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Abstract

The authors first prove a convergence result on the Kaganov method for solving general
nonlinear variational inequalities of the second kind and then apply the Kacanov method to
solve a nonlinear variational inequality of the second kind arising in elastoplasticity. In addition
to the convergence result, an a posteriori error estimate is shown for the Kacanov iterates. In
each step of the KaCanov iteration, one has a (linear) variational inequality of the second
kind, which can be solved by using a regularization technique. The Kaéanov iteration and
the regularization technique together provide approximations which can be readily computed
numerically. An a posteriori error estimate is derived for the combined effect of the Kaganov
iteration and the regularization.
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§1. Introduction

The Kacanov method is an iteration method for solving nonlinear problems, via lineariza-
tion. An early reference on the method is [8], where the method is applied to compute a
stationary magnetic field in nonlinear media. Convergence of the method is proved in the
context of the particular application there, though the technique of the proof is rather gen-
eral. The method is applied to a nonlinear elasticity problem in [9]. For applications of
the method in solving variational inequalities for transonic flows in gas dynamics see [2,4].
A general convergence result of the method is presented in [10] (see also [13]) for solving a
nonlinear variational inequality of the first kind (i.e., it is an inequality because the prob-
lem is posed over a non-empty closed convex subset rather than over a whole space). In
[6], the method is applied to solve some nonlinear problems. Convergence of the method
applied to the problems follows from the convergence result in [10] and [13]. A posteriori
error estimates are derived which can be used to bound the true error of an iterant by two
consecutive iterates. Some numerical examples are presented in [6], showing the efficiency
of the Kaganov method and the a posteriori error estimates.
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In this paper, we analyze the Kac¢anov method in solving general nonlinear variational
inequalities of the second kind (i.e., these are inequalities because of the presence of non-
differentiable terms in problem formulations). We will first prove a convergence result for
the Katanov method in solving nonlinear variational inequalities of the mixed kind (ie.,
they are inequalities both because they involve non-differentiable terms and are posed over
non-empty closed convex subsets). The convergence result is a generalization of that in [10]
and [13]. This is done in Section 2. In Section 3, we apply the Kacanov method to solve
a nonlinear variational inequality of the second kind arising in elastoplasticity, and show
the convergence of the method. In Section 4, we present an a posteriori error estimate for
the Kacanov iterates. In each step of the Kaganov iteration, one has a (linear) variational
inequality of the second kind. Because of the difficulty caused by the non-differentiable term
in the variational inequality, we use a regularization technique to approximate the problem
in the last section. The Kacanov iteration and the regularization technique together provide
approximations which can be readily computed numerically. An a posteriori error estimate
is derived for the combined effect of the Kacanov iteration and the regularization.

We will need the following well-known result (cf. [13]).

Theorem 1.1. Let V' be a reflezive Banach space, K C V a nonempty, closed, convez
subset. Assume f : K — R is convez, continuous and weakly coercive (i.e., f(u) = oo as
lul| = oo, w € K). Then, f has a minimum on K. Furthermore, if f is strictly convez,
then the minimum point of f on K is unique.

§2. A Convergence Result

First, we introduce a general nonlinear variational inequality of the second kind. Let V
be a Hilbert space, K C V a nonempty closed convex subset. Let E : K — R be Gateaux-
differentiable, D : K — R be non-negative, convex and continuous, | € V* a continuous
linear functional on V. The functional D is not assumed to be differentiable. Then let us
consider the constrained minimization problem:

find u € K, such that E(u) + D(u) ~l(u) = 1211'{{E('v) + D(v) — I(v)}. (2.1)
Since E is Gateaux-differentiable, a solution of (2.1) satisfies the variational inequality
uw€ K, (E'(u),v—u)+ D(w)~D)>Ilv—-u), YvekK. (2.2)
When E(v) is quadratic in v, the differential operator associated with the left-hand side of
(2.2) is linear. When E(v) is not quadratic in v, the differential operator associated with
the left-hand side of (2.2) is nonlinear, which makes the variational inequality problem more
difficult to solve.
Assume for £'(u), we can find a functional B : K x V x V — R, such that
(E'(u),v—w) = B(u;u,v —w), VYu,v,we€ K, (2.3)
and for fixed v € K, (v,w) — B(u;v,w) is a bilinear form on V. The problem (2.2) can be
rewritten as u € K, B(u;u,v—u)+D(w)—D(u) > l(v—u), Vv € K. Then the Katanov
method for (2.2) is defined as follows.
Let ug be an initial guess chosen from K. For k =0,1,..., we find uz4; € K such that

B(ug; ugt1,v — ugg1) + D(v) — D(ugy1) > U(v — ugs1), Vv e K. (2.4)
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The following theorem is on the unique solvability of the approximate problem (2.4) and
of the original problem (2.2), and on the convergence of the Katanov method.

