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a b s t r a c t

Variational–hemivariational inequalities and hemivariational inequalities form a
powerful mathematical tool in modeling and studying problems in science and
engineering where non-smooth, non-monotone and multi-valued relations among
different physical quantities are present. In this paper, we consider the numerical
solution of optimal control problems for variational–hemivariational inequalities
or hemivariational inequalities, and prove the convergence of numerical solutions
under rather general assumptions.

© 2020 Elsevier Ltd. All rights reserved.

Optimal control is a research area with many important applications in science, engineering and technol-
ogy. Optimal control problems for differential equations and variational inequalities have been the subject of
many publications, see e.g. the comprehensive Refs. [1–3], and [4–6]. Recently, optimal control problems for
variational–hemivariational inequalities have been studied in [7] where existence of optimal pairs is proved
and necessary optimality conditions of first order are derived, and in [8,9] where existence of optimal pairs
is proved and application to contact problems is illustrated.
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For applications, numerical methods are needed to solve optimal control problems for
variational–hemivariational inequalities. In this regard, we note an early reference [10]; we also note some
solution techniques in solving hemivariational inequalities considered in [11,12]. In this paper, we consider
the numerical solution of such optimal control problems and prove convergence of numerical solutions under
rather general assumptions.

Preliminaries. We will need two real reflexive Banach spaces for the optimal control problem: V for the
state variable and Q for the control variable. We denote by ∥ · ∥ the norm in V , write V ∗ for its dual
space and ⟨·, ·⟩ for the duality pairing between V ∗ and V . Strong convergence is indicated by the symbol
→, whereas weak convergence is indicated by the symbol ⇀. We will use the notions of the generalized
directional derivative and generalized subdifferential in the sense of Clarke (cf. [13]). Let ψ : V → R be
locally Lipschitz continuous. Then the generalized directional derivative of ϕ at u ∈ V in the direction
v ∈ V is defined by

ψ0(u; v) := lim sup
w→u, λ↓0

ψ(w + λ v) − ψ(w)
λ

.

The generalized subdifferential of ψ at u is a subset of V ∗ given by

∂ψ(u) :=
{
ξ ∈ V ∗ | ψ0(u; v) ≥ ⟨ξ, v⟩ ∀ v ∈ V

}
.

We record the following properties:

ψ0(u; v) = max {⟨ξ, v⟩ | ξ ∈ ∂ψ(u)} , (1)
un → u and vn → v in V =⇒ lim sup

n→∞
ψ0(un; vn) ≤ ψ0(u; v). (2)

Let ϕ : V → R∪ {+∞} be proper, convex and l.s.c. By a classical result in convex analysis, ϕ is bounded
below by the summation of a continuous linear functional on V and a constant (cf. [14, Lemma 11.3.5] or [15,
Prop. 5.2.25]). Therefore, there exist two constants c0, c1 such that

ϕ(v) ≥ c0 + c1∥v∥V ∀ v ∈ V. (3)

Hypotheses. In studying the optimal control problem, we use the following hypotheses.
(HQad

) Q is a reflexive Banach space, and Qad is a nonempty, closed and convex set in Q.
(HK) V is a reflexive Banach space, and K is a nonempty, closed and convex set in V .
(HA) A : V → V ∗ is bounded, continuous, and strongly monotone with a constant mA > 0:

⟨Av1 −Av2, v1 − v2⟩ ≥ mA∥v1 − v2∥2 ∀ v1, v2 ∈ V.

(HΦ) Φ : V × V → R is such that Φ(u, ·) : K → R is convex and continuous for all u ∈ V , and for some
constant αΦ > 0,

Φ(u1, v2) − Φ(u1, v1) + Φ(u2, v1) − Φ(u2, v2) ≤ αΦ∥u1 − u2∥ ∥v1 − v2∥ ∀u1, u2, v1, v2 ∈ V.

