h := maxrcy, hr. For a non-negative integer k and an
element T € 7, denote by P, (T) the set of all polynomials on T with a total degree no more than k. Let &, be the set of all
the element edges and denote by V), = V}l u Vﬁ the set of vertices in 7;, where V}"l and V}l’ are the sets of interior vertices of
T, and boundary vertices on I', respectively. We denote the traces of v on e c dTT N dT~ from the interiors of the elements
T* by v*, respectively. Then, we define the jump of v on the interior edge by [v] = v™ — v~ and on the boundary edge by
[v]=vle.

Throughout this paper, we will always make the following assumption on the family of partitions {7} (cf. [41]):

Assumption (H1). For each T € Tj, there exists a “virtual triangulation” 77 of T such that 77 is uniformly shape regular
and quasi-uniform. The corresponding mesh size of 71 is bounded from below by a constant multiple of hy. Each edge of T
is a side of certain triangle in 77.

Given a positive integer m, a real number p > 1, and a bounded set D c R2, W™P(D) denotes the usual Sobolev space
with the corresponding norm || - || . p and semi-norm |- |, , p. When p =2, we denote the corresponding norm and semi-
norm by || - [|m.p and | - |, p, respectively. Moreover, if D = 2, we simply write || - || and | - | for the norm and semi-norm
in Wm2(Q) (or H™(2)). Introduce the broken Sobolev space

H™(Tp) = My, HN(T) = {v € *(Q) | vl e H(T) VT € Ty},

which is endowed with the broken H™-seminorm

|Vl p = (Z |v|§”)‘/? (3.1)

TeTy

Based on the partition 75, we construct a finite dimensional function space V,, ¢ H2(7;), and denote by VhT the restriction of
Vi, on T. We assume that | - |, , is a norm on the space Vj,. The discrete counterpart of the constraint set K is

Ky:={veV,|v(p) =¥ (p) Vpe W}

On the other hand, the bilinear form from (2.3) can be split as

a(u,v) = Z a'(u,v), d'(uv)= / D?u : D*vdx.
T

TeTy
Evidently,
a’(u,v) < lulyr|vlar Yu,ve HA(T), (3.2)
a'(v,v) > vl3; VYveH*T). (3.3)

The discrete symmetric bilinear form ay (-, -) over V}, x V}, will be constructed through the formula

T
ap(up, vy) = Y ay (up, vy) Yy, vy €V,
TeTy

where af (-, ) is a bilinear form on V[ x V/I.
From now on, we will always assume the following conditions hold:
Assumption (H2).

o k-Consistency: There exists a natural number k such that for all p € P,(T) and for all v, e VT,
a; (p,vy) = a' (p, vp). (34)
o Stability: There exist two positive constants «, and «*, independent of hy and T, such that
o’ (Up, vp) < af (U, vy) < @*a’ (U, vy) Yo, eV (3.5)
Combining the inequalities (3.5), (3.2) and (3.3), we can derive the following relations:

ap(up, V) < o uplyplVplon Vg vy €V, (3.6)
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ap(Vp. V) = . |vy13, Y, € Vi (3.7)
Let f, € V¥ be an approximation of f such that
(f = fovn) SNf = fullysIvnlon Vg € Vi (3.8)

Here and below, to simplify the presentation, we use “ ... <...” to mean “.-- <C--.”, with C a generic constant independent
of hy or h, which may take different values at different occurrences. In addition, for any two quantities A and B, A = B means
that both A < B and B < A hold.

The discrete approximation of the variational inequality (2.2) is

up € Ky, ap(up, v—uy) = (fr.v—up) Vvek. (3.9)
Since assumption (H1) holds, the Scott-Dupont approximation theory yields the following result directly.

Lemma 3.1. For all T € T, and all v € H**'(T) with k a natural number, there exist functions v, € Py(T) such that

k+1
ST hi v = v llir S R Wl 7 (3.10)
i=0

Moreover, it is easy to show the following trace inequality (cf. [41]):
V11§ a7 S ' VIS 7 + hrlvli; Yve HU(T). (3.11)

A preliminary error estimate is given next. We define an interpolation operator I, : H&(Q) — Vi, by (I,v)|r := Irv, where
Iy is the interpolation operator on T. When there is no confusion caused, for all v € H3(2), we will also use v, to denote a
piecewise polynomial with respect to 7,, which is determined by Lemma 3.1 in an elementwise way.