Theorem 2.1. We keep the conditions on the given data V, K, E, D, l and B.

(a) Assume for each u € K, the bilinear form (v,w) — B(u;v,w) is symmetric from
V xV to R. Assume there are constants §; > 0 and 6g > 0, such that

|B(u;v,w)| < 8o |wll, YueK, VoweV (2.5)
and
B(u;v — w,v — w) > &|lv —w||?, VYu,v,we K. (2.6)
Then the problem (2.4) has a unique solution upy1 € K, which is also the unique solution
of the minimization problem
—;—B(uk;v,v) +D() —I(v) = inf, vEK. @2.7)
(b) Further assume E' : K — V* is continuous and strongly monotone, i.e., for a constant
po >0,
(E'(u) — E'(v),u —v) > pollu —v||?), Vu,veK. (2.8)
Also assume the following key inequality holds:
E(v) - E(u) < % (B(u;v,v) — B(u;u,u)), Vu,vekK. (2.9)

Then (2.1) has a unique solution v € K, which is also the unique solution of the vari-
ational inequality problem (2.2). The Kaéanov method defined in (2.4) converges, i.e.,
ur, > uin V, as k — oo.

Proof. (a) The equivalence of the problems (2.4) and (2.7) can be established in the
standard way. From the assumptions, it can be verified that the functional (1/2) B(ug;v,v)+
D(v)—1(v) is strictly convex, continuous and weakly coercive on K. Thus, from Theorem 1.1,
we have the existence of a unique solution to the minimization problem (2.7).

(b) Using the assumption (2.8), we know that the functional G(v) = E(v) + D(v) — I(v)
is strictly convex and weakly coercive on K. The other conditions in Theorem 1.1 can be
easily verified. Hence, by Theorem 1.1, we have the existence of a unique solution to the
original problem (2.1), or equivalently, (2.2).

Now we prove the convergence of the Kaéanov method for solving the problem (2.2). We
have

G(uk) — G(ukt1)
= E(uk) — E(ukt1) + D(ui) ~ D(uk+1) = uk — ukt1)
(using the key inequality (2.9) with v = ug41 and u = ug)
1
23 (B(uk; wk, up) — Bug; trg1, ury1)) + D(ux) = D(ugs1) — Huk — k1)
(using the inequality (2.4) with v = uy)

1
> 3 (B(ug; ug, ux) — B(uk; vis1, uks1)) — Bk Ursn, g — k1)

1
=3 B(ug; uk — Upt1, Uk — Uk41)-
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Thus, using the assumption (2.6), we obtain the inequality
1)
50 [ursr — uel? < Glur) ~ G(ursr)- (2.10)

A simple consequence of the above inequality is that the sequence {G(u)} is decreasing.
Since the sequence {G(uy)} is bounded below by the minimum value of G(v) on K, we find
that G(uy) — G(ugs1) — 0 as k — oo. Hence, from (2.10), we have

lugyr — ukl] =0 as k — oo. (2.11)

Now, using the assumption (2.8), we have
pollur = ull* < (B'(ur) — E'(w), ux — u)
= (B (uk), ue — u) — (E'(u), vk — u)
(using the inequality (2.2) with v = ug, and (2.3) at uy)
< Blug;ug, ux — u) + D(ug) — D(u) — I(ug — u)
(using the inequality (2.4) with v = u)
< B(ug; ug, ug — u) + D(ug) — D(u) — l(ug — u)
+ Blug; tkr1,u — k1) + D(w) — D(ups1) — U(u — uk41)
= B(ug; ug, ux, — u) + B(ug; Ukt1, ¥ — Uks1)
+ D(ug) = D(tgs1) — Huw — vis1)
= B(ug; ug — upy1,vr — u) + Bug; ukg1, Uk — Ukt1)
+ D(u) — D(ugt1) — Uug — urs1)
-0 ask— oo,

where, in the last step, we used the continuity properties of B, D and [, and the fact that
{ux} is bounded.

§3. Application in Solving an Elastoplasticity Problem

We apply the Kacanov method to solve a nonlinear variational inequality of the second
kind arising in elastoplasticity. The problem is discussed in detail in [11,7]. Here, we will
briefly review one mathematical formulation of the problem. We adopt the summation
convention over repeated indices. However, no summation is implied over the repeated
index k for the Kacanov iterates.

