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a b s t r a c t

This paper is devoted to the study of a class of hemivariational inequalities for the
time-dependent Navier–Stokes equations, including both boundary hemivariational
inequalities and domain hemivariational inequalities. The hemivariational inequali-
ties are analyzed in the framework of an abstract hemivariational inequality. Solution
existence for the abstract hemivariational inequality is explored through a limiting
procedure for a temporally semi-discrete scheme based on the backward Euler differ-
ence of the time derivative, known as the Rothe method. It is shown that solutions of
the Rothe scheme exist, they contain a weakly convergent subsequence as the time
step-size approaches zero, and any weak limit of the solution sequence is a solution of
the abstract hemivariational inequality. It is further shown that under certain condi-
tions, a solution of the abstract hemivariational inequality is unique and the solution
of the abstract hemivariational inequality depends continuously on the problem data.
The results on the abstract hemivariational inequality are applied to hemivariational
inequalities associated with the time-dependent Navier–Stokes equations.
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1. Introduction

Variational inequalities and hemivariational inequalities each form an important family of nonlinear prob-
lems with applications in several fields such as mechanics, physics, engineering, and economics. One of the
bases for its development was the contribution of Fichera [1] on the solution of the frictionless contact prob-
lem between a linearly elastic body and a rigid foundation, posed by Signorini [2]. Mathematical analysis
of variational inequalities started in 1960s. The foundations of the mathematical theory of variational in-
equalities were laid in [3–6]. In particular, Stampacchia coined the term “Variational Inequality” in [3]. The
study of variational inequalities and their applications was popularized by several early monographs, such
as [7–9]. The monographs [10–12] provide comprehensive coverage of numerical methods and their analysis
for solving various variational inequalities. Applications of variational inequalities in contact mechanics and
plasticity can be found in [13–15].

The notion of hemivariational inequalities was first introduced by Panagiotopoulos in early 1980s [16] and
is closely related to the development of the concept of the generalized gradient of a locally Lipschitz functional
provided by Clarke [17,18]. Interest in hemivariational inequalities originated, similarly as in variational
inequalities, in mechanical problems. From this point of view, the inequality problems in mechanics can
be divided into two main classes: that of variational inequalities which is concerned with convex energy
functionals (potentials), and that of hemivariational inequalities which is concerned with nonsmooth and
nonconvex energy functionals (superpotentials). Through the formulation of hemivariational inequalities,
problems involving nonmonotone, nonsmooth and multivalued constitutive laws, forces, and boundary
conditions can be treated successfully, both theoretically and numerically. During the last three decades,
hemivariational inequalities were shown to be very useful across a variety of subjects, and there is a large
number of problems which lead to mathematical models expressed in terms of hemivariational inequalities.
The mathematical literature dedicated to this field is growing rapidly. The theory, numerical solution and
applications of hemivariational inequalities can be found in several monographs [19–22] and the references
therein. Analysis of the finite element method for solving hemivariational inequalities can be found in the
monograph [23]. In the recent papers [24,25], optimal order error estimates are derived, for the first time,
for the linear finite element approximations of some hemivariational inequalities.

Time-dependent and time-independent Navier–Stokes equations have been research topics of substan-
tial efforts in their mathematical theories, numerical solutions, computer simulations, and applications. In
this regard, we refer the reader to [26,27] for mathematical theories and to [28] for numerical analysis of
initial–boundary or boundary value problems of the Navier–Stokes equations. Starting with Ref. [29], vari-
ational inequalities for the Navier–Stokes equations or the Stokes equations are formulated and studied for
viscous incompressible fluid flow problems involving leak or slip boundary conditions. Some recent refer-
ences on the analysis and numerical solution of such variational inequalities include [30–34]. In the context
of hemivariational inequalities associated with the Navier–Stokes equations, a stationary hemivariational in-
equality is studied in [35], and an evolutionary hemivariational inequality is studied in [36]; these two papers
provide existence results to the hemivariational inequalities, as well as the solution uniqueness for the station-
ary hemivariational inequality. In this paper, we study hemivariational inequalities for the time-dependent
Navier–Stokes equations, through a unified framework of an abstract problem. We explore the solution
existence, uniqueness, and continuous dependence on the data for an abstract hemivariational inequality
problem, and apply the results to the nonstationary hemivariational inequalities for the Navier–Stokes equa-
tions that are of the boundary type, corresponding to nonlinear slip boundary conditions, and of the domain
type, corresponding to hydraulic flow controls.

The organization of the rest of the paper is as follows. In Section 2 we present some definitions and
some auxiliary material. In Section 3, we introduce an abstract hemivariational inequality that includes as a
particular case the hemivariational inequalities for the Navier–Stokes equations. The abstract hemivariational
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inequality is studied in Section 4 for the solution existence, and in Section 5 for the solution uniqueness
and continuous dependence on data. The solution existence is proved through constructing a temporally
semi-discrete approximation, known as the Rothe scheme, whose solutions converge to a solution of the
abstract hemivariational inequality. Finally, in Section 6, we apply the results on the abstract hemivariational
inequality to study the hemivariational inequalities for the nonstationary Navier–Stokes equations.

2. Preliminaries

All the function spaces in this paper are real. For a normed space X, we denote by ∥ · ∥X its norm, by X∗
its topological dual, and by ⟨·, ·⟩X∗×X the duality pairing between X∗ and X. The symbol Xw is used for
the space X endowed with the weak topology. Weak convergence will be indicated by the symbol ⇀. The
symbol 2X∗ represents the set of all subsets of X∗. For simplicity in exposition, in the following we always
assume X is a Banach space, unless stated otherwise.

We first recall the definition of generalized directional derivative and generalized gradient in the sense of
Clarke for a locally Lipschitz function.

Definition 2.1 ([18]). Let f : X → R be a locally Lipschitz function. The generalized directional derivative
of f at x ∈ X in the direction v ∈ X, denoted by f0(x; v), is defined by

f0(x; v) = lim sup
y→x,λ↓0

f(y + λv)− f(y)
λ

.

The generalized gradient or subdifferential of f at x, denoted by ∂f(x), is a subset of the dual space X∗
given by

∂f(x) = {ζ ∈ X∗ | f0(x; v) ≥ ⟨ζ, v⟩X∗×X ∀ v ∈ X}.

A locally Lipschitz function f is said to be regular (in the sense of Clarke) at x ∈ X if for all v ∈ X, the
one-sided directional derivative f ′(x; v) exists and f0(x; v) = f ′(x; v).

We then recall the definition of pseudomonotonicity of a single-valued operator.

Definition 2.2 ([37]). A single-valued operator F : X → X∗ is said to be pseudomonotone, if

(i) F is bounded (i.e., it maps bounded subsets of X into bounded subsets of X∗);
(ii) un ⇀ u in X and lim supn→∞⟨Fun, un − u⟩X∗×X ≤ 0 imply

⟨Fu, u− v⟩X∗×X ≤ lim inf
n→∞

⟨Fun, un − v⟩X∗×X ∀ v ∈ X.

It can be proved (see [35], for example) that an operator F : X → X∗ is pseudomonotone iff it is
bounded and un ⇀ u in X together with lim supn→∞⟨Fun, un − u⟩X∗×X ≤ 0 imply Fun ⇀ Fu in X∗ and
limn→∞⟨Fun, un − u⟩X∗×X = 0.

The following definition can be found, for example, in [22].

Definition 2.3. Let X be a reflexive Banach space. A multi-valued operator F : X → 2X∗ is pseudomonotone
if the following conditions hold:

(a) F has values which are nonempty, bounded, closed and convex;
(b) F is upper semicontinuous from each finite dimensional subspace of X into X∗w;
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(c) for any sequences {un} ⊂ X and {u∗n} ⊂ X∗ such that un ⇀ u in X, u∗n ∈ Fun and lim supn→∞⟨u∗n, un−
u⟩X∗×X ≤ 0, we have that for every v ∈ X, there exists u∗(v) ∈ Fu such that

⟨u∗(v), u− v⟩X∗×X ≤ lim inf
n→∞

⟨u∗n(v), u− v⟩X∗×X .