Lemma 3.2. Let u and uy, be the solutions of (2.2) and (3.9), respectively. If u € H**1(Q) with k a natural number and Iu € K,
then

= gl < =l + Rl + 1f = ful?, + Ra(uy), (312)
where
Ry(u, up) =) ' (u. lyu — uy) — (f Iy — uy). (313)
TeTy

Proof. Denote wy, = I,u — uy. By (3.7),

2 T
| Wh13 ) < @ (Wi wy) = Y af Iy, wy) — ap (uy, wy,).
TeTy

Write
al (Ihu, wy) = al (It — Uz, Wy) + al (U, wy),

where u; € P,(T) is given according to Eq. 3.10.
By (3.4),

ap (Ug, wy) = a’ (uz, wy) = a’ (uz —u, wy) +a’ (u, wy).
So

alwyl3, < D [af thtt =z, wy) + @ (ur —u, wy) |+ D a (1, wy) — ay (up, wy).
TeTy TeTy

Then recalling (3.5), we have by the Cauchy-Schwarz inequality that

walZn < [ (X Mru—url ) V2 4 (3 fur —ul ) | wala

TeTy TeTy,
+ )" (1 wy) — ay(uy, wy). (3.14)
TeTy,

By (3.9),

ap (up, wy) = (fr, wp).
Then,

—ay (Uup. W) < =(fp.wy) = =(f. wp) + (f = fr. wp)
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and we use (3.8) to bound the term (f — f;, wy,). Hence, from (3.14) and the triangle inequality,
W5y < [( > lhu— U|§.T>1/2 + ( > ux — U|§,T)]/2] |Whl2.n
TeTy TeTy
+ 1f = fullv:Iwplan + Re (u, up),
where R, (u, up,) is defined in (3.13). In view of (3.10) and the modified Cauchy-Schwarz inequality

Vi

ab<eb®+c.a®, e>0, cg:%, Ya,beR, (3.15)

4
with & > 0 sufficiently small, we obtain

Wal5h S D llru—ulf s + B2l +1f = fu
TeTy

3; + Ry (u, up). (3.16)

Finally, by the triangle inequality,
2
[u—upl3, = (U —Iyu) +wyly, < 2(|u —luls, + |Wh|%.h)’
we obtain the inequality (3.12). O

Thanks to (3.12), our main task next is to bound the term Ry, (u, uy) defined in (3.13). To this end, following the ideas in
[33,35], we first introduce an intermediate obstacle problem:

ﬁh Ekh, a(ﬁh,v—ﬂh) > (f,U—ﬁh) VVGRh, (317)

where K, = {veV | v(p) = ¥(p) Yp eV,
Next, we introduce the lowest order conforming VEM space as a bridge to bound the difference between u and . As

shown in [2], for all T € 7}, define

Vi(T) = {veH'(T) | Av=0inT, v|yr e C@T). v|e € Pi(e) Ve e T}, (3.18)
with the function values at the vertices of T as a set of degrees of freedom. Then the virtual element space W}, is defined
by

Wiy = {v € C(Q) | vlr € Vi(T) VT € Ty} N Hg ().
LeLIZ : H%(T) — V;(T) be the nodal interpolation operator and I the global counterpart defined by I.v|r = IT(v]7) Yv e
C(2). For the operator IT, we can establish the following interpolation error estimates.
Lemma 3.3. For any T € Ty, there hold

v = Vlloser S hllVlzr YveHA(T), (3.19)

v =T vllo0or S P Vl20er YveCHT). (3.20)

Proof. Let v, be the function in Lemma 3.1 for k = 1. Then, using the definition of Il and the maximum principle for
harmonic functions (cf. [42]), we know

V= Vllocor < 1V = Vrllocor + I (V= Vx)llocor
<l =vrlloces + I @=v2)llocor
<V =Vrllooer + 1V =z o007
<2[[v=vrllocor- (3.21)

On the other hand, for all T € 71, we have by the Sobolev embedding theorem and the scaling argument that
2

”V —Ux ”O.oo,r 5 Z h';l+i|v —Ur |i,rs
i=0
which implies
2

I = xlloser S D he™ v —vrliz.
i=0
This combined with Lemma 3.1 yields (3.19) readily. The estimate (3.20) can be obtained in a similar manner. O
In addition, by the definition of I, it is easy to see that Iy (p) < I.{i,(p) VY p € V,, which implies that Iy < I{i, on dT.