Consider the quasistatic behavior of an elastoplastic body which occupies a bounded
domain  C R? (d = 3 in practice) with Lipschitz boundary. The plastic behavior of
the material is described in terms of a dissipation function, and we assume the material
undergoes nonlinear kinematic hardening, the nonlinear part of which takes the form of an
exponential decay. The boundary value problem we are going to present arises in a typical
time-step in approximating the rate of change of the plastic strain by a backward Euler
difference (cf. [11]). We assume the material is subject to the action of a body force with
density b. For simplicity in presentation, we assume the boundary of the body is fixed. The
unknown variables of the problem are the displacement u and the plastic strain tensor p.
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We seek the displacement in the space
V = [Hy ()%
Let
Q= {g=(¢i;5) 1 a; € L*(Q), ¢ji = qij, 1 <4,5 < d}.
For the plastic strain, we use the space Qp = {g € Q : trqg = 0}, where, trp = p;;. We
require the restriction tr p = 0 on the plastic strain p by the conventional assumption of no

volume change accompanying the plastic deformation.

Both V and @ are Hilbert spaces with inner products
Ou; dv;
(u,'v)v=/ ~——dz and (p,q =/p-qda:=/pi-qi-dw,
Q a‘.'Ej Bw_,, ( )Q Q Q Jat]

and norms |[v||v = (v,v)Y/?, |(qllo = (¢,¢)*/?. Furthermore, Q is a closed subspace of Q.

To formulate the problem, we need to use the product space V = V x @ which is a
Hilbert space with the inner product (%, 7)y = (u,v)v + (p,¢)g and norm |[g@|y; = (%, '_)}‘7/2,
for @ = (u,p),7 = (v,q) € V. We also define Vj = V x Qq, a closed subspace of V. The
topological dual of a Hilbert space X is denoted by X*.

Define an operator A: V — V* by
(40,0 = [ (0w =) (e(0) ~ )+ Ko a] d, (3.1)

where e(u) = (€;;(u)) is the (linearized) strain tensor with the components

1 Bui Buj

Eij(u) = 5(3.’1,‘] Baci

C (e(u) = p) - (e(v) — @) = Cijialeij(w) — pij)(ert(v) — gii),
p-q=pi;gi;, Ipl={p p}'"*

) 1<ii<d,

and
h(a) = ho + hye™ "=
Assume that the coefficient v > 0 and the functions hg and h; satisfy the conditions
ho(x) > m0 >0, hy(z) >0, hyi(z) < @ho(z)e® for some § € (0,1).

The smallness assumption on h; (relative to hg) is needed in proving the unique solvability
of the elastoplasticity problem (3.3) below (cf. [11]). Then, for b € V*, the density of body
force, define the linear functional

1:V >R, (l,ﬁ):/b-vdz

Q
and, for some material parameter g > 0, define the functional
53V R, i@ = [ glaa)ids (3.2)
Q

where as before @ = (u,p) and ¥ = (v,¢). The functional j is known as the dissipation
function in plasticity. The functionals I(-) and j(-) are easily shown to be bounded, j(-) is
a convex, positively homogeneous (i.e., j(aT) = aj(¥) for & > 0), non-negative Lipschitz
continuous functional. Note that, however, j is not differentiable.
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The variational form of the elastoplasticity problem is: find @ = (u, p) € V such that
(AT, —T) + §(@) — j(@ - (,v—1) >0, VTeV,. (3.3)
It is shown in [11] that the problem has a unique solution.
The Katanov method for the problem (3.3) is: choose an initial guess %y € Vy; for
k=0,1,---, find "Upyq € Vo, such that
B(Ug; Tpt1,7 — Tpt1) + 5(B) — §(@ry1) — L,V — 1) 20, VT € Vy, (3.4)
where

B(k; Ury1,70) = /Q [C (e(ur41) — Prt1) - (e(v) — @) + h(|pk|)pr+1 - ] dz. (3.5)

To apply Theorem 2.1 for a convergence analysis of the method, we notice that the
problem (3.3) is equivalent to the minimization problem

w=(u,p) € Vo, E®@)+j@) —{,T) =inf{E®@)+j@) - (I,?) : 7 € Vo}, (3.6)
where
5@ = [ [§0() =0 ct0) ~0) + H(a) | 2 (5.7)
with
H(a) = % hoo® + %hl(l —e7VY) — 111 hiae™<. (3.8)

A crucial step in applying Theorem 2.1 for the convergence of the method (3.5) is to prove
the key inequality (2.9), which in the present case is equivalent to (3.9) in the next lemma.
Lemma 3.1. The following inequality holds:

H(B) - H(a) < 3 ba) (62— a?), Va,820. (39)
Proof. From the definitions of H(a) and h{(a}, we have

H(B) - H(a) - 5 h() (5 ~ o)
hy

2
ﬁ e Ve _ e—uﬁ + U(ae—ua _ ﬁe—uﬂ) _ %e—ua (,32 _ a2) .