(HΨ ) Ψ : V → R is locally Lipschitz continuous, and for some constants c0, c1 and αΨ > 0,

∥∂Ψ(v)∥V ∗ ≤ c0 + c1∥v∥ ∀ v ∈ V, (4)
Ψ0(v1; v2 − v1) + Ψ0(v2; v1 − v2) ≤ αΨ∥v1 − v2∥2 ∀ v1, v2 ∈ V. (5)

(Hf ) f ∈ V ∗.
(HB) B ∈ L(Q,V ∗) is compact.
(Hs) αΦ + αΨ < mA.
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We comment on some of the hypotheses. The admissible set of the control variable is Qad. In [16], the
operator A is assumed to be pseudomonotone and strongly monotone, whereas Φ : V → R∪{+∞} is assumed
to be proper, convex and l.s.c. We note that (HA) is easy to verify and it implies that the operator A
is pseudomonotone and strongly monotone. For applications, it is sufficient to consider nonsmooth convex
functionals of the form Φ + IK where Φ : V → R is convex and l.s.c., and IK is the indicator function of K.
Since a l.s.c. convex functional Φ : V → R on V is continuous [17], we state the hypothesis on Φ in the form
(HΦ). The other hypotheses are commonly used in the literature.

A variational–hemivariational inequality for the state variable. Under the stated hypotheses, for any
p ∈ Q, the variational–hemivariational inequality

u ∈ K, ⟨Au, v − u⟩ + Φ(u, v) − Φ(u, u) + Ψ0(u; v − u)
≥ ⟨f, v − u⟩ + ⟨Bp, v − u⟩ ∀ v ∈ K (6)

has a unique solution (cf. [16,18]). We will write u = S(p) for this solution, where the operator S : Q → K.
The variable p will play the role of control, whereas u = S(p) is the state variable. We note the following
weak-strong continuity property of the operator S.

Proposition 1. The operator S : Q → K is sequentially weakly-strongly continuous; in other words, if
pn ⇀ p in Q, then un = S(pn) → u = S(p) in V .

Proof. By definition,

un ∈ K, ⟨Aun, v − un⟩ + Φ(un, v) − Φ(un, un) + Ψ0(un; v − un)
≥ ⟨f, v − un⟩ + ⟨Bpn, v − un⟩ ∀ v ∈ K. (7)

Fix an arbitrary w ∈ K and let v = w in (7) to get

⟨Aun, un − w⟩ ≤ Φ(un, w) − Φ(un, un) + Ψ0(un;w − un) − ⟨f, w − un⟩ − ⟨Bpn, w − un⟩. (8)

By (HA),
mA∥un − w∥2 ≤ ⟨Aun, un − w⟩ − ⟨Aw, un − w⟩.

Apply (8),

mA∥un − w∥2 ≤ Φ(un, w) − Φ(un, un) + Ψ0(un;w − un) − ⟨Aw − f −Bpn, un − w⟩. (9)

By (HΦ) and (HΨ ),

Φ(un, w) − Φ(un, un) ≤ Φ(w,w) − Φ(w, un) + αΦ∥un − w∥2,

Ψ0(un;w − un) ≤ −Ψ0(w;un − w) + αΨ∥un − w∥2.

Thus, from (9),

(mA − αΦ − αΨ ) ∥un − w∥2 ≤ Φ(w,w) − Φ(w, un) − Ψ0(w;un − w) − ⟨Aw − f −Bpn, un − w⟩. (10)

By (3), for some constants c0 and c1 depending on w such that

Φ(w, un) ≥ c0 + c1∥un∥,

and by (HΨ ),
−Ψ0(w;un − w) ≤ (c0 + c1∥w∥) ∥un − w∥.
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Also,
−⟨Aw − f −Bpn, un − w⟩ ≤ ∥Aw − f −Bpn∥V ∗∥un − w∥.

Use these bounds in (10), for a constant c depending on w,

(mA − αΦ − αΨ ) ∥un − w∥2 ≤ c (1 + ∥un − w∥) + ∥Aw − f −Bpn∥V ∗∥un − w∥.

By the smallness condition (Hs), mA−αΦ−αΨ > 0, and we derive from the above inequality the boundedness
of the sequence {∥un − w∥} and then also the boundedness of the sequence {∥un∥}.