Hence, by the maximum principle for harmonic functions, we further have ITv <7, for all T € 7, which implies the
following important relation:

Iy <1, on Q. (3.22)
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Let I be the coincidence set of the obstacle problem (2.2) defined by
I={xeQ|u®) =v¥®}

The boundary condition of u and the assumption on i in Section 2 imply that the compact sets 2 and I are disjoint. For
any positive number 7, we define the compact set I; by

I, = {xeQ|dist(x,]) < t},
and let 6, = || (d, — Ictp) + Uy — V) llo.c0.1,- We can choose 7 > 0 small enough such that the compact sets I; and 9%
remain disjoint.
Since u € C2(£2) N H3(2), with the help of (3.19) and (3.20), we have 8, < h? by using the similar arguments for deriving

[35, (8.19)]. Further, using the key inequality (3.22) and the similar arguments for proving [35, Lemma 3.4], we have, for
sufficiently small h,

lu—1yl5 < 8 S b (3.23)
4. Error estimates of virtual element solutions
4.1. Conforming virtual element method

We study the C'-type conforming virtual element method proposed in [43] for an obstacle problem of a Kirchhoff plate
and try to complete the convergence analysis of this method. In this subsection, we replace V}, by the conforming virtual
element space V. Moreover, we assume the assumption (H2) in V) such that the properties still hold in V. Denote by VhT'C
for the restriction of V{ to the element T. We consider the case k = 2 only.

Local construction of V.
Let T be a polygonal element. We define the local finite dimensional space VhT '“ on the element T by

V/C:={veH*(T)| A’v=01inT, vl € P3(e). duv|c € P1(e) Ve c IT}. (4.1)

We choose the following degrees of freedom for a function v in VhT’C (cf. [43,44]):

(D1). The values of v(§) at the vertices of T;

(D2). The values of hz9,v(§) and hg0,v(§).

Here and below, hg is a characteristic length attached to each vertex § of T. For instance, we may take hg to be the
average of the diameters of the elements having £ as a vertex.

Global construction of V. For every decomposition 7y, define the global virtual element space V as

Vii={veV | vl eV VT eT).
Correspondingly,

Ki={veV;|v(p)=¥(p) VpeV} (4.2)
The discrete approximation of the variational inequality (2.2) becomes
up € Ky, a(up,v—up) = (ff,v—uy) Vvekf. (4.3)

We note that the local degrees of freedom in VhT'C and the construction of V{ imply V' H2Z(Q), indicating that the virtual
element space V{ is conforming. It is automatic that |v|, is a norm on V. In order to construct the local bilinear form

al“(-,-), we define a projection operator T} : VI — P, (T) by (cf. [44])

a' (T}, q) =a’ (y,q) YqeP(T) V¢ eVl
Jor Vl'[g'cw ds = [yr Vi ds, (4.4)
Jor Y ds = [y ds.
Following the arguments in [44, Lemma 3.5 and Lemma 3.6], under the mesh assumption (H1), the inverse inequality
and norm equivalence can be established in VhT €. For convenience, we record these results in the following two lemmas.

Lemma 4.1. For all T € Ty, there hold

Whr Sh vllor.  wlar Shi?llvlier YveV,© (4.5)
Lemma 4.2. For all T € Ty, there hold

e vllor = Xl YveVy<, (4.6)
and

Wl = b Xl Vv e Ker(I1)°), (4.7)
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where x(-) = [X,. Xv] is the d.o.f. vector corresponding to the H?-conforming virtual element space VhT €. Here, x, collects the
degrees of freedom in (D1), and v the degrees of freedom in (D2).

Define
ap“(u,v) = a" (I u, 03v) + ™ (u - M} u, v - M}v) Yu,veV, "

We choose the stabilization term as
NT.C

ST, w) =h2 Y i) xi(w),

i=1

which ensures properties (3.4) and (3.5) (cf. [44]). Here, NT- is the number of degrees of freedom in V., x; is the ith local
degree of freedom in (D1)-(D2).
Next, we consider the error estimation for the nodal interpolation operator I;. We first derive a stability estimate.

Lemma 4.3. Let I : H3(T) —» VhT*C be the standard nodal interpolation operator. For all T € Ty, there holds

3
Irvllor £ Y hilvlir Vv e H(T). (4.8)
i=0

Proof. According to the norm equivalence in [44], we have
lrvllor = hrllxUrv)lle = hr | X W) |2 (4.9)
Owing to the assumption (H1), we have by the Sobolev embedding theorem that, for all vertex & of T,

3
@) = [WE)| < Wlloser S D Vlmr. (4.10)
m=0
Similarly,
3
Ixv(&)| < helVv(E)| < hr|v)1 o1 S Z ([ [T/ (4.11)
m=1

