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a b s t r a c t

This paper is devoted to the study of a hemivariational inequality modeling the qua-
sistatic bilateral frictional contact between a viscoelastic body and a rigid foundation.
The damage effect is built into the model through a parabolic differential inclusion
for the damage function. A solution existence and uniqueness result is commented. A
fully discrete scheme is introduced with the time derivative of the damage function
approximated by the backward finite difference and the spatial derivatives approximated
by finite elements. An optimal order error estimate is derived for the fully discrete
scheme when linear elements are used for the velocity and displacement variables, and
piecewise constants are used for the damage function. Simulation results on numerical
examples are reported illustrating the performance of the fully discrete scheme and the
theoretically predicted convergence orders.
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1. Introduction

In this paper, we study a mathematical model in the form of a hemivariational inequality for a quasistatic bilateral
frictional contact problem between a viscoelastic body and a rigid foundation. The friction law is given in the form of a
subdifferential condition. Damage of the material is incorporated. Modeling, variational analysis and numerical solution of
contact problems have been studied extensively; in this regard, a few comprehensive references are [1–4] in the context
of variational inequalities (VIs), and [5,6] in the context of hemivariational inequalities (HVIs).

The notion of hemivariational inequalities (HVIs) was introduced in early 1980s to model mechanical problems
involving non-smooth, non-monotone or multi-valued relations [7]. Early results on modeling, mathematical analysis and
engineering applications of HVIs are summarized in [8,9]; recent summarized accounts include [5,6,10]. Since there are
no solution formulas for HVIs in applications, numerical simulation is the only feasible approach to solving HVIs. Detailed
discussion of the finite element method for solving HVIs can be found in [11]. More recently, there has been substantial
progress in numerical analysis of HVIs, especially on optimal order error estimates for numerical solutions of HVIs, starting
with the paper [12], followed by a sequence of papers, e.g., [13–16]; the reader is referred to [17] for a recent survey.

Many contact processes are accompanied with material damage. In applications, it is very important to consider the
damage effect. General mathematical models for damage were derived in [18,19]; see also [20]. In [21], a quasistatic
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contact problem for a viscoelastic material is studied variationally and numerically, where the damage effect of the
viscoelastic material is taken into account. Systematic variational analysis and numerical analysis of contact problems
with damage effect is summarized in [4]. The mathematical problems investigated in these references are in the form of
VIs. For studies of contact problems with damage in the form of HVIs, the reader is referred to [22].

This is the first paper devoted to numerical analysis of an HVI arising in a contact problem with damage. The rest of
the paper is organized as follows. In Section 2, we introduce the contact problem, present its weak formulation as an HVI
and comment on the solution existence and uniqueness. In Section 3, we consider a fully discrete numerical scheme for
the contact problem and derive an optimal order error estimate under appropriate solution regularity assumptions. In
Section 4, we report computer simulation results on a numerical example and illustrate numerical convergence orders
that match the theoretical error bound.

2. The contact problem

We first introduce the pointwise formulation of the quasistatic contact problem for the contact between a viscoelastic
body and a rigid foundation. The initial configuration of the body is Ω , a Lipschitz bounded domain in Rd (d ≤ 3 in
applications). The body is subject to the action of volume forces of a total density f0. The boundary Γ of the domain Ω is
split into three disjoint measurable parts, Γ = Γ1 ∪Γ2 ∪Γ3 such that Γ1 and Γ3 are non-trivial. We will assume the body
is fixed along Γ1, is subject to the action of surface traction with a total density f2 on Γ2. Along the contact boundary Γ3,
the body and the foundation are in bilateral contact and the frictional process is described by a generalized subdifferential
inclusion.

Following [3,23], we consider a viscoelastic constitutive law with the damage effect in the form

σ = Aε(u̇) + B(ε(u), ζ ),

where u is the displacement field, ζ is the damage function, σ is the stress field, A and B are the viscosity operator and the
elasticity operator. These operators are allowed to depend on the spatial location. For convenience, we use the shorthand
notation Aε(u̇) and B(ε(u), ζ ) for A(x, ε(u̇)) and B(x, ε(u), ζ ), respectively. The symbol u̇ denotes the time derivative of
u. The time interval of interest is [0, T ] for some T > 0.