The following proposition is usually used to check the pseudomonotonicity of an operator.

Proposition 2.4 ([38]). Let X be a real reflexive Banach space, and assume that F : X → 2X∗ satisfies the
following conditions:

(i) for each v ∈ X, F (v) is a nonempty, closed and convex subset of X∗;
(ii) F is bounded;
(iii) if vn ⇀ v in X, v∗n ⇀ v∗ in X∗ with v∗n ∈ F (vn), and lim supn→∞⟨v∗n, vn−v⟩X∗×X ≤ 0, then v∗ ∈ F (v)

and ⟨v∗n, vn⟩X∗×X → ⟨v∗, v⟩X∗×X .
Then the operator F is pseudomonotone.

We will need the notion of coercivity.

Definition 2.5. An operator F : X → 2X∗ is coercive if either D(F ) is bounded or D(F ) is unbounded and

lim
∥u∥X→∞,u∈D(F )

inf{⟨u∗, u⟩X∗×X | u∗ ∈ Fu}
∥u∥X

= +∞.

The following is the main surjectivity result for pseudomonotone and coercive operators.

Theorem 2.6 ([38]). Let X be a reflexive Banach space and F : X → 2X∗ be pseudomonotone and coercive.
Then F is surjective, i.e., R(F ) = X∗.

For a Banach space X and a finite time interval I = (0, T ), we will use the spaces Lp(I;X), 1 ≤ p ≤ ∞.
Denote by BV (I;X) the space of functions of bounded total variation on I defined as follows. Let π denote
a finite partition of I: 0 = a0 < a1 < · · · < an = T , and let F be the family of all such partitions. Then we
define the total variation of a function x : I → X as

∥x∥BV (I;X) = sup
π∈F

n
i=1
∥x(ai)− x(ai−1)∥X .

In general, for 1 ≤ q <∞, we similarly define

∥x∥qBV q(I;X) = sup
π∈F

n
i=1
∥x(ai)− x(ai−1)∥qX .

Then the space BV q(I;X) consists of all the functions x : I → X such that ∥x∥BV q(I;X) <∞.
Now for Banach spaces X, Z such that X ⊂ Z we introduce a vector space

Mp,q(I;X,Z) = Lp(I;X) ∩BV q(I;Z).

It is a Banach space for 1 ≤ p, q <∞ with the norm given by ∥ · ∥Lp(I;X) + ∥ · ∥BV q(I;Z).
The following result is crucial in proving convergence of the Rothe method (cf. Theorem 4.5).

Theorem 2.7 ([39]). Let 1 ≤ p, q < ∞. Let X1 ⊂ X2 ⊂ X3 be real Banach spaces such that X1 is reflexive,
the embedding X1 ⊂ X2 is compact and the embedding X2 ⊂ X3 is continuous. If G is a bounded subset of
Mp,q(I;X1, X3), then it is relatively compact in Lp(I;X2).



C. Fang et al. / Nonlinear Analysis: Real World Applications 31 (2016) 257–276 261

The following version of Aubin–Cellina convergence theorem will be used.

Theorem 2.8 ([40]). Let X and Y be Banach spaces. Assume F : X → 2Y is a multi-valued function such
that

(a) the values of F are nonempty, closed and convex subsets of Y ;
(b) F is upper semicontinuous from X into Yw.

Let xn : (0, T ) → X, yn : (0, T ) → Y , n ∈ N, be measurable functions such that xn converges almost
everywhere on (0, T ) to a function x : (0, T )→ X and yn converges weakly in L1(0, T ;Y ) to y : (0, T )→ Y .
If yn(t) ∈ F (xn(t)) for all n ∈ N and almost all t ∈ (0, T ), then y(t) ∈ F (x(t)) for a.e. t ∈ (0, T ).

3. An abstract hemivariational inequality

Let V be a reflexive separable Banach space and H a Hilbert space. We identify the dual space of H
with H itself: H∗ = H. We denote by ⟨·, ·⟩ the duality of V and V ∗, and by (·, ·) the scalar product in H.
The norms in V and H are ∥ · ∥V and ∥ · ∥H . We denote by | · | the norm in Rd. We consider an evolution
tripe V ⊂ H ⊂ V ∗ with dense, continuous and compact embeddings. Denote by ι : V → H the embedding
injection. We also introduce a reflexive Banach space U and a linear, continuous operator ℓ : V → U .
By ∥ι∥ and ∥ℓ∥ we always mean ∥ι∥L(V,H) and ∥ℓ∥L(V,U), respectively. For T > 0, we define the spaces
V = L2(0, T ;V ), H = L2(0, T ;H), U = L2(0, T ;U), V∗ = L2(0, T ;V ∗) and W = {v ∈ V | v′ ∈ V∗}, where v′
is the time derivative of v, understood in the sense of distributions. The space W is embedded continuously
in C(0, T ;H), the space of all continuous functions v : [0, T ]→ H with the norm

∥v∥C(0,T ;H) = max
t∈[0,T ]

∥v(t)∥H .

We introduce the notion of a generalized Navier–Stokes type operator.

Definition 3.1. An operator N : V → V ∗ is called a generalized Navier–Stokes type operator if Nv =
Av +B[v], where

H(A): A ∈ L(V ;V ∗) is symmetric and for some constants α > 0 and β ≥ 0,

⟨Av, v⟩ ≥ α ∥v∥2V − β ∥v∥2H ∀ v ∈ V ; (3.1)

H(B): B[v] := B(v, v), B : V × V → V ∗ is a bilinear continuous operator satisfying the conditions
⟨B(u, v), v⟩ = 0 ∀u, v ∈ V , and B[·] : V → V ∗ is weakly continuous.

Remark 3.2. If we replace the condition (3.1) by the V -ellipticity

⟨Av, v⟩ ≥ α∥v∥2V ∀ v ∈ V, (3.2)

then the operator N of Definition 3.1 is called a Navier–Stokes type operator [35].

For the generalized Navier–Stokes operator N , obviously we have the inequality

⟨Nv, v⟩ ≥ α ∥v∥2V − β ∥v∥2H ∀ v ∈ V. (3.3)

From [35, Lemma 9], we have the following result.

Lemma 3.3. A generalized Navier–Stokes type operator is pseudomonotone.
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We consider the following inclusion:

Problem 3.4. Find u ∈ W such that
u′(t) +Au(t) +B[u(t)] + ℓ∗∂ψ(ℓu(t)) ∋ f(t) a.e. t ∈ (0, T ),
u(0) = u0,

(3.4)

where f ∈ V∗, ψ : U → R, ∂ψ is the subdifferential of ψ(·) in the sense of Clarke and ℓ∗ : U∗ → V ∗ is the
adjoint operator to ℓ.

Problem 3.4 has the following equivalent formulation.

Problem 3.5. Find (u, η) ∈ W × U∗ such that
u′(t) +Au(t) +B[u(t)] + ℓ∗η(t) = f(t) a.e. t ∈ (0, T ),
η(t) ∈ ∂ψ(ℓu(t)) a.e. t ∈ (0, T ),
u(0) = u0.

(3.5)

For our analysis, we will refer to the following conditions.

H(ψ): The functional ψ : U → R satisfies

(i) ψ is locally Lipschitz;
(ii) ∥η∥U∗ ≤ cψ(1 + ∥ξ∥U ) ∀ η ∈ ∂ψ(ξ), ξ ∈ U , with a constant cψ > 0;
(iii) ⟨η1 − η2, ξ1 − ξ2⟩U∗×U ≥ −m1∥ξ1 − ξ2∥2U∀ ηi ∈ ∂ψ(ξi), ξi ∈ U , i = 1, 2, with m1 ≥ 0.