The combination of (4.9) to (4.11) gives (4.8) readily. O
Lemma 4.4. For all T € 7, if v e H3(T), then we have

lv—Irvlir S vlsr, i=0.1.2. (4.12)
Proof. By the triangle inequality and (4.8), for all p € P,(T),
3
I —pllor <D v —plmr (413)
m=0

which combined with (3.10) implies

3
lv=Irvllor < lv=vellor + Ir (v =v)llor $ Y WV = Vxlmr S B3 V]s 7. (4.14)
m=0

On the other hand, using the inverse inequality in [44], we find
lr(—vo)lir Shllr—ve)llor, i=1,2,
which combined with (3.10) again implies
[v—Irvlir < [v—vxlir + lr (@ —vo)lir SB35 7.
as required. O
For an approximation of the right-hand side f¢, we define

uwm:Zﬁ%ﬁm&

TeTy

N

where P] f is the L?-projection f onto the space of Py(T). Here and below, 7 = & 2% v(al) with af the vertices of T and N
i=

the number of edges of T, respectively. Then, we have the following approximation property (cf. [43])

1F = el = Chlflo. (415)
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For the conforming method, the quantity Ry, (u, uy) of (3.13) is simplified to

Ry(u, up) = a(u, Iyu — up) — (f, lhu — up).

(4.16)

Let us bound R (u, u,) by making use of the solution i, of (3.17). We will assume the solution regularity u € H3(2). Write

a(u, lhu —up) = a(u —p, lhu — uy) + a(ily, Ly —dy) + a(ly, d, — up).
For the first term on the right side of (4.17), in view of (3.23), we have
a(u — tp, Iyt — up) < [u = dpla|Iu — upl < h Iy — upl.
Choose v =uy in (3.17) to get
a(ty, up —dp) = (f, up — ).
Thus,
a(fiy, iy —up) < (f, Gy — ) + (f, Iy — uy).
Moreover,
a(fiy, lyu — ) = a(ly, — u, yu — ty) + a(u, [u —u) +a(u, u — i)
< iy — ulz [l — 1), + a(u, Iiu — u) + a(u, u — ).
By the triangle inequality and ,Eqn 4.12
|y — ulallyu — dply < |8 — vl + [T, — ula|lu —ul < B>
Using integration by part in (2.3) and u — [yu € Hg (£2), by (2.5) and (4.12), we obtain
a(u, lu—u) = 7/9 V{u—-u)-V(Au)dx
S lu—luligluls o < k2 ulf o
Applying (4.17)-(4.22) in (4.16), we find that
Ry(u, up) S hilu—uply +h? +au, u—1y) + (f, @y — Lu).
On the other hand, as shown in [35, Section 3], we can find a function ¢ € C>°(2) with the properties
$c[0,1]inQ, ¢=1inl, ¢=0in Q\Ix
so that
Uy =1, + 6pp € K.
From (2.2) with v = i,

a(u, iy +8pp —u) = (f. 0y + 8y — ),

ie.,
a(u,u—1y) <8pau, @) — (f, I —u+8,9).
So
a(u,u—1dy) + (f. iy — Ihw) < (f, u—Iu) + pla(u, @) — (f. @)]
S| flloluls + Sulatu, @) — (f. d)1.
By (3.23),

8p < h?.
Inserting (4.24) into (4.23), we have
Ry(u, up) < hllyu — uply + h* + 12| fllofuls.

Now we are in a position to state and prove an optimal order error estimate for the C!'-type VEM.

(417)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

Theorem 4.1. Let uy € Ki be the solution of (4.3). If assumptions (H1)-(H2) hold, and u € H3(Q) is the exact solution of (2.2),

then we have the error bound

[u—uplypn S h
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Proof. In view of (4.25) and (3.16), we have

_ 2 < 12 214,12 _rcp2
[Ihu uh|2,h~Z|ITU u|2,7+h|u|3+||f fh”(vhry

TeTy
+ 0+ by —up |2 + | fllofuls. (4.26)
By applying the modified Cauchy-Schwarz inequality (3.15) with a sufficiently small &, we obtain from (4.26) that
I —upl3p < D M —ulr + B2l + 1 = fillfye). +h* + b3l fllofuls. (4.27)
TeTy

Thanks to (4.12), we have
Y lu—tulp S h?[ul3.

TeTy
Together with (4.15), we derive from (4.27) that
I — up|3, < h?,

ie.,
[Iyu —uplyp < h.
Finally, by the triangle inequality,
[u—uplyp < Ju =l p 4 [Tptt = uglop,

and we get the desired result. O

4.2. Fully nonconforming virtual element method

We turn to the study of the fully nonconforming virtual element ([6,45,7]) to solve the obstacle problem of the Kirchhoff
plate and derive an error bound for the numerical solution. Denote by V;* the nonconforming virtual element space. We
keep the assumption (H2) on V}* and replace Vj, by V. The restriction of V' to the element T is written as VhT ¢ Again,
we consider the case k = 2.