For a fixed a > 0, let us consider a function of S defined by
2
F(B) =" - e VP 4y (ae "™ — ,Be_”ﬁ) - %— e e (,82 — az).
We have
f’(ﬂ) - 1/2ﬁ (e—uﬂ _ e—ua)'

Obviously, f'(8) > 0 for 8 € [0,a}, f'(B#) < 0 for 8 > a. We conclude that the function
f(8), B > 0, attains its maximum value at § = a. Thus, f(8) < f(a) =0, VS > 0. Hence,
the inequality (3.9) is proved.

The validity of the inequality (2.8) for the-problem (3.3) is proved in [11] (see Lemma

3 there). The other conditions of Theorem 2.1 are easily verified. Therefore, the Katanov
method (3.5) converges.

§¢4. A Posteriori Error Estimate

We have shown the convergence of the Ka¢anov method (3.4) for the problem (3.3) at
the end of last section. From the viewpoint of practical implementation of the method, it
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is highly desirable to derive some a posteriori error estimate so that once a Kaanov iterate
is computed, we can compute a (presumably efficient) error bound for the approximate
solution with ease. In this section, we present such an a posteriori error estimate for the
Kaganov method (3.4). A general framework for deriving a posteriori error estimates for
various mathematical procedures is given in [5].

To derive an a posteriori error estimate for the approximation error uUy.; — %, we apply
the duality theory in convex analysis (cf. [1]}). Let s = e(v) be a dual variable, and define
the operator

A:Vo— S, Av=ev),
where
S = {S = (Sij) L85 = 854 S LZ(Q), 1 S i,j S d}
We identify S* with S. Now define the functional

56,5 = [ [306-0 6=+ Hla) + sldl ~b-o] @

Then, the problem (3.6) can be rewritten as
TeVo: J(@ Am) =inf {J(7,A0):7 € Vy}. (4.1)

Following [7], we have, for the conjugate functional J* of J,

/ﬂ [% C s 5" +K(}s*])] dz,

JH(A%s", ") = if /[e(v) 8" +b-v]dz =0, VveV, (4.2)
00, oth(clsrwise.
Here,
K(ls*l) = T(t(]s*?))), (4.3)

with the deviatoric strain tensor defined as s*P = s* ~ ﬁtr (s*)I, I being the second-order

identity tensor, T'(t) = (|s*P| — g)t — H(t), and t(]s*P|) = 0 if [s*P| < g, t(]s*P|) > O being
the unique solution of the equation (the unique solvability is guaranteed by the assumption
hg > 0)

(ho + hie ™)t =|s*P| — g if |s*P| > g.
We will say an s* € S* is admissible, if it satisfies the relation
/[e(v)-s*+b-v]dw=0, Vv eV. (4.4)
Notice that, from (4.2}, the :')alue of J*(A*s*, —s*) is infinite if s* is not admissible.
Now consider the difference
J (W1, A1) — J (@, AT).

Following the argument in {7], we have

J( @y, Ary1) = J (@, AT) > @ (|lurer — ullfy + s — 2l3) (4.5)

for some constant @ > 0 (for an expression to calculate @ > 0, see [7]).
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To have an upper bound for the difference, we need to choose a suitable admissible variable
s*. We notice that the problem (3.4) is equivalent to

/ C (e(urs+1) — Prt1) - e(v)de = / b-vdz, YveV, (4.6)
Q Q
and
/Q[—C (e(urs1) — Prt1) - (@ — Prt1) + h(1Pe]) Prt1 - (4 — Prs1) + 9 (lg] — |pr4a))] dz > 0,
Vq S Qo. (47)

From (4.6), it follows that
s* = —C (e{ut1) = Prt1) (4.8)

is admissible. With this choice of s*, we have the following upper bound on J(@g1, AUp+1)—
J(u, Ag).