H(ℓ): the operator ℓ ∈ L(V ;U) is compact and its Nemytskii operator ℓ : M2,2(0, T ;V, V ∗)→ U defined by
(ℓv)(t) = ℓv(t) is compact.

H(B)1: there exists a constant K1 > 0 such that

∥B[v]∥V∗ ≤ K1∥v∥V∥v∥L∞(0,T ;H) ∀ v ∈ V ∩ L∞(0, T ;H).

H(B)2: there exist constants K2 > 0, θ, ρ ∈ [0, 1
2 ] such that

|⟨B(u, v), u⟩| ≤ K2∥u∥1+θ
V ∥u∥

1−θ
H ∥v∥

ρ
V ∥v∥

1−ρ
H ∀ u, v ∈ V.

4. Existence

In this section we explore the solution existence. We start with a temporal semi-discrete approximation
of Problem 3.5 based on the backward Euler difference, known as the Rothe method. For a fixed N ∈ N,
define the time step-size k = T/N . Introduce the piecewise constant interpolant of f by

fk,i = 1
k

 ik

(i−1)k
f(t)dt, i = 1, . . . , N.

We approximate the initial condition by elements of V . Namely, let {uk,0} ⊂ V be a sequence such that
uk,0 → u0 strongly in H and ∥uk,0∥V ≤ C/

√
k for some constant C > 0. Since V is dense in H, such a

sequence {uk,0} exists (cf. [41, Theorem 8.9]).
We will study the following Rothe scheme for the approximation of Problem 3.5.
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Problem 4.1. Find {uk,i}Ni=0 ⊂ V , and {ηk,i}Ni=0 ⊂ U∗ such that for i = 1, . . . , N ,
1
k

(uk,i − uk,i−1, v) + ⟨Auk,i, v⟩+ ⟨B[uk,i], v⟩+ ⟨ηk,i, ℓv⟩U∗×U = ⟨fk,i, v⟩ ∀ v ∈ V,
ηk,i ∈ ∂ψ(ℓuk,i).

(4.1)

First we show an existence result for Problem 4.1.

Theorem 4.2. Assume H(A), H(B), H(ψ), u0 ∈ H and α > cψ∥ℓ∥2. Then for k > 0 small enough, there
exists a solution of Problem 4.1.

Proof. It is sufficient to prove that for a given uk,i−1 ∈ V , there exist uk,i ∈ V and ηk,i ∈ U∗ satisfying
(4.1). Define a multivalued operator L : V → 2V ∗ by

Lv = ι∗ι

k
v +Av +B[v] + ℓ∗∂ψ(ℓv), v ∈ V.

Then, (4.1) is equivalent to

Luk,i ∋ fk,i + ι∗ι

k
uk,i−1.

So it suffices to prove the surjectivity of L. By Theorem 2.6, we only need to show that L is pseudomonotone
and coercive.

First, we prove the coercivity of L. Let v ∈ V and v∗ ∈ Lv. Then

v∗ = ι∗ι

k
v +Av +B[v] + ℓ∗η,

where η ∈ ∂ψ(ℓv). Using H(A) and H(B), we have

⟨v∗, v⟩ =

ι∗ι

k
v, v


+ ⟨Av, v⟩+ ⟨B[v], v⟩+ ⟨η, ℓv⟩U∗×U

≥


1
k
− β


∥v∥2H + α∥v∥2V + ⟨η, ℓv⟩U∗×U . (4.2)

From H(ψ)(ii), we have

⟨η, ℓv⟩U∗×U ≥ −∥ℓ∥ ∥η∥U∗∥v∥V
≥ −cψ∥ℓ∥ ∥v∥V (1 + ∥ℓv∥U )
≥ −cψ∥ℓ∥ ∥v∥V (1 + ∥ℓ∥ ∥v∥V )
= −cψ∥ℓ∥2∥v∥2V − cψ∥ℓ∥ ∥v∥V . (4.3)

It follows from (4.2) and (4.3) that

⟨v∗, v⟩ ≥


1
k
− β


∥v∥2H + (α− cψ∥ℓ∥2)∥v∥2V − cψ∥ℓ∥ ∥v∥V .

Therefore, for k < 1/β small enough, the operator L is coercive.

Next we prove that L is pseudomonotone. In view of Proposition 2.4, we deduce that the operator ι∗ι/k
is pseudomonotone from V to V ∗. Since the operator ℓ : V → U is compact, from [39, Lemma 2] we see
that ℓ∗∂ψ(ℓ·) is pseudomonotone. From Lemma 3.3, we know that N(·) := A(·) + B[·] is pseudomonotone.
Since the sum of two pseudomonotone operators remains pseudomonotone (cf. [38, Proposition 1.3.68]), L
is pseudomonotone. �

Let us establish a priori bound on the solutions of Rothe problem.
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Lemma 4.3. If the assumptions in Theorem 4.2 hold, then there is a constant M1 > 0, independent of k,
such that for k > 0 small enough,

max
1≤i≤N

∥uk,i∥H +
N
i=1
∥uk,i − uk,i−1∥2H + k

N
i=1
∥uk,i∥2V ≤M1. (4.4)

Proof. Take v = uk,i in (4.1),

1
k

(uk,i − uk,i−1, uk,i) + ⟨Auk,i, uk,i⟩+ ⟨B[uk,i], uk,i⟩+ ⟨ηk,i, ℓuk,i⟩U∗×U = ⟨fk,i, uk,i⟩. (4.5)

Note that

(uk,i − uk,i−1, uk,i) = 1
2∥uk,i∥

2
H −

1
2∥uk,i−1∥2H + 1

2∥uk,i − uk,i−1∥2H .

From H(A) and H(B), we obtain

⟨Auk,i, uk,i⟩+ ⟨B[uk,i], uk,i⟩ ≥ α∥uk,i∥2V − β∥uk,i∥2H . (4.6)

Moreover, for any ε > 0, we have

⟨fk,i, uk,i⟩ ≤ ∥fk,i∥V ∗∥uk,i∥V ≤
ε

2∥uk,i∥
2
V + 1

2ε∥fk,i∥
2
V ∗ .

By (4.3),

⟨ηk,i, ℓuk,i⟩U∗×U ≥ −cψ∥ℓ∥2∥uk,i∥2V − cψ∥ℓ∥ ∥uk,i∥V .

Therefore, for any ε > 0,

⟨ηk,i, ℓuk,i⟩U∗×U ≥ −cψ∥ℓ∥2∥uk,i∥2V −
ε

2∥uk,i∥
2
V −

c2
ψ∥ℓ∥2

2ε

=

−cψ∥ℓ∥2 −

ε

2


∥uk,i∥2V −

c2
ψ∥ℓ∥2

2ε . (4.7)

Thus, from (4.5), we have

∥uk,i∥2H − ∥uk,i−1∥2H + ∥uk,i − uk,i−1∥2H + c1k∥uk,i∥2V ≤
k

ε
∥fk,i∥2V ∗ + 2kβ∥uk,i∥2H + c2k, (4.8)

where c1 = 2

α− ε− cψ∥ℓ∥2


, c2 = c2

ψ∥ℓ∥2/ε, and ε > 0 is chosen so that c1 > 0, e.g., ε =

α− cψ∥ℓ∥2


/2.