Local construction of VhT e,

VhT‘nC = {Vh € HZ(T) | AZUh =0inT, Bn,,vh|e € Po(E), (8nrrvh + an(Avh))|e =0Vee aT}

We choose the degrees of freedom for a function v, of VhT'”C as follows:
(D3). The values of v, (§) at the vertices of T;
(D4). [, Onvy, ds for any edge e of OT.
Global construction of V.
Built upon the local space VhT ‘M€ the global nonconforming virtual element space is defined as follows:

Vi€ = {v, e X(Q) | nylr € VhT'"C, vy, is continuous at internal vertices,

Up(E) = 0 VE e VP, [[anh]ds=0, Vee&,). (4.28)
e
Correspondingly,
Kic ={ve Vi lv(p) = ¥y (p) Vpe W} (4.29)
The discrete approximation of the variational inequality (2.2) becomes
up € K¢, ap(up, v—up) = (ffv—uy) YveKr (4.30)

We observe that by construction, V' C HZm(7;) and Vj, ¢ H?(2). Note that |- |5, is a norm on the space Ve (cf. [46]).
By checking the derivations in [45], we know that all the estimates hold under the assumption (H1). Similar to [45,30],
we can derive error estimates of the nodal interpolation operator.

Lemma 4.5. Let I : H™(T) — VhT'”C, m = 2,3, be the standard nodal interpolation operator. For all T € Ty, the following error
estimate holds

lv—Ivlir SR Ulmr, 1=0,1,2. (4.31)
In order to construct the local bilinear form aﬁ”%, -), we define a projection operator Hg'"c : VhT""C — P, (T) by
a" (M"Y, q) =a" (¥, q) YqePy(T), Vi eV,
@ 7, (4.32)
egT % [, VI "y ds = egT % L,V ds.
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It is easy to check that
" v=v VvePy(T).
We define the local bilinear form by
ap ™ (u, v) = a’ (T3 "u, I3 v) + ST (u — T3 "u, v — TI;" ) Yu,veV) ™,

where the stabilization term is
NT.nc

ST, w) = h? Y () xi(w),

i=1

which ensures the properties (3.4) and (3.5) (cf. [45]). Here, NT-"¢ is the number of degrees of freedom in VhT’”C, Xi is the ith
local degree of freedom in (D3)-(D4).
Furthermore, choosing q = Hg’”cw in (4.32), by (3.2) and (3.3), we can verify

M"Y lor S [Wlar Y e HA(T). (4.33)
For an approximation of the right-hand side f'‘, we define

(fyS o) = (f T vp), (4.34)
where (IT}v)|r := Hg’”c(uh) for v € V. Then, we have the following approximation property (cf. [45,30])

|(fovn) = (Fi vm) | = [ (f. v = T | < P21 Fllol vl p- (4.35)

Construction of the enriching operator Ej,.
For every nonconforming virtual element function v e V}', we need to construct an associated conforming counterpart
Epv e Vi To this end, for any v € V', we introduce the piecewise L?-projection P, by

Povlr =P (vlr), TeT,

where PT is the L%(T)-projection from VhT € to P, (T) with VhT ‘" the local nonconforming VEM space.
For a vertex & of 7, let @(&) denote the union of all the elements in 7}, sharing the point £. Let N(§) denote the number
of elements in w(&). For every nonconforming VEM function v € V", we choose

NC
En) () = Y Ni(Ep) @i (x),

i=1
with N¢=dim(Vf) and {®;(x)} being a set of shape basis functions of V. Here, the values of degrees of freedom N =
span{Ng, Ny} are given by

« The values at interior vertices & V;'l:
Na(Epv) = Epv(§) = v(§).
 The gradient values at interior vertices & V;;:

> heVPr (§).