The notion of the damage function was introduced in [18,19] to quantify the damage to the material. It is defined
to be the ratio between the elastic modulus of the damaged material and that of the original material. The value of the
damage function ζ lies in [0, 1]. The value ζ = 1 indicates that there is no damage in the material, whereas the value
ζ = 0 corresponds to a completely damaged material. When 0 < ζ < 1, there is a partial damage and the system
has a reduced load carrying capacity. A popular model for the evolution of the damage function is given by a parabolic
differential inclusion:

ζ̇ − κ △ζ + ∂ I[0,1](ζ ) ∋ φ(ε(u), ζ ),

where κ > 0 is a constant microcrack diffusion coefficient, I[0,1] is the indicator function of the interval [0, 1], ∂ I[0,1] is
the convex subdifferential of I[0,1], and φ is the mechanical source of damage, depending on the strain and the damage
itself. On the boundary Γ , a homogeneous Neumann condition is described for ζ .

For a vector v defined on Γ , we let vν = v · ν be its normal component, and let vτ = v − vνν be its tangential
component. For a stress tensor σ defined on Γ , we let σν = (σν) · ν and στ = σν − σνν be its normal and tangential
components, respectively.

Denote by u0 and ζ0 the initial values of the displacement and the damage function. The pointwise formulation of the
contact problem is as follows.

Problem 2.1. Find a displacement field u:Ω × [0, T ] → Rd, a stress field σ:Ω × [0, T ] → Sd, and a damage field
ζ :Ω × [0, T ] → R such that

σ = Aε(u̇) + B(ε(u), ζ ) in Ω × (0, T ), (2.1)

ζ̇ − κ △ζ + ∂ I[0,1](ζ ) ∋ φ(ε(u), ζ ) in Ω × (0, T ), (2.2)

Div σ + f0 = 0 in Ω × (0, T ), (2.3)
∂ζ

∂ν
= 0 on Γ × (0, T ), (2.4)

u = 0 on Γ1 × (0, T ), (2.5)

σν = f2 on Γ2 × (0, T ), (2.6)

uν = 0, −στ ∈ ∂ j(u̇τ ) on Γ3 × (0, T ), (2.7)

u(0) = u0, ζ (0) = ζ0 in Ω. (2.8)
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We already know that (2.1) is the viscoelastic constitutive law with damage, and (2.2) is the evolution relation for
the damage function. We consider a quasistatic contact process and (2.3) is the corresponding equilibrium equation. The
initial conditions for the displacement field and the damage function are given by (2.8). The relations (2.4)–(2.7) are the
boundary conditions for the damage function, the displacement boundary condition on Γ1, the traction boundary condition
on Γ2, and the bilateral friction contact condition on Γ3. Here, the friction dissipation pseudopotential j will be assumed
to be Lipschitz continuous, and ∂ j represents the generalized subdifferential in the sense of Clarke (cf. [24,25]). We will
also need the notion of the generalized directional derivative in the sense of Clarke. Let V be a Banach space and let
ψ: V → R be a locally Lipschitz continuous functional. Recall that the generalized directional derivative of ψ at u ∈ V in
the direction v ∈ V is

ψ0(u; v) := lim sup
w→u, λ↓0

ψ(w + λv) − ψ(w)
λ

,

whereas the generalized subdifferential of ψ at u ∈ V is

∂ψ(u) :=
{
ξ ∈ V ∗

| ψ0(u; v) ≥ ⟨ξ, v⟩V∗×V ∀ v ∈ V
}
.

We note the following properties:

ψ0(u; t v) = t ψ0(u; v) ∀ u, v ∈ V , t ≥ 0, (2.9)

ψ0(u; v1 + v2) ≤ ψ0(u; v1) + ψ0(u; v2) ∀ u, v1, v2 ∈ V , (2.10)

ψ0(u; v) = max {⟨ζ , v⟩V∗×V | ζ ∈ ∂ψ(u)} ∀ u, v ∈ V , (2.11)

un → u and vn → v in V H⇒ lim sup
n→∞

ψ0(un; vn) ≤ ψ0(u; v). (2.12)

Problem 2.1 will be studied in its weak form. For this purpose, we first need to introduce some function spaces. Let

Q = L2(Ω)d×d
sym ,

which is a Hilbert space with the inner product

(σ, τ)Q =

∫
Ω

σijτij dx, σ, τ ∈ Q .

This will be the space for stress and strain fields. The function space for the displacement field is the Hilbert space

V =
{
v ∈ H1(Ω)d | v = 0 on Γ1, vν = 0 on Γ3

}
with the inner product (u, v)V = (ε(u), ε(v))Q and the associated norm ∥v∥V = ∥ε(v)∥Q . The space for the damage field
is

Z = H1(Ω).