For 1 ≤ n ≤ N , we sum the inequality (4.8) for i = 1, . . . , n to obtain

∥uk,n∥2H +
n
i=1
∥uk,i − uk,i−1∥2H + c1k

n
i=1
∥uk,i∥2V ≤ ∥uk,0∥2H + 2kβ

n
i=1
∥uk,i∥2H + 1

ε
k

n
i=1
∥fk,i∥2V ∗ + c2T

≤ ∥uk,0∥2H + 2kβ
n
i=1
∥uk,i∥2H + 1

ε
∥f∥2V∗ + c2T. (4.9)

Taking k < 1/2β and applying a discrete Gronwall lemma (cf. [42, Proposition 5.1]), from (4.9) we obtain
the bound (4.4). This completes the proof. �

We now construct sequences of time dependent piecewise constant and piecewise linear functions built
on the solution of Rothe problem, and show the convergence of a subsequence to a solution of Problem 3.5.
Define piecewise linear and piecewise constant interpolants uk ∈ C([0, T ];V ) and uk ∈ L∞(0, T ;V ) by the
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formulas

uk(t) = uk,i +

t

k
− i)(uk,i − uk,i−1


for t ∈ ((i− 1)k, ik], 1 ≤ i ≤ N,

uk(t) =

uk,i, t ∈ ((i− 1)k, ik], 1 ≤ i ≤ N,
uk,0, t = 0.

The piecewise constant function ηk : (0, T ]→ U∗ is given by

ηk(t) = ηk,i for t ∈ ((i− 1)k, ik], 1 ≤ i ≤ N.

Moreover, we define fk : (0, T ]→ V ∗ as follows

fk(t) = fk,i for t ∈ ((i− 1)k, ik], 1 ≤ i ≤ N.

We have fk → f in V∗ as k → 0 ([43, Lemma 3.3]). Observe that the distributional derivative of uk is given
by u′k(t) = (uk,i − uk,i−1)/k for t ∈ ((i− 1) k, i k), 1 ≤ i ≤ N . Thus, (4.1) can be rewritten as

(u′k(t), v) + ⟨Auk(t), v⟩+ ⟨B[uk(t)], v⟩+ ⟨ηk(t), ℓv⟩U∗×U = ⟨fk(t), v⟩ ∀ v ∈ V, a.e. t ∈ (0, T ),
ηk(t) ∈ ∂ψ(ℓuk(t)), a.e. t ∈ (0, T ).

(4.10)

We define the Nemytskii operators A,B : V → V∗ by (Av)(t) = A(v(t)), (Bv)(t) = B[v(t)] for v ∈ V and
ℓ : V → U by (ℓv)(t) = ℓv(t) for v ∈ V and observe that the above problem (4.10) is equivalent to

(u′k, v)H + ⟨Auk, v⟩V∗×V + ⟨Buk, v⟩V∗×V + ⟨ηk, ℓv⟩U∗×U = ⟨fk, v⟩V∗×V ∀ v ∈ V,
ηk(t) ∈ ∂ψ((ℓ uk)(t)), a.e. t ∈ (0, T ).

(4.11)

Lemma 4.4. Assume H(A), H(B), H(B)1, H(ψ), u0 ∈ H, and α > cψ∥ℓ∥2. Then there is a constant M2 > 0,
independent of k, such that for k > 0 small enough,

∥uk∥V + ∥uk∥L∞(0,T ;H) + ∥uk∥C(0,T ;H) + ∥uk∥V + ∥u′k∥V∗ + ∥ηk∥U∗ + ∥uk∥M2,2(0,T ;V,V ∗) ≤M2. (4.12)

Proof. The inequality (4.4) provides bounds on ∥uk∥L∞(0,T ;H) and ∥uk∥C(0,T ;H) directly. Since ∥uk∥2V =
k
N
i=1 ∥uk,i∥2V , the bound on ∥uk∥V also follows from (4.4). From ∥uk∥2V ≤ k

N
i=0 ∥uk,i∥2V , (4.4), and

∥uk,0∥V ≤ C/
√
k, we get the bound on ∥uk∥V .

Next, using H(ψ)(ii) we have

∥ηk∥2U∗ =
 T

0
∥ηk(t)∥2U∗dt

≤
 T

0


2c2
ψ + 2c2

ψ∥ℓ∥2∥uk(t)∥2V

dt

= 2Tc2
ψ + 2c2

ψ∥ℓ∥2∥uk∥2V .

Hence, from the bound on ∥uk∥V we get the bound on ∥ηk∥U∗ .

From

⟨u′k, v⟩V∗×V = (u′k, v)H = ⟨fk, v⟩V∗×V − ⟨Auk, v⟩V∗×V − ⟨Buk, v⟩V∗×V −
 T

0
⟨ηk(t), ℓv(t)⟩U∗×Udt,

we get

∥u′k∥V∗ ≤ ∥fk∥V∗ +
 T

0
∥Auk(t)∥2V ∗dt

 1
2

+ ∥B[uk]∥V∗ + ∥ℓ∥ ∥ηk∥U∗ . (4.13)
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Since uk ∈ V ∩ L∞(0, T ;H), by H(B)1,

∥B[uk]∥V∗ ≤ K1∥uk∥V∥uk∥L∞(0,T ;H). (4.14)

Using H(A), from (4.13) and (4.14), we have

∥u′k∥V∗ ≤ ∥fk∥V∗ + ∥A∥L(V,V ∗)∥uk∥V +K1∥uk∥V∥uk∥L∞(0,T ;H) + ∥ℓ∥ ∥ηk∥U∗ .

Thus, using the bounds on ∥uk∥V , ∥uk∥L∞(0,T ;H) and ∥ηk∥U∗ we get the bound on ∥u′k∥V∗ .

Finally, we bound ∥uk∥M2,2(0,T ;V,V ∗). Let us assume that the seminorm in BV 2(0, T ;V ∗) of piecewise
constant function uk is realized by some division 0 = a0 < a1 < · · · < an = T , and each ai is in different
interval ((mi−1)k,mik], such that uk(ai) = uk,mi with m0 = 0, mn = N and mi+1 > mi for i = 1, . . . , N−1.
Thus, from the bound on ∥u′k∥V∗ , we have

∥uk∥2BV 2(0,T ;V ∗) =
n
i=1
∥uk,mi − uk,mi−1∥2V ∗

≤
n
i=1

(mi −mi−1)
mi

l=mi−1+1
∥uk,l − uk,l−1∥2V ∗

≤
n
i=1

(mi −mi−1)
N
l=1
∥uk,l − uk,l−1∥2V ∗

= N

N
l=1
∥uk,l − uk,l−1∥2V ∗ = Tk

N
l=1

uk,l − uk,l−1

k

2

V ∗

= T

 T

0
∥u′k(t)∥2V ∗dt = T∥u′k∥2V∗ .

Consequently, from the bound on ∥uk∥V , we deduce that uk is bounded in M2,2(0, T ;V, V ∗). This completes
the proof. �

Theorem 4.5. Assume H(A), H(B), H(B)1, H(ψ), H(ℓ), u0 ∈ H, and α > cψ∥ℓ∥2. Let uk, uk be piecewise
linear and piecewise constant functions built on a solution of Rothe Problem 4.1. Then for k > 0 small
enough, there exists a pair (u, η) such that for a subsequence, uk ⇀ u in W, uk⇀∗ u in L∞(0, T ;H), uk ⇀ u

in V, uk⇀∗ u in L∞(0, T ;H) and ηk ⇀ η in U∗. Moreover, the limit (u, η) is a solution of Problem 3.5.