Since V is reflexive, there exist some element ũ ∈ V and a subsequence of {un}, still denoted as {un},
such that un ⇀ ũ in V . Moreover, since K is weakly closed due to (HK), ũ ∈ K. Next we prove the strong
convergence un → ũ in V . Similar to (10), we have

(mA − αΦ − αΨ ) ∥un − ũ∥2 ≤ Φ(ũ, ũ) − Φ(ũ, un) − Ψ0(ũ;un − ũ) − ⟨Aũ− f −Bpn, un − ũ⟩. (11)

Since Φ is weakly sequentially l.s.c. with respect to its second argument due to (HΦ),

lim sup [−Φ(ũ, un)] = − lim inf Φ(ũ, un) ≤ −Φ(ũ, ũ). (12)

Now for any ξũ ∈ ∂Ψ(ũ),
−Ψ0(ũ;un − ũ) ≤ −⟨ξũ, un − ũ⟩ → 0.

Thus,
lim sup

[
−Ψ0(ũ;un − ũ)

]
≤ 0.

Moreover, by (HB), for some subsequence again denoted by {pn}, Bpn → Bp in V ∗. Hence, take the upper
limit of both sides of (11),

(mA − αΦ − αΨ ) lim sup ∥un − ũ∥2 ≤ 0.

Therefore, un → ũ in V .
Finally, we show that ũ = u is the solution of the problem (6). Note that by (HΦ),

Φ(un, v) − Φ(un, un) ≤ Φ(ũ, v) − Φ(ũ, un) + αΦ∥un − ũ∥ ∥v − un∥ ∀ v ∈ K,

and we can deduce from (7) that

⟨Aun, v − un⟩ + Φ(ũ, v) − Φ(ũ, un) + αΦ∥un − ũ∥ ∥v − un∥ + Ψ0(un; v − un)
≥ ⟨f, v − un⟩ + ⟨Bpn, v − un⟩ ∀ v ∈ K. (13)

Note that αΦ∥un − ũ∥ ∥v − un∥ → 0 for fixed v, and due to the u.s.c. property (2),

lim supΨ0(un; v − un) ≤ Ψ0(ũ; v − ũ).

We can take the upper limit of (13) to obtain

⟨Aũ, v − ũ⟩ + Φ(ũ, v) − Φ(ũ, ũ) + Ψ0(ũ; v − ũ) ≥ ⟨f, v − ũ⟩ + ⟨Bp, v − ũ⟩.

Since v ∈ K is arbitrary and since the solution of the problem (6) is unique, we conclude that ũ = u is the
solution of the problem (6). ■

An optimal control problem. Consider the following optimal control problem.

Problem 2.
inf {J(u, p) | p ∈ Qad, u = S(p)} . (14)
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Regarding the real-valued objective functional J(u, p), we introduce the following hypothesis:
(HJ) un → u in V and pn ⇀ p in Q imply J(u, p) ≤ lim inf J(un, pn). And, if Qad is unbounded,
infu∈K J(u, p) → ∞ as ∥p∥Q → ∞.

Theorem 3. Under the stated hypotheses, Problem 2 has a solution.

Proof. Denote m = inf {J(u, p) | p ∈ Qad, u = S(p)}. By (HJ), m ∈ R. Let {(un, pn)} be a minimizing
sequence for (14), i.e., J(un, pn) → m. Here and below, un = S(pn). By (HJ), {pn} is bounded in Q. So
for a subsequence of {pn}, still denoted as {pn}, we have pn ⇀ p in Q for some element p ∈ Q. By (HQad

),
p ∈ Qad. By Proposition 1, un → u = S(p) in V . Then by (HJ), J(u, p) ≤ lim infn→∞ J(un, pn) = m. Thus,
(u, p) is a solution of Problem 2. ■

Numerical approximation of optimal control problem. Since it is not realistic to have an exact solution
of Problem 2, one has to use a numerical method to solve the problem. Let V h and Qh be finite dimensional
subspaces of V and Q, and let Kh ⊂ V h and Qh

ad ⊂ Qh, where h > 0 is a discretization parameter, e.g., h
can be the mesh-size of a finite element partition of the spatial domain Ω over which the spaces V and Q

are defined. Consider the following discrete optimal control problem.