For convenience, we let

Z0 = L2(Ω).

The spaces Z and Z0 are endowed with their canonical inner products and norms. Let Sd be the space of second-order
symmetric tensors on Rd.

In the study of the contact problem, we assume that the operator A:Ω × Sd
→ Sd satisfies the following conditions:

(a) There exists LA > 0 such that
∥A(x, ε1) − A(x, ε2)∥ ≤ LA∥ε1 − ε2∥ ∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(b) There exists mA > 0 such that
(A(x, ε1) − A(x, ε2)) · (ε1 − ε2) ≥ mA ∥ε1 − ε2∥

2

∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) For any ε ∈ Sd, x ↦→ A(x, ε) is measurable on Ω.
(d) The mapping x ↦→ A(x, 0) belongs to Q .

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.13)

Similarly, we assume the operator B:Ω × Sd
× R → Sd has the following properties:

(a) There exists LB > 0 such that
∥B(x, ε1, ζ1) − B(x, ε2, ζ2)∥ ≤ LB (∥ε1 − ε2∥ + |ζ1 − ζ2|)

∀ ε1, ε2 ∈ Sd, ζ1, ζ2 ∈ R, a.e. x ∈ Ω.

(b) For any ε ∈ Sd and ζ ∈ R, x ↦→ B(x, ε, ζ ) is measurable on Ω.
(c) The mapping x ↦→ B(x, 0, 0) belongs to Q .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.14)

As an example of the viscoelastic constitutive law with damage, we consider

σ = Aε(u̇) + η
(
ε(u) − PK (ζ )(ε(u))

)
, (2.15)
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where the viscosity tensor A satisfies (2.13), η is a positive coefficient, K (ζ ) is a damage dependent elasticity set, which
is assumed to be convex and PK (ζ ) is the projection operator onto the set K (ζ ). We require the properties 0 ∈ K (ζ ) and
ζ1 ≥ ζ2 implies K (ζ1) ⊂ K (ζ2). The second property implies that as the damage of the material increases, i.e., the value
of the damage function ζ decreases, the elasticity convex set expands, and the material resembles a purely viscous one.
A concrete example is given by the von Mises convex set

K (ζ ) =
{
τ ∈ Sd

| ∥τD
∥ ≤ ζ σY

}
, (2.16)

where τD
= τ − (tr τ/d) I is the deviatoric part of τ, and σY > 0 is the yield limit of the damage-free material. Since the

projection operator is nonexpansive, it can be verified that B(ε, ζ ) = η
(
ε(u) − PK (ζ )(ε(u))

)
satisfies (2.14).

On the damage source function φ:Ω × Sd
× R → R, the assumptions are

(a) There exists Lφ > 0 such that
|φ(x, ε1, ζ1) − φ(x, ε2, ζ2)| ≤ Lφ (∥ε1 − ε2∥ + |ζ1 − ζ2|)

∀ ε1, ε2 ∈ Sd, ζ1, ζ2 ∈ R, a.e. x ∈ Ω.

(b) For any ε ∈ Sd and ζ ∈ R, x ↦→ φ(x, ε, ζ ) is measurable on Ω.
(c) The mapping x ↦→ φ(x, 0, 0) belongs to L2(Ω).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.17)

On the friction dissipation pseudopotential j:Γ3 × Rd
→ R,

(a) x ↦→ j(x, ξ) is measurable on Γ3 ∀ ξ ∈ Rd

and j(x, 0) ∈ L2(Γ3).
(b) ξ ↦→ j(x, ξ) is locally Lipschitz in Rd, a.e. x ∈ Γ3.

(c) There exist constants c0τ , c1τ ≥ 0 such that
∥∂ j(x, ξ)∥ ≤ c0τ + c1τ∥ξ∥ ∀ ξ ∈ Rd, a.e. x ∈ Γ3.