Proof. By the bound (4.12), we can assume that, passing to a subsequence if necessary, there exist
u ∈ V ∩ L∞(0, T ;H), u ∈ V ∩ L∞(0, T ;H), u1 ∈ V∗, and η ∈ U∗ such that as k → 0,

uk ⇀ u in V and uk⇀
∗ u in L∞(0, T ;H), (4.15)

uk ⇀ u in V and uk⇀
∗ u in L∞(0, T ;H), (4.16)

u′k ⇀ u1 in V∗, (4.17)
ηk ⇀ η in U∗. (4.18)

First we show that u = u. To this end, we calculate

∥uk − uk∥2V∗ =
N
i=1

 ik

(i−1)k
(ik − t)2

uk,i − uk,i−1

k

2

V ∗
dt = k2

3 ∥u
′
k∥2V∗ ,

implying uk − uk → 0 in V∗ as k → 0. On the other hand, from (4.15) and (4.16) we have uk − uk ⇀ u− u
in V. Since the embedding V ⊂ V∗ is continuous, we also have uk − uk ⇀ u− u in V∗. Therefore, u− u = 0,
i.e. u = u. Since uk ⇀ u in V and u′k ⇀ u1 in V∗, we conclude (cf. [23, Proposition 1.2]) that u1 = u′. Thus,
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for all v ∈ V, we obtain

(u′k, v)H = ⟨u′k, v⟩V∗×V → ⟨u′, v⟩V∗×V = (u′, v)H. (4.19)

From H(A), it is clear that A is a linear and continuous operator from V to V∗ and is thus also weakly
continuous. Since uk ⇀ u in V, we get

⟨Auk, v⟩V∗×V → ⟨Au, v⟩V∗×V . (4.20)

From (4.12) and (4.14) we have

∥Buk∥V∗ = ∥B[uk]∥V∗ ≤ K1∥uk∥V∥uk∥L∞(0,T ;H) <∞.

Therefore, applying the Lebesgue-dominated convergence theorem, from H(B) we get

⟨Buk, v⟩V∗×V =
 T

0
⟨B[uk(t)], v(t)⟩ dt→

 T

0
⟨B[u(t)], v(t)⟩ dt = ⟨Bu, v⟩V∗×V . (4.21)

From (4.18) we get

⟨ηk, ℓv⟩U∗×U → ⟨η, ℓv⟩U∗×U . (4.22)

Since fk → f in V∗, we have

⟨fk, v⟩V∗×V → ⟨f, v⟩V∗×V . (4.23)

Using (4.19)–(4.23), we can pass to the limit k → 0 in (4.11) and obtain

(u′, v)H + ⟨Au, v⟩V∗×V + ⟨Bu, v⟩V∗×V + ⟨η, ℓv⟩U∗×U = ⟨f, v⟩V∗×V ∀ v ∈ V. (4.24)

Since uk ⇀ u in V, from H(ℓ) we have ℓ uk → ℓu in U . Thus, for a subsequence, ℓ uk(t)→ ℓu(t) in U for
a.e. t ∈ (0, T ). Since ∂ψ : U → 2U∗ has nonempty, closed and convex values and is upper semicontinuous
from U endowed with strong topology into U∗ endowed with weak topology (cf. [44, Proposition 5.6.10]),
from (4.18) and Theorem 2.8 we have

η(t) ∈ ∂ψ(ℓu(t)) a.e. t ∈ (0, T ). (4.25)

Finally, we pass to the limit with the initial conditions on the function uk. Since uk ⇀ u in V, u′k ⇀ u′

in V∗, and the embedding W ⊂ C(0, T ;H) is continuous, we have uk ⇀ u in C(0, T ;H). The latter implies
uk(t) ⇀ u(t) in H for all t ∈ [0, T ] (cf. [45, Lemma 4(b)]). Therefore, uk,0 = uk(0) ⇀ u(0) in H. Since by
the hypothesis uk,0 → u0 in H, we have u(0) = u0. This completes the proof. �

Theorem 4.5 provides a constructive approach for the solution existence of Problem 3.5. We note that the
main idea is to replace time derivative with the backward difference scheme and solve the associated elliptic
problem in every time step to find the solution in the consecutive points of the time mesh. Moreover, as
long as one can solve the underlying elliptic problems, this method does not require any smoothing or other
additional regularizing conditions. The Rothe method has been applied to study several partial differential
equation models, e.g., for nonlinear partial differential equations [41], for variational inequalities [46], for
hemivariational ones [39] and for variational–hemivariational ones [47].

5. Uniqueness and continuous dependence on data

In this section we explore the solution uniqueness and the continuous dependence of the solution on the
data f and u0 for Problem 3.5. We will need Gronwall’s inequality ([48, p. 224]): Assume f, g ∈ C[a, b],
h ∈ L1(a, b), h(t) ≥ 0 a.e., and

f(t) ≤ g(t) +
 t

a

h(s) f(s) ds, t ∈ [a, b].
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Then,

f(t) ≤ g(t) +
 t

a

g(s)h(s) exp
 t

s

h(r) dr

ds ∀ t ∈ [a, b].

We further denote λ > 0 to be the embedding constant of V ⊂ H:

∥v∥H ≤ λ ∥v∥V ∀ v ∈ V.

We first present a result on the uniqueness of a solution to Problem 3.5.

Theorem 5.1. Assume H(A), H(B), H(B)1, H(B)2, H(ψ), H(ℓ), u0 ∈ H, and α > cψ∥ℓ∥2 +βλ2. Let u ∈ V
be a solution to Problem 3.5. Then, there exists a constant C0 > 0 such that

∥u∥V ≤ C0. (5.1)

If α > m1∥ℓ∥2, then the solution to Problem 3.5 is unique.

Proof. First we prove the bound (5.1). Since u ∈ V solves Problem 3.5, we have

(u′(t), u(t)) + ⟨Au(t), u(t)⟩+ ⟨B[u(t)], u(t)⟩+ ⟨η(t), ℓu(t)⟩U∗×U = ⟨f(t), u(t)⟩, a.e. t ∈ (0, T ),

where η(t) ∈ ∂ψ(ℓu(t)) for a.e. t ∈ (0, T ).

By (4.3),

⟨η(t), ℓu(t)⟩U∗×U ≥ −cψ∥ℓ∥2∥u(t)∥2V − cψ∥ℓ∥ ∥u(t)∥V a.e. t ∈ (0, T ).

Thus, from H(A) and H(B) we have
1
2
d

dt
∥u(t)∥2H + (α− cψ∥ℓ∥2 − βλ2)∥u(t)∥2V − cψ∥ℓ∥ ∥u(t)∥V ≤ ⟨f(t), u(t)⟩ a.e. t ∈ (0, T ).

Therefore,
1
2
d

dt
∥u(t)∥2H + (α− cψ∥ℓ∥2 − βλ2)∥u(t)∥2V ≤ cψ∥ℓ∥ ∥u(t)∥V + ⟨f(t), u(t)⟩ a.e. t ∈ (0, T ). (5.2)

Integrating (5.2) with respect to t from 0 to T , we obtain

1
2∥u(T )∥2H −

1
2∥u0∥2H + (α− cψ∥ℓ∥2 − βλ2)∥u∥2V ≤ cψ∥ℓ∥

 T

0
∥u(t)∥V dt+

 T

0
⟨f(t), u(t)⟩ dt

≤ cψ
√
T∥ℓ∥ ∥u∥V + ∥f∥V∗∥u∥V .

Hence,
1
2∥u(T )∥2H + (α− cψ∥ℓ∥2 − βλ2)∥u∥2V ≤ (cψ

√
T∥ℓ∥+ ∥f∥V∗)∥u∥V + 1

2∥u0∥2H .

Thus, (5.1) holds.