T'ew(§)

1
Ny (Ep) 1= ——
VETTTNG)
For v e V¢, (Pyv — Ez)lr e VhT’C, by the Bramble-Hilbert lemma and (4.6), we derive
lv—Epvllor < lv—"Pullor + [PV = Epvllor
ShE ot + hrll X (P — Epv) || 2. (4.36)

For £ € V!, using the similar arguments for deriving (3.19) to get

|(Pv — Ex) |1 (§)] < 1oV — Vllo.coT

2
SRy —vlig

i=0
S hrlvlar. (4.37)
According to [44, Lemma 4.2], there holds
|he V(Byv — Eg) |1 (§)] < hrlvlar. (4.38)
Then, we have by (4.37) and (4.38) that
| X(Pov — Ex) |l < hrlvlzr. (4.39)
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Combining (4.36) and (4.39), one easily finds

> hitlv—Evllgr < VI3,
TeTy

Using an argument similar to that in [47, Lemma 4.2], we obtain

Z |U_Ehv|§,r S |U|§,h~
TeTy

Then, we have the following result.
Lemma 4.6. Let E;, be the above enriching operator from V]I to V(. For all T Ty, there holds
v~ Evvllizcgy + h( 3 v =B )2 + P Bl S 2Ivs Ve e
TeTy
Proof. In view of the inverse inequality (4.5) and the norm equivalence (4.7), we have
[v—Epvlir < [v—Pulig + |Pv—Epvlir
< |v=Pylir +h: P — Epvllor
Shrlvlar + | X By — Epv) |l

with x = {x; {,":f, where y; is the degree of freedom in (D1)-(D2). Then, (4.39) implies

h( S - Eu|{r)1/2 <R |]on
TeTy

Since

|Epvla < |Eqv = Vlgp + V]2,
an application of (4.41) leads to

[Epvl2 S [VI2p-
From (4.40), (4.43) and (4.44), we obtain the desired result. O
Lemma 4.7. For any u € H3(Q) N H2(S), there holds

lu— Enlpullo + hlu — Eplyuly + h?|u — Epluls < h3|uls.

(4.40)

(441)

(4.42)

(4.43)

(4.44)

(4.45)

Proof. For T € Ty, let St be the interior of the union of the closure of all the polygons in 7, neighboring T. By (4.40) and

(4.5), we have that for any v € V¢,
v —Epvllor S W) S IVilees,)-
Similar to the proof of (4.44), we derive from the above inequality that

lExvllor S NVili2csy)-

(4.46)

It is easy to check that (E,)|r¢ = ¢ for all ¢ € P,(T) with T € 7. Let ¢ be an arbitrary quadratic function on Sy. By (4.46),

lu—Eplpullor = lu — @ + End — Enlpullor
Sllu=@llees) + 19 = Ihullps,
Sllu =@l + lu = Thullees).-
Using (4.31) and Lemma 3.1, we obtain
llu — Eyplyullo < h°luls.
By a similar technique, we have
lu— Eplyuly < h*|uls,
lu — Eplhulz < huls.
Thus, (4.45) holds. O

Lemma 4.8. For all T € Ty, if u € H3(2) N H2(S2), then we have

| > a"(wv—Ew)| Shlulslvlyy YveVpe
TeTy

1

(4.47)

(4.48)

(4.49)
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Proof. We follow an argument given in [33,35]. By integration by parts, it follows that

S d (v - E) = Z/Ta,»ju 8, (v — Eqv) dx

TeTy TeT,
=—ZfV(Au)-V(v—Ehv)dx+Z/ Onntt O (v — Eqv) ds
Ter * T Ter; Y 0T
+3 f Oneelt 0 (v — Ey) ds. (4.50)
Ter, Y 9T

The first term on the right-hand side of (4.50) can be estimated as follows.

Z/;V(Au) -V -Ew) dx‘ < |Au|H1(Q)< > |1/—E,11/|,211(T))”2

TeTy TeTy
< hluls|vlzp. (4.51)

Note that

/[Bn(v—Ehv)]ds o, /[a,(u— Ew)]ds=0, VeedT+noT .
e e
Let Oynu be the mean value of dynu over the edge e. We have

5 [ s (v~ Eyv) ds = 3 [ Gt = Bant) 000 = Ey) s,

TeTy ecg, ¢

By the Cauchy-Schwarz inequality, (4.42) and the trace theorem, we obtain

Z (Ount — m)[aﬂ (v —Epv)]ds

ecg, v ¢
< (2 lel 1Bt — Buntlie) )2 (3 lel N0 = Evo)]ls ) 2
ecéy ecéy
S hluls|vlyp. (4.52)
Similar to the derivation of (4.52), we know
3 / Ouettde (v — Eyv) ds <  [uls[v] . (4.53)
to7 JoT

Inserting (4.51), (4.52) and (4.53) into (4.50), we can derive the inequality (4.49). O

Now, we turn to bound the term Ry, (u, uy) defined in (3.13). Write

Z aT(u, Ihu—up) = Z GT(U, Ihu — uy — Ep(Inu — up)) + a(u, Exlyu — Equy).
TeTy TeTy