(d) There is a constant c2τ ≥ 0 such that
j0(x, ξ1; ξ2 − ξ1) + j0(x, ξ2; ξ1 − ξ2) ≤ c2τ∥ξ1 − ξ2∥

2

∀ ξ1, ξ2 ∈ Rd, a.e. x ∈ Γ3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.18)

Moreover, we assume

κ > 0 (2.19)

on the microcrack diffusion coefficient,

f0 ∈ C([0, T ]; L2(Ω)d), f2 ∈ C([0, T ]; L2(Γ2)d) (2.20)

on the densities of forces and tractions,

u0 ∈ V , ζ0 ∈ K (2.21)

on the initial data. Here K represents the set of admissible damage functions defined by

K = {ξ ∈ Z | ξ ∈ [0, 1] a.e. in Ω} . (2.22)

By the Riesz representation theorem, we can define f : [0, T ] → V by

(f (t), v)V =

∫
Ω

f0(t) · v dx +

∫
Γ2

f2(t) · v da ∀ v ∈ V , t ∈ [0, T ]. (2.23)

Then conditions (2.20) imply

f ∈ C([0, T ]; V ). (2.24)

Let a : Z × Z → R be the bilinear form

a(ξ, η) = κ

∫
Ω

∇ξ · ∇η dx, ξ , η ∈ Z . (2.25)

Let us introduce a weak formulation of the problem (2.1)–(2.8).

Problem 2.2. Find a displacement field u: [0, T ] → V , a stress field σ: [0, T ] → Q , and a damage field ζ : [0, T ] → Z
such that for all t ∈ [0, T ],

σ(t) = Aε(u̇(t)) + B(ε(u(t)), ζ (t)), (2.26)

(σ(t), ε(v − u̇(t)))Q +

∫
Γ3

j0(u̇τ (t); vτ − u̇τ (t)) da ≥ (f (t), v − u̇(t))V ∀ v ∈ V , (2.27)

ζ (t) ∈ K , (ζ̇ (t), ξ − ζ (t))Z0 + a(ζ (t), ξ − ζ (t)) ≥ (φ(ε(u(t)), ζ (t)), ξ − ζ (t))Z0 ∀ ξ ∈ K , (2.28)

and

u(0) = u0, ζ (0) = ζ0. (2.29)



W. Han, M. Jureczka and A. Ochal / Journal of Computational and Applied Mathematics 377 (2020) 112886 5

Denote by cτ the smallest constant in the trace inequality

∥vτ∥L2(Γ3)d ≤ cτ∥v∥V ∀ v ∈ V . (2.30)

Similar to [22, Theorem 5.1], we can prove the following result.

Theorem 2.3. Assume (2.13), (2.14), (2.17)–(2.21),

c2τ c2τ < mA, (2.31)

and either
√
2 c1τ c2τ < mA or for a constant dτ ≥ 0, j0(x, ξ; −ξ) ≤ dτ (1 + ∥ξ∥) for all ξ ∈ Rd and a.e. x ∈ Ω . Then

Problem 2.2 has a unique solution u ∈ C1([0, T ]; V ), σ ∈ C([0, T ];Q ) and ζ ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ;H1(Ω)). Moreover,
Div σ ∈ L2(Ω)d.

In the numerical solution of Problem 2.2, it will be convenient to introduce the velocity variable

w(t) = u̇(t). (2.32)

Given the velocity w(t) and the initial displacement u(0) = u0 from (2.29), we can recover the displacement by the
formula

u(t) = u0 +

∫ t

0
w(s) ds. (2.33)

Then (2.26)–(2.27) can be rewritten as

σ(t) = Aε(w(t)) + B(ε(u(t)), ζ (t)), (2.34)

(σ(t), ε(v − w(t)))Q +

∫
Γ3

j0(wτ (t); vτ − wτ (t)) da ≥ (f (t), v − w(t))V ∀ v ∈ V , (2.35)

for all t ∈ [0, T ].

3. Numerical analysis of the weak formulation

In this section, we introduce and study a fully discrete numerical scheme to solve Problem 2.2. We assume the
conditions stated in Theorem 2.3 are valid so that Problem 2.2 has a unique solution.

For the approximation of the time derivative of the damage function, we use finite difference. We divide the time
interval [0, T ] uniformly and comment that much of the discussion of the numerical method below can be extended
straightforward to the case of general partition of the time interval. Thus, let N be a positive integer, and define k = T/N
the step-size. Then 0 = t0 < t1 < · · · < tN = T is a uniform partition of [0, T ] with the nodes tn = nk, n = 0, 1, . . . ,N .
For a function z(t) continuous on [0, T ], we write zn = z(tn). We use the backward difference approximation

ζ̇ (tn) ≈ δζn :=
ζn − ζn−1

k
, 1 ≤ n ≤ N. (3.1)

For the spatial discretization, we use the finite element method. For simplicity, we assume Ω is a polygonal/polyhedral
domain, and express the three parts of the boundary, Γk, 1 ≤ k ≤ 3, as unions of closed flat components with disjoint
interiors:

Γk = ∪
ik
i=1Γk,i, 1 ≤ k ≤ 3.