Next, let (u1, η1), (u2, η2) be two solutions of Problem 3.5. Then, for a.e. t ∈ (0, T ), we have

(u′1(t)− u′2(t), v) + ⟨A(u1(t)− u2(t)), v⟩+ ⟨B[u1(t)]−B[u2(t)], v⟩
+ ⟨η1(t)− η2(t), ℓv⟩U∗×U = 0 ∀ v ∈ V. (5.3)

Taking v = u1(t)− u2(t) in (5.3), we get
1
2
d

dt
∥u1(t)− u2(t)∥2H + ⟨A(u1(t)− u2(t)), u1(t)− u2(t)⟩+ ⟨B[u1(t)]−B[u2(t)], u1(t)− u2(t)⟩

+ ⟨η1(t)− η2(t), ℓ(u1(t)− u2(t))⟩U∗×U = 0, a.e. t ∈ (0, T ). (5.4)
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By H(ψ)(iii), we have

⟨η1(t)− η2(t), ℓ(u1(t)− u2(t))⟩U∗×U ≥ −m1∥ℓ(u1(t)− u2(t))∥2U
≥ −m1∥ℓ∥2∥u1(t)− u2(t)∥2V . (5.5)

By H(B), we have

⟨B[u1(t)]−B[u2(t)], u1(t)− u2(t)⟩ = ⟨B(u1(t), u1(t))−B(u2(t), u2(t)), u1(t)− u2(t)⟩
= ⟨B(u1(t)− u2(t), u1(t)), u1(t)− u2(t)⟩

+ ⟨B(u2(t), u1(t)− u2(t)), u1(t)− u2(t)⟩
= ⟨B(u1(t)− u2(t), u1(t)), u1(t)− u2(t)⟩. (5.6)

Using H(A) and H(B)1, from (5.4)–(5.6), we obtain for a.e. t ∈ (0, T ),
1
2
d

dt
∥u1(t)− u2(t)∥2H + (α−m1∥ℓ∥2)∥u1(t)− u2(t)∥2V − β∥u1(t)− u2(t)∥2H

≤ K2∥u1(t)− u2(t)∥1+θ
V ∥u1(t)− u2(t)∥1−θH ∥u1(t)∥ρV ∥u1(t)∥1−ρH . (5.7)

Integrating (5.7) with respect to t from 0 to t, we get

∥u1(t)− u2(t)∥2H + 2(α−m1∥ℓ∥2)
 t

0
∥u1(s)− u2(s)∥2V ds− 2β

 t

0
∥u1(s)− u2(s)∥2Hds

≤ 2K2

 t

0
∥u1(s)− u2(s)∥1+θ

V ∥u1(s)− u2(s)∥1−θH ∥u1(s)∥ρV ∥u1(s)∥1−ρH ds. (5.8)

Since u1 ∈ L∞(0, T ;H), the right side is bounded by

2K2∥u1∥L∞(0,T ;H)

 t

0
∥u1(s)− u2(s)∥1+θ

V ∥u1(s)− u2(s)∥1−θH ∥u1(s)∥ρV ds.

We then bound this quantity by applying the modified Young’s inequality (cf. [48, p. 45])

ab ≤ δ ap

p
+ δ1−qbq

q
, a, b ≥ 0, δ > 0, 1 < p, q <∞, 1

p
+ 1
q

= 1

with

a = ∥u1(s)− u2(s)∥1+θ
V , b = ∥u1(s)− u2(s)∥1−θH ∥u1(s)∥ρV ,

p = 2
1 + θ

, q = 2
1− θ , δ = p ε

2K2 max{∥u1∥L∞(0,T ;H), 1}
.

As a result, for any ε > 0,

2K2

 t

0
∥u1(s)− u2(s)∥1+θ

V ∥u1(s)− u2(s)∥1−θH ∥u1(s)∥ρV ∥u1(s)∥1−ρH ds

≤ ε
 t

0
∥u1(s)− u2(s)∥2V ds+ C(ε, θ)

 t

0
∥u1(s)− u2(s)∥2H∥u1(s)∥

2ρ
1−θ
V ds, (5.9)

where C(ε, θ) > 0 depends on ε, θ and ∥u1∥L∞(0,T ;H). Taking ε = 2(α−m1∥ℓ∥2) and substituting (5.9) into
(5.8), we obtain for C1 > 0,

∥u1(t)− u2(t)∥2H ≤
 t

0
(2β + C1∥u1(s)∥

2ρ
1−θ
V )∥u1(s)− u2(s)∥2Hds. (5.10)

Note that ∥u1(t)−u2(t)∥2H is a continuous function of t, and ∥u1(·)∥
2ρ

1−θ
V ∈ L1(0, T ). We can apply Gronwall’s

inequality to (5.10) and conclude that u1 = u2. This completes the proof. �

Next, we establish the continuous dependence of solution of Problem 3.5 on f and u0.
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Theorem 5.2. Assume that α > m∥ℓ∥2 + βλ2, where m = max{cψ,m1}. If the assumptions H(A), H(B),
H(B)1, H(B)2, H(ψ), H(ℓ) hold and u0 ∈ H, then the mapping (f, u0) → u : V∗ × H → C(0, T ;H) is
Lipschitz continuous, where u denotes the unique solution to Problem 3.5.

Proof. Let u1, u2 ∈ W be the solutions of Problem 3.5 corresponding to two right-hand sides f1, f2 ∈ V∗

and two initial conditions u1
0, u

2
0 ∈ H. We subtract the equation satisfied by u2 from that satisfied by u1,

and multiply the resulting equation by v = u1(t)− u2(t) for a.e. t ∈ (0, T ). Then we have

(u′1(t)− u′2(t), u1(t)− u2(t)) + ⟨A(u1(t)− u2(t)), u1(t)− u2(t)⟩
+ ⟨B[u1(t)]−B[u2(t)], u1(t)− u2(t)⟩+ ⟨η1(t)− η2(t), ℓ(u1(t)− u2(t))⟩U∗×U

= ⟨f1(t)− f2(t), u1(t)− u2(t)⟩, (5.11)

where η1(t) ∈ ∂ψ(ℓu1(t)) and η2(t) ∈ ∂ψ(ℓu2(t)) for a.e. t ∈ (0, T ). Similar to the proof of the uniqueness in
Theorem 5.1, by (5.11) and Hölder’s inequality, we get

∥u1(t)− u2(t)∥2H ≤ c

∥u1

0 − u2
0∥2H +

 t

0
∥f1(s)− f2(s)∥2V ∗ds


+
 t

0


2β + C2∥u1(s)∥

2ρ
1−θ
V


∥u1(s)− u2(s)∥2Hds, (5.12)

where c > 0 depends on α, m1 and ∥ℓ∥, C2 > 0.

Using Gronwall’s inequality, from (5.12) we get

∥u1(t)− u2(t)∥2H ≤ c

∥u1

0 − u2
0∥2H +

 t

0
∥f1(s)− f2(s)∥2V ∗ds


exp

 t

0


2β + C2∥u1(s)∥

2ρ
1−θ
V


ds


≤ c

∥u1

0 − u2
0∥2H + ∥f1 − f2∥2V∗


exp

 T

0


2β + C2∥u1(t)∥

2ρ
1−θ
V


dt


. (5.13)

Note that  T

0
∥u1(t)∥

2ρ
1−θ
V dt ≤ C3

 T

0
∥u1(t)∥2V dt

 ρ
1−θ (5.14)

for ρ, θ ∈ [0, 1
2 ], C3 > 0.