Applying (4.49), we have

> a(u Iyu —up) < hluls|lu — uy |y + au, Exlyu — Equy). (4.54)
TeTy

We will make use of the solution {i, defined by (3.17). Note that
a(u, Eplyu — Equy) = a(u — iy, Eplyu — Equy) + a(fy, Eplyu — Gy) + a(iiy, @, — Equg).
By (3.23) and (4.42),
a(u — iy, Eplyu — Epup) < [u = Gpl2|Ep(htt = up)l2 < Rl = up o p-
From the definition (3.17),
a(ip, Uy — Epup) < (f, U — Epug).
Hence
a(u, Eplyu — Epup) < h[Ihu — uplyp + a(@y, Exlyu — ) + (f, Gy — Epug). (4.55)
Note that

a(tiy, Eplyu — 1) = a(ily, — u, Eplyu — 1iy) + a(u, Epl,u — u) + a(u, u — ).

12
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Using the Cauchy-Schwarz inequality, (3.23) and (4.45), we obtain
a(li, — u, Eplyu — 1) = a(ily, — u, Eplyu — u) + a(ily, — u, u — )
S g — ul2 [Eplpu — ul>
< WJuls. (4.56)
In view of Eylyu —u € H3(R2), by (2.5) and (4.45),
a(u, Eylyut — 1) = —/Q V(AW (Eylyu — u) dx

< lulslu — Eplyuly

< h?Jul3. (4.57)
Combining (4.55) with (4.56), we get
a(ily, Eplyu — @) < h? + a(u, u — ). (4.58)

Inserting (4.58) into (4.55), we derive

a(u, Eplyu — Equp) < h|lgu — uplyp +h* + a(u, u — ) + (f, @ — Eqtty).-
From (4.54), we have

Ry (u, up) < hiuls|lytt — uplyp + h [Tt =ty + h?

+a(u,u—tp) + (f. Uy — Equp) — (f, ot — up). (4.59)

As in the conforming case, using the function ¢ constructed in [35], we know

iy =1, +6pp € K.
Observe that

a(u,u—1y) =a(u,u—1d,) + spa(u, ¢). (4.60)
Note that

a(u,u—1dy) < (f,u—1dy),
and

(fou—1dy) = (f,u—1y) = S (f, @).
Hence,

a(u,u—1y) < 8pla(u, @) — (f. )]+ (f.u—ip). (4.61)
From (4.42) and (4.45), we obtain

(fou—1tp) + (f, Gy — Equp) — (f, It — up)
= (f,u—Eplpt) + (f, Exlyu — Gp) + (f, Gy — Epup) — (f, Iou — up)
= (f,u—Eplyu) + (fa Ep(Ihu — up) — (It — Uh))

< RPulsl fllo + B2 fllolhu — gz p- (4.62)
Together with (4.61), (4.62) and (3.23), we have
a(u,u—tp) + (f, iy — Equp) — (f Jou — up) < 02+ 2 Juls|| fllo + h?[| fllol It — uplo b (4.63)

Owing to (4.59) and (4.63), we find
Ry(u, up) < hluls|lyu — uylo p + |l — gl + b
+ 2 Juls| fllo + [l fllo Mt — up |2 p- (4.64)
An optimal order error bound for the fully nonconforming VEM is provided in the next result.

Theorem 4.2. Assume (H1)-(H2) and u € H3(Q2) for the true solution of (2.2). Let uy € K} be the solution of (4.30). Then we
have the error bound

[u—uplypn Sh
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Fig. 1. Polygonal meshes with 64 elements (left) and 256 elements (right).

y 05 .05 X y 05 05 X

Fig. 2. Numerical solutions for h = 1/8 (upper left), 1/16 (upper right), 1/32 (bottom left), and 1/64 (bottom right).

Proof. In view of (4.64) and (3.16),

I —upl3 ), < Y M —ul3 g+ R ulf+ 1 = flgpe.
TeTy

+ hluls|lyu = uply 4+ bl = uplyp + h* + B3 Julsll fllo + B2l flloHxt — Ul -

By an application of the modified Cauchy-Schwarz inequality (3.15) with a sufficiently small ¢ > 0, we have

it = unl3 < 7 Mru— ul g+ B2+ [ — F e,
TeTy

+h? 4+ B2 [uls || fllo + | £I13- (4.65)

14
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Fig. 3. Numerical solutions for h = 1/8 (upper left), 1/16 (upper right), 1/32 (bottom left) and 1/64 (bottom right).