Let {T h
}h be a regular family of finite element partitions of Ω into triangular/tetrahedral elements, compatible with the

partition of the boundary ∂Ω into Γk,i, 1 ≤ i ≤ ik, 1 ≤ k ≤ 3, in the sense that if the intersection of one side/face of an
element with one set Γk,i has a positive measure with respect to Γk,i, then the side/face lies entirely in Γk,i. Here h → 0
denotes the finite element mesh-size. Corresponding to the partition T h, we introduce the linear finite element space

V h
=
{
vh

∈ C(Ω)d | vh
|T∈ P1(T )d ∀ T ∈ T h, vh

= 0 on Γ1, v
h
ν = 0 on Γ3

}
(3.2)

for the displacement field, the piecewise constant finite element space

Q h
= {τh

∈ Q | τh
|T∈ Rd×d

∀ T ∈ T h
} (3.3)

for the stress field, and the linear finite element space

Zh
=
{
ξ h ∈ C(Ω) | ξ h|T∈ P1(T ) ∀ T ∈ T h} (3.4)

for the damage field. Define the constrained subset of Zh:

K h
=
{
ξ h ∈ Zh

| ξ h|T∈ [0, 1] ∀ T ∈ T h} . (3.5)
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Let uh
0 ∈ V h and ζ h0 ∈ K h be appropriate approximations of u0 and ζ0 such that

∥u0 − uh
0∥V ≤ c h, ∥ζ0 − ζ h0 ∥Z0 ≤ c h. (3.6)

These conditions are valid if, e.g., u0 ∈ H2(Ω)d, ζ0 ∈ H1(Ω), and we define uh
0 ∈ V h to be the interpolant or H1(Ω)d-

or L2(Ω)d-projection of u0 onto V h, define ζ h0 ∈ K h to be the L2(Ω)-projection of ζ0 onto K h. The smoothness conditions
u0 ∈ H2(Ω)d and ζ0 ∈ H1(Ω) will follow from the solution regularities (3.14) and (3.16).

The discrete velocity and displacement approximations are denoted by {whk
n }

N
n=1 ⊂ V h and {uhk

n }
N
n=0 ⊂ V h, whereas the

discrete stress and damage function approximations are denoted by {σhk
n }

N
n=1 ⊂ Q h and {ζ hkn }

N
n=0 ⊂ K h. Let PQ h :Q → Q h

be the orthogonal projection from Q to Q h, defined by

PQ hσ ∈ Q h, (PQ hσ, τh)Q = (σ, τh)Q ∀ σ ∈ Q , τh
∈ Q h. (3.7)

Then a fully discrete scheme for Problem 2.2 is the following.

Problem 3.1. Find a discrete displacement field uhk
= {uhk

n }
N
n=0 ⊂ V h, a discrete stress field σhk

= {σhk
n }

N
n=1 ⊂ Q h, and a

discrete damage field ζ hk = {ζ hkn }
N
n=0 ⊂ K h such that for n = 1, 2, . . . ,N ,

σhk
n = PQ hAε(whk

n ) + PQ hB(ε(uhk
n−1), ζ

hk
n−1), (3.8)

(σhk
n , ε(v

h
− whk

n ))Q +

∫
Γ3

j0(whk
nτ ; v

h
τ − whk

nτ ) da ≥ (fn, vh
− whk

n )V ∀ vh
∈ V h, (3.9)

(δζ hkn , ξ
h
− ζ hkn )Z0 + a(ζ hkn , ξ

h
− ζ hkn ) ≥ (φ(ε(uhk

n−1), ζ
hk
n−1), ξ

h
− ζ hkn )Z0 ∀ ξ h ∈ K h, (3.10)

and

uhk
0 = uh

0, ζ hk0 = ζ h0 . (3.11)

Here {uhk
n }

N
n=0 and {whk

n }
N
n=1 are related by the equalities

whk
n = δuhk

n and uhk
n = uh

0 + k
n∑

i=1

whk
i . (3.12)