Consequently, taking into account the bound (5.1), from (5.13) and (5.14) we have

∥u1(t)− u2(t)∥2H ≤ c

∥u1

0 − u2
0∥2H + ∥f1 − f2∥2V∗


exp


2βT + C4

 T

0
∥u1(t)∥2V dt

 ρ
1−θ


= c

∥u1

0 − u2
0∥2H + ∥f1 − f2∥2V∗


exp


2βT + C4∥u1∥
2ρ

1−θ
V


≤ c

∥u1

0 − u2
0∥2H + ∥f1 − f2∥2V∗


exp


2βT + C4C
2ρ

1−θ
0


= C5


∥u1

0 − u2
0∥2H + ∥f1 − f2∥2V∗


,

where C4 > 0, C5 = c exp


2βT + C4C
2ρ

1−θ
0


. This completes the proof. �

6. Application to the hemivariational inequalities of the Navier–Stokes equations

Let Ω be a bounded simply connected domain in R2 with a smooth boundary Γ . For a given T > 0, define
Q = Ω × (0, T ) and Σ = Γ × (0, T ). Recall the Navier–Stokes equations for unsteady flows of incompressible
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viscous fluids:

u′ − ν∆u + (u · ∇)u +∇p = f in Q, (6.1)
divu = 0 in Q, (6.2)

where u(x, t) is the flow velocity field, ν > 0 the kinematic viscosity, p(x, t) the pressure, and f (x, t) the
density of external forces. Eq. (6.2) reflects the incompressibility constraint. In this section, we will apply
the results on the abstract hemivariational inequality to study the boundary and domain hemivariational
inequalities for the nonstationary Navier–Stokes equations (6.1)–(6.2).

6.1. A boundary hemivariational inequality

We rewrite Eq. (6.1) in terms of the curl operator curl (see [28] for its definition and properties). Using
the identities

(u · ∇)u = curl u × u + 1
2 ∇|u|

2,

−∆u = curl curl u −∇divu,

we can rewrite (6.1)–(6.2) as

u′ + ν curl curl u + curl u × u +∇h = f in Q, (6.3)
divu = 0 in Q, (6.4)

where h(x, t) = p(x, t)+|u(x, t)|2/2 is the dynamic pressure. The Navier–Stokes equations are supplemented
by initial and boundary conditions. For the initial condition, we choose

u(0) = u0 in Ω , (6.5)

where u0 denotes a given initial value of u(t). Here and below, u(t) stands for the function Ω ∋ x →
u(x, t) ∈ R2.

We turn to a description of the boundary condition. Let n = (n1, n2)⊤ be the unit outward normal on
the boundary Γ . For a vector u defined on Γ , denote by un = u · n and uτ = u − unn the normal and
tangential component of the vector u, respectively. For the boundary condition, we consider

uτ = 0 on Σ , (6.6)
h(t) ∈ ∂j(t, un(t)) on Σ , (6.7)

where j(t, un(t)) is a short-hand notation for j(x, t, un(x, t)); j : Γ×(0, T )×R→ R is called a superpotential
and denotes the function which is locally Lipschitz in the third variable, ∂j is the subdifferential of j(x, t, ·)
in the sense of Clarke. The boundary condition (6.7) arises in the problem of motion of a fluid through a
tube or channel: the fluid pumped into Ω can leave the tube at the boundary orifices while a device can
change the sizes of the latter. In this problem we regulate the normal velocity of the fluid on the boundary to
reduce the total pressure on Γ . Hence, different boundary conditions describe different physical phenomena.
Note that in the case where the function j(x, t, un) is convex with respect to its last argument, the problem
(6.3)–(6.7) leads to a variational inequality. Here, we do not assume the convexity of j with respect to its
last argument, and then the problem corresponds to a hemivariational inequality.

We set up a weak formulation of the problem (6.3)–(6.7). To this end, we introduce the following notation:

M = {v ∈ C∞(Ω ; R2) | divv = 0 in Ω , vτ = 0 on Γ}.

Let V and H be the closures of M with respect to the norms of H1(Ω ; R2) and L2(Ω ; R2), respectively.
Then

V ⊂ H = H∗ ⊂ V ∗
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with all embeddings being dense and compact. Thus, the embedding mapping ι : V → H is continuous
and compact. Let U = L2(Γ ; R2) and ℓ : V → U . We then introduce the spaces V, H, U , V∗ and W as in
Section 3. Let f ∈ V∗. For v,w, z ∈ V , we define A : V → V ∗ and B[·] : V → V ∗ by

⟨Av,w⟩ = ν


Ω

curl v · curl w dx, (6.8)

⟨B(v,w), z⟩ =

Ω

(curl v ×w) · z dx. (6.9)

It is known from [26] that in the case of a simply connected domain Ω , the bilinear form

((v,w))V =

Ω

curl v · curl w dx

generates a norm in V , ∥v∥V = ((v, v))1/2
V , which is equivalent to the H1(Ω ; R2)-norm.

Multiplying the equation of motion (6.3) by v ∈ V and applying the Green formula, we obtain

⟨u′(t) +Au(t) +B[u(t)], v⟩+

Γ

h(t) vndΓ = ⟨f (t), v⟩ ∀ v ∈ V, a.e. t ∈ (0, T ).

From the relation (6.7), by using the definition of the Clarke subdifferential, we have
Γ

h(t) vndΓ ≤

Γ

j0(t, un(t); vn) dΓ ,

where j0(t, ξ; ζ) ≡ j0(x, t, ξ; ζ) denotes the generalized directional derivative of j(x, t, ·) at the point ξ ∈ R
in the direction ζ ∈ R. The last two relations together yield the following variational formulation.

Problem 6.1. Find u ∈ W such that⟨u′(t) +Au(t) +B[u(t)], v⟩+

Γ

j0(t, un(t); vn) dΓ ≥ ⟨f (t), v⟩ ∀ v ∈ V, a.e. t ∈ (0, T ),

u(0) = u0.
(6.10)

Concerning the superpotential j, we assume the following hypothesis:
H(j): j : Γ × (0, T )× R→ R is such that

(i) j(·, ·, ξ) is measurable on Σ for all ξ ∈ R and there exist e ∈ L2(Γ ) such that j(·, ·, e(·)) ∈ L1(Σ );
(ii) j(x, t, ·) is locally Lipschitz on R for a.e. (x, t) ∈ Σ ;
(iii) |ζ| ≤ c0(1 + |ξ|) for all ζ ∈ ∂j(x, t, ξ), ξ ∈ R, a.e. (x, t) ∈ Σ with c0 > 0;
(iv) (ζ1 − ζ2)(ξ1 − ξ2) ≥ −m |ξ1 − ξ2|2 for all ζi ∈ ∂j(x, t, ξi), ξi ∈ R, i = 1, 2, a.e. (x, t) ∈ Σ with m ≥ 0.

Now we consider the functional J : (0, T )× U → R defined by

J(t,u) =

Γ

j(x, t, un(x)) dΓ , u ∈ U, a.e. t ∈ (0, T ). (6.11)

Lemma 6.2. Assume that j : Γ × (0, T )×R→ R satisfies the hypothesis H(j). Then the functional J defined
by (6.11) has the following properties.

(i) J(t, ·) is locally Lipschitz on U for a.e. t ∈ (0, T );
(ii) ∥η∥U ≤ c (1 + ∥u∥U ) for all η ∈ ∂J(t,u),u ∈ U , a.e. t ∈ (0, T ) with c > 0, where c =√

2 c0 max{

m(Γ ), 1}, m(Γ ) being the measure of Γ ;

(iii) J0(t,u; v) ≤

Γ
j0(t, un(x); vn(x)) dΓ for all u, v ∈ L2(Γ ; R2), a.e. t ∈ (0, T );

(iv) ⟨z1 − z2,u1 − u2⟩U ≥ −m ∥u1 − u2∥2U for all zi ∈ ∂J(t,ui), ui ∈ U , i = 1, 2, a.e. t ∈ (0, T ).
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Proof. We define j : Γ × (0, T ) × R2 → R by j(x, t, ζ) = j(x, t, ζn) for (x, t, ζ) ∈ Γ × (0, T ) × R2. Then,j(x, t, ζ) = j(x, t, Lζ), where L ∈ L(R2,R) is defined by Lζ = ζn = ζ ·n and that L∗ ∈ L(R,R2) is given by
L∗q = qn for q ∈ R ([35, Lemma 13]). Then, in view of [22, Proposition 3.37, Theorem 3.47], we obtain the
conclusions (i)–(iii). Using arguments similar to those in the proof of Theorem 4.20 in [22], we get (iv). �

Now we consider the following inclusion:

Problem 6.3. Find u ∈ W such that
u′(t) +Au(t) +B[u(t)] + ℓ∗∂J(ℓu(t)) ∋ f (t) a.e. t ∈ (0, T ),
u(0) = u0,

(6.12)

where ∂J(ℓu(t)) ≡ ∂J(t, ℓu(t)) and ℓ∗ : U∗ → V ∗ is the adjoint operator to ℓ.