Problem 4.
inf

{
J(uh, ph) | ph ∈ Qh

ad, u
h = Sh(ph)

}
. (15)

In Problem 4, uh = Sh(ph) stands for a numerical solution of (6) with p replaced by ph:

uh ∈ Kh, ⟨Auh, vh − uh⟩ + Φ(uh, vh) − Φ(uh, uh) + Ψ0(uh; vh − uh)
≥ ⟨f, vh − uh⟩ + ⟨Bph, vh − uh⟩ ∀ vh ∈ Kh. (16)

Similar to Problem 2, it can be shown that Problem 4 has a solution (uh, ph).
For convergence analysis, we will additionally assume

(Hh) Kh M→ K and Qh
ad

M→ Qad as h → 0.
Here the symbol M→ stands for set convergence in the sense of Mosco [19]. Recall that Kh M→ K means

that (i) for an arbitrarily fixed v ∈ K, there exists vh ∈ Kh for each h such that vh → v in V as h → 0;
(ii) if vh ⇀ v in V and vh ∈ Kh, then v ∈ K. The meaning for Qh

ad
M→ Qad is similar. An assumption of

the form (Hh) is usually employed in convergence analysis for numerical solutions under minimal solution
regularity, cf. [20] for variational inequalities and [18] for hemivariational inequalities.

We first note a convergence result for the numerical solution of the hemivariational inequality (6), which
can be proved by slightly modifying the proof of Theorem 4 in [21].

Proposition 5. If ph ⇀ p in Q, then uh → u in V as h → 0, where uh = Sh(ph) ∈ Kh is the solution of
(16) and u = S(p) ∈ K is the solution of (6).

Now in addition to (HJ), we further assume
(H ′

J) un → u in V and pn → p in Q imply J(un, pn) → J(u, p).

Theorem 6. Let all the hypotheses hold. For each h > 0, let (uh, ph) be a solution of Problem 4. Then for
each sequence {(uh, ph)}, there are a subsequence, still denoted as {(uh, ph)}, and an element p ∈ Qad such
that with u = S(p), we have

uh → u in V, ph ⇀ p in Q, (17)

and (u, p) is a solution of Problem 2.
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Proof. Fix an arbitrary element p0 ∈ Qad. By (Hh), there is a sequence {p̃h}, p̃h ∈ Qh
ad such that p̃h → p0

in Q. With ũh = Sh(p̃h) and u0 = S(p0), we have from (H ′
J), J(ũh, p̃h) → J(u0, p0), where we have used

the fact that ũh → u0 in V by an application of Proposition 5.
Since J(uh, ph) ≤ J(ũh, p̃h), we see that {J(uh, ph)} is bounded from above. By (HJ), {ph} is bounded

in Q. So for a subsequence, still denoted by {ph}, we have an element p ∈ Q such that ph ⇀ p in Q. By
(Hh), we know p ∈ Qad. Applying Proposition 5, we have uh → u = S(p) in V and so by (HJ),

J(u, p) ≤ lim inf J(uh, ph). (18)

We need to prove that (u, p) is a solution of Problem 2. For this purpose, let (u, p) be a solution
of Problem 2. By (Hh), we can choose ph ∈ Qh

ad with ph → p in Q. Then by Proposition 5, uh =
Sh(ph) → u = S(p) in V . By (H ′

J), J(uh, ph) → J(u, p). Since (uh, ph) is a solution of Problem 4, we
have J(uh, ph) ≤ J(uh, ph). Take the lower limit in the above inequality as h → 0 and note (18) to obtain
the relation J(u, p) ≤ J(u, p). Since (u, p) is a solution of Problem 2, we find from the above inequality that
(u, p) is a solution of Problem 2. ■

We comment that if Φ ≡ 0, then (6) represents an ordinary hemivariational inequality, whereas if Ψ ≡ 0,
then (6) is reduced to a variational inequality. The convergence result of numerical solutions, Theorem 6,
corresponds to that for the optimal control problem of a hemivariational inequality and the optimal control
problem of a variational inequality.
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