By (4.31), it is straightforward to get

> lu—rlulsy < h?uf3.
TeTy

Use (4.35) to bound || f — f,'1”||fan)*- From (4.65) we conclude that
h
[Ihtt — gl S h
Finally, we apply the triangle inequality
[u—uplan < [u—Ihulyp + It — uplap

to complete the proof. O

5. Numerical experiments

For the implementation of the numerical methods, for both the conforming and fully nonconforming VEMs, we first
observe that the discrete problem (3.9) is equivalent to the optimization problem

up = argmin[%ah(v, v) — (fr v)] (5.1)

vekK

where

Ky ={veVy|v(p) =¥ (p) VpeVn}
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Let Ny and N be the number of nodal points and the number of global degree freedoms, respectively. Denote by I the set cor-

responding to the indices of the nodal points, and denote by {¢; f’: ; the shape functions of V. Expressing a virtual element
N

function in terms of the basis functions, v = Y v;¢;, and denoting v = (v1,;,--- ,Uy)T, we can rewrite the minimization

i=1
problem (5.1) as

1 T
l‘ll;lelll(] 51/ Av—-b'v, (5.2)

where

A = (a,(di. @j))nxn: b= ((fu. ),
and

K={veRN|v;>y,foriel}.

Write v= (v, v])T with vy e RM and partition the matrix A and the vector b accordingly:

Ay Ap b,
A= , b:= .
(A{z A22> (”2)

After eliminating v,, we get the following reduced minimization problem (cf. [28,29]): Find v} € RM such that
F}) = min F(1y) (5.3)
v1eky
where
o 1 -~ ~T
F(U]) = iv{Aﬂh — blvl
with
ﬁ] = A]] — A]zAEzlAL, B] = b] — A]zAEzl bz,
and
K :={veRM |v; > foriell].
After v is computed, we let
& -1 T *
v5 = Ay, (b — Apv}).

By the Karush-Kuhn-Tucker (KKT) condition, the constrained minimization problem (5.3) is equivalent to the following com-
plementarity problem

{33 U0 -y =0 G4
where ¥y = (Y1, Y2, -+, ¥, )T and A € RM. Note that the second line in (5.4) can equivalently be expressed as

C(v;,2) =0,
where

C(1,A) =X —max(0, X +c(Y; —v1))

for any positive number c. We apply the primal-dual active algorithm to solve the discrete system (5.4). Note that the
primal-dual active algorithm is equivalent to the semismooth Newton method and has a superlinear convergence order
([47]).

We use the code PolyMesher ([48]) to generate the polygonal meshes and then solve the discrete obstacle problem.
Meshes with 64 elements and 256 elements are shown in Fig. 1.

Example 1. For the problem data, we use Q = (—0.5,0.5)2, f(x) =0, ¥ (x) = 0.1 — 2 |x|2.

In this example, the area of the domain €2 is 1, and we define h = \/ﬁ where n is the number of elements of the mesh.
Since the exact solution is unknown, we use the numerical solution with a fine mesh as the “reference” solution u.. For
this example, the “reference” solution is taken to be the numerical solution with h = 1/256. We measure the relative error
of the numerical solutions in the discrete energy norm:

ah(uref — Up, uref - uh):|1/2
ah(urefs uref)

Err:= [ (5.5)
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Table 1
Numerical errors on square meshes for the C'-VEM with k = 2.
h i 5 1 5 Gl
Err 5.85e-01  6.43e-01  4.74e-01  2.90e-01 1.52e-01
Order '\ -0.13 0.44 0.71 0.935
Table 2
Numerical errors on square meshes for the fully nonconforming VEM with
k=2.
h i 5 1 £ &
Err 4.65e-01  4.78e-01  3.21e-01 1.87e-01  9.52e-02
Order '\ -0.0396 0.574 0.780 0.974

5.1 Results for the conforming C!-type VEM

The numerical solutions for the conforming C!-type VEM corresponding to meshes with h = 1/8,1/16,1/32, and 1/64 are
shown in Fig. 2, respectively. A convergence trend is evident for the numerical solutions as the element number increases.
In Table 1, we report numerical convergence orders. We observe that as h decreases, the numerical convergence order
approaches 1, matching the theoretical prediction in Theorem 4.1.

5.2. Results for the fully nonconforming VEM

The numerical solutions for the fully nonconforming VEM corresponding to meshes with h =1/8,1/16,1/32, and 1/64
are shown in Fig. 3, respectively. A convergence trend is evident for the numerical solutions as the mesh is refined. In
Table 2, we report numerical convergence orders. We observe that as h decreases, the numerical convergence order ap-
proaches 1, matching the theoretical prediction in Theorem 4.2.
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