Remark 6.4. If the functional J is of the form (6.11) and H(j) holds, it is clear that every solution to (6.12)
is also a solution to the inequality (6.10). If either j or −j is regular, then the converse is also true. Indeed,
from [22, Theorem 3.47(vii)] we have, for a.e. t ∈ (0, T ),

⟨f (t)− u′(t)−Au(t)−B[u(t)], v⟩ ≤

Γ

j0(t, un(t); vn) dΓ = J0(t, ℓu(t); ℓv) ∀ v ∈ V.

By [22, Proposition 3.37(ii)], we obtain

f (t)− u′(t)−Au(t)−B[u(t)] ∈ ∂(J ◦ ℓ)(u(t)) = ℓ∗∂J(ℓu(t)), a.e. t ∈ (0, T ),

which implies (6.12).

Note that the operator N : V → V ∗, defined by Nv = Av + B[v], is a generalized Navier–Stokes
type operator with α = ν and β = 0 ([26, Chapter II]). Thus, the assumptions H(A) and H(B) hold.
Assume H(j) and let ψ(·) := J(t, ·) for a.e. t ∈ (0, T ), and hence from Lemma 6.2 we know that H(ψ) is
satisfied. Observe that ℓ : V → U is linear, continuous and compact. To verify the assumption H(ℓ), let
{un} be a bounded sequence in M2,2(0, T ;V, V ∗). Let δ ∈ (0, 1

2 ). In view of Theorem 2.7, we deduce that
the embedding M2,2(0, T ;V, V ∗) ⊂ L2(0, T ;H 1

2 +δ(Ω ; R2)) is compact. Therefore, there exists a subsequence
{unj} of {un} such that unj → u in L2(0, T ;H 1

2 +δ(Ω ; R2)) for some element u ∈ L2(0, T ;H 1
2 +δ(Ω ; R2)).

Since the embedding H 1
2 +δ(Ω ; R2) ⊂ U is compact, there exists a further subsequence of {unj}, still denoted

by {unj}, such that unj → u in U . Thus, the assumption H(ℓ) is satisfied. The operator B in (6.10) satisfies
the assumption H(B)1 with K1 =

√
2 (cf. [26, Chapter III, Lemma 3.4]). The assumption H(B)2 is satisfied

with θ = ρ = d
4 = 1

2 by the operator B in (6.10) (cf. [26, Chapter III, Section 3]).
Summarizing, for Problem 6.3, the assumptions H(A), H(B), H(B)1, H(B)2 and H(ψ) are valid. Thus,

applying the results from Sections 4 and 5, we have the following statements.

Theorem 6.5. Assume H(j), u0 ∈ H, and ν > c∥ℓ∥2, where c =
√

2 c0 max{

m(Γ ), 1}. Then Prob-

lem 6.3 has a solution (u,η) ∈ W × U∗. There exists a constant C > 0 such that ∥u∥V ≤ C for any
solution u ∈ V of Problem 6.3. Moreover, if ν > m ∥ℓ∥2, then the solution to Problem 6.3 is unique and the
mapping (f ,u0) → u is Lipschitz continuous from V∗ ×H to C(0, T ;H).

6.2. A domain hemivariational inequality

Here we apply the results on the abstract problem to a domain hemivariational inequality for the
nonstationary Navier–Stokes equations. We begin with the following initial–boundary value problem:
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u′ − ν∆u + (u · ∇)u +∇p = f1 + f2 in Q, (6.13)
divu = 0 in Q, (6.14)
u = 0 on ∂Ω × (0, T ), (6.15)
u(0) = u0 in Ω , (6.16)

where −f2(x, t) ∈ ∂j(t,u(t)) in Q, j : Ω × (0, T )× R2 → R is a superpotential which is locally Lipschitz in
the third variable.

Define

N = {v ∈ C∞0 (Ω ; R2) | divv = 0 in Ω}.

Let V and H be the closures of N in H1
0 (Ω ; R2) and L2(Ω ; R2), respectively. Then

V ⊂ H = H∗ ⊂ V ∗

with all embeddings being dense and compact. Let U = L2(Ω ; R2) and ℓ : V → U . Again, we then introduce
the spaces V, H, U , V∗ and W as in Section 3. Let f1 ∈ V∗. For v,w, z ∈ V , we define A : V → V ∗ and
B[·] : V → V ∗ by

⟨Av,w⟩ = ν


Ω

∇v · ∇w dx,

⟨B(v,w), z⟩ =

Ω

(v · ∇)w · z dx.

Similar to Section 6.1, we can derive the following weak formulation of (6.13)–(6.16):

Problem 6.6. Find u ∈ W such that⟨u′(t) +Au(t) +B[u(t)], v⟩+

Ω

j
0(t,u(t); v) dx ≥ ⟨f1(t), v⟩ ∀ v ∈ V, a.e. t ∈ (0, T ),

u(0) = u0.
(6.17)

Define a functional J : (0, T )× U → R by

J(t,u) =

Ω

j(x, t,u(x)) dx, u ∈ U, a.e. t ∈ (0, T ).

Concerning the superpotential j, we assume the following hypothesis:
H(j): j : Ω × (0, T )× R2 → R is such that

(i) j(·, ·, ξ) is measurable on Q for all ξ ∈ R2 and there exists e ∈ L2(Ω ; R2) such that j(·, ·, e(·)) ∈ L1(Q);
(ii) j(x, t, ·) is locally Lipschitz on R2 for a.e. (x, t) ∈ Q;
(iii) |ζ| ≤ c0(1 + |ξ|) for all ζ ∈ ∂j(x, t, ξ), ξ ∈ R2, a.e. (x, t) ∈ Q with c0 > 0;
(iv) (ζ1−ζ2) · (ξ1−ξ2) ≥ −m |ξ1−ξ2|2 for all ζi ∈ ∂j(x, t, ξi), ξi ∈ R2, i = 1, 2, a.e. (x, t) ∈ Q with m ≥ 0.

We consider the following inclusion:

Problem 6.7. Find u ∈ W such that
u′(t) +Au(t) +B[u(t)] + ℓ∗∂J(ℓu(t)) ∋ f1(t) a.e. t ∈ (0, T ),
u(0) = u0,

(6.18)

where ∂J(ℓu(t)) ≡ ∂J(t, ℓu(t)) and ℓ∗ : U∗ → V ∗ is the adjoint operator to ℓ.
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Observe that for Problem 6.7, the assumptions H(A), H(B), H(B)1, H(B)2 and H(ψ) are satisfied.
Similar to Theorem 6.5, we can get the results on the existence, uniqueness and continuous dependence of
solutions of Problem 6.7.

Theorem 6.8. Assume H(j), u0 ∈ H, and ν > c∥ℓ∥2, where c =
√

2 c0 max{

m(Ω), 1}, m(Ω) being the

measure of Ω . Then Problem 6.7 has a solution (u,η) ∈ W × U∗. There exists a constant C > 0 such that
∥u∥V ≤ C for any solution u ∈ V of Problem 6.7. Moreover, if ν > m ∥ℓ∥2, then the solution to Problem 6.7 is
unique and the mapping (f ,u0) → u is Lipschitz continuous from V∗ ×H to C(0, T ;H).
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