J (@1, Aigyr) ~ J (@, AT)
< J(Tpp1, Mixs1) + J*(A"5", —57)
= /Q[C(e(uk+1) = Pi1) - (€ukt1) ~ Prya)
+ H(pier]) + g 1prer] = b wga + T(#(|s™7)))] da.
Applying (4.6) with v = w1, we obtain
J(Tsr, Agr) — J (T, AT)
< /Q [~ Cle(urt1) = Prt1) - Por1 + H(prsa]) + g lprs1] + T(E(1s*P)))] dz.
Combined with (4.5), this implies the following a posteriori error estimate
@ (Jluerr —ully + Ipe1 - 2113)

< / [~Cl(e(urs1) ~ Prt1) - Prat + H{lprs1]) + glpesa] + T(¢(|s*P)))] da,
Q (4.9)

where s* is defined in (4.8).
For the purpose of comparing with the a posteriori error estimate to be derived in the
next section for the combined effect of a regularization procedure and the Kacanov iteration,

we derive another a posteriori error estimate for the Kacanov method (3.4) as a consequence
of the estimate (4.9). We take ¢ = 0 in (4.7) to obtain

/ [Cle(urs1 = Pre1) - Pra1 — h(Ipx]) [Prs1)® — g 1Pe41l] dz > 0.

2

Applying this inequality to the right-hand side of (4.9), we get the estimate
@ (|lunr1 = ullyy + Ipess — 2l13)

< /ﬂ [H(Ipr+r]) = B(|pxl) lpesa]* + T(t(s*P1)] de. (4.10)

§5. Regularization, A Posteriori Error Estimate

We observe that in each step of the Katanov iteration one has a (linear) variational
inequality of the second kind, (3.4). The difficulty in solving (3.4) directly lies in the fact that
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term j is non-differentiable. One approach used in practice for overcoming this difficulty is to
use a regularization technique. In a regularization technique, j is replaced by a differentiable
function j¢, such that j* — j as € — 0. There are many choices for the regularization
function j*. Here, for definiteness, we take

50 = [ s/ @F+ (51)
Y}
Once the regularization function j¢ is chosen, the variational inequality (3.4) is approximated
by the following
B(ﬁlﬁﬁiﬂj - ﬁi+1) +35¢(@) - je(ﬁﬂ) -(Lv- Hiﬂ) 20, Vwe Vo.
Owing to the fact that j¢ is differentiable, the regularized problem can be rewritten as
B(tk; Tyy1,7) + (D3 (Wy1),7) — (1,7) = 0, VT €V,

or, in detail,

/ C (e(ugyy) — Prgr) - €(v)da = / b-vdz, VveV, (5.2)
Q Q

and

J o @i = s -0+ (hpe + —\/IZ_j_IT_) Py -q] do
=0, VqeQo. (5.3)

The convergence of the regularization method can be established by a standard procedure.
Indeed, it is not difficult to prove that (see [12], e.g.)

Nuktr — wga I} + lPrss — P4 ”2Q < ce.

The rest of the section is devoted to the derivation of a posteriori error estimates for the
approximation error %;, — %. As in the last section, we consider the difference

J(@ 1, ATy ) — (T, AT).

It is proved in [7] that

J(@ey1, AT 1) — J(B,AT) 2 @ (|Jugyy — ull¥ + lpE+ — PI13) (5.4)
for the same constant @ > 0 as in the last section.
By (5.2),
8" = —C (e(uR41) — Pit1) (5.5)

is admissible. With this choice of s*, we have the following upper bound on

J(ﬂi+1, Aﬁi-{-l) — J(@, AT).

J(ii:-{-lv Aﬁi—{-l) - J(ﬁv Aﬁ)

< J(@y1, Ay) + T (M%7, —5%)

_ /ﬂ [H(1p%.01) — hlpw)) 5

e g2
91Phsale + T(t(ls*Dl))] dz.

+
P+ e? (lpgaal? + €2 + 1pal)
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Combined with (5.4), this implies the following a posteriori error estimate
& (lugyr — ulf} + 1P — P”ZQ)
< [ [HUpi) = B2eD) s

g9 ka+1| e?

\/ka+1|2 + €2 (\/7Pk+1|2 + €2 + [Pyl

To see the efficiency of the estimate, we have, as is done in [7], that in the linear case
(i-e., hy = D) the estimate (5.6) implies

) + T(t(!s*D|))] dz. (5.6)

@ (s — ully + PRy — I’”2Q)
g lpk+1| €

/ \/|Pk+1l2 +e? (\/;k+1!2 +e?+ |Pk+1|)

It is easy to see that, at least formally, the error estimate (5.6) reduces to (4.10) when
e—0.

dz. (5.7)
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