Note that for implementation, (3.8) and (3.9) are combined together to give

(Aε(whk
n ), ε(vh

− whk
n ))Q + (B(ε(uhk

n−1), ζ
hk
n−1), ε(v

h
− whk

n ))Q +

∫
Γ3

j0(whk
nτ ; v

h
τ − whk

nτ ) da

≥ (fn, vh
− whk

n )V ∀ vh
∈ V h. (3.13)

The solution existence and uniqueness of Problem 3.1 can be proved by an induction argument. The focus of the rest
of this section is to bound the numerical solution errors. For this purpose, we assume the following additional solution
regularities:

u ∈ W 2,1(0, T ; V ) ∩ C([0, T ];H2(Ω)d), (3.14)

σ ∈ C([0, T ];H1(Ω)d×d), (3.15)

ζ ∈ H2(0, T ; Z0) ∩ C1([0, T ]; Z) ∩ C([0, T ];H2(Ω)). (3.16)

Then following the argument in [3, Section 8.1], we can show that for all t ∈ (0, T ),

Div σ + f0 = 0 a.e. in Ω, (3.17)

σν = f2 a.e. on Γ2, (3.18)

uν = 0 a.e. on Γ3. (3.19)

We first show the uniform boundedness of the numerical solution.

Lemma 3.2. There exists a constant M > 0, independent of h and k, such that

max
1≤n≤N

∥whk
n ∥V ≤ M.

Proof. Let us fix n ∈ {1, . . . ,N}. We take vh
= 0 ∈ V h in (3.13),

(Aε(whk
n ), ε(whk

n ))Q ≤ −(B(ε(uhk
n−1), ζ

hk
n−1), ε(w

hk
n ))Q +

∫
Γ3

j0(whk
nτ ; −whk

nτ ) da + (fn,whk
n )V .

By (2.13) (b),

mA∥whk
n ∥

2
V ≤ (Aε(whk

n ) − A(0), ε(whk
n ))Q .
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Combining these relations, we obtain

mA∥whk
n ∥

2
V ≤ −(A(0), ε(whk

n ))Q − (B(ε(uhk
n−1), ζ

hk
n−1), ε(w

hk
n ))Q +

∫
Γ3

j0(whk
nτ ; −whk

nτ ) da + (fn,whk
n )V . (3.20)

Let us treat each of the terms on the right side of (3.20). Let δ > 0 be a small constant to be chosen later. We recall
the modified Cauchy–Schwarz inequality: for any a, b ∈ R,

a b ≤ δ a2 + c b2, c =
1
4 δ
. (3.21)

Then,

−(A(0), ε(whk
n ))Q ≤ δ ∥whk

n ∥
2
V + c ∥A(0)∥2

Q . (3.22)

Similarly,

−(B(ε(uhk
n−1), ζ

hk
n−1), ε(w

hk
n ))Q ≤ δ ∥whk

n ∥
2
V + c ∥B(ε(uhk

n−1), ζ
hk
n−1)∥

2
Q .

By (2.14) (a),

∥B(ε(uhk
n−1), ζ

hk
n−1)∥ ≤ ∥B(ε(uhk

n−1), ζ
hk
n−1) − B(0, 0)∥ + ∥B(0, 0)∥

≤ LB
(
∥ε(uhk

n−1)∥ + |ζ hkn−1|
)
+ ∥B(0, 0)∥.

Then, by noting that |ζ hkn−1| ≤ 1, we have

∥B(ε(uhk
n−1), ζ

hk
n−1)∥Q ≤ c

(
∥uhk

n−1∥V + 1
)
.

Now

uhk
n−1 = uh

0 + k
n−1∑
i=1

whk
i ,

and so

∥uhk
n−1∥V ≤ ∥uh

0∥V + k
n−1∑
i=1

∥whk
i ∥V ,

∥uhk
n−1∥

2
V ≤ c + c k

n−1∑
i=1

∥whk
i ∥

2
V .

Hence,

−(B(ε(uhk
n−1), ζ

hk
n−1), ε(w

hk
n ))Q ≤ δ ∥whk

n ∥
2
V + c k

n−1∑
i=1

∥whk
i ∥

2
V + c. (3.23)

Write

j0(whk
nτ ; −whk

nτ ) =
[
j0(whk

nτ ; −whk
nτ ) + j0(0;whk

nτ )
]
− j0(0;whk

nτ ).

By (2.18) (d),

j0(whk
nτ ; −whk

nτ ) + j0(0;whk
nτ ) ≤ c2τ∥whk

nτ∥
2.

By (2.18) (c),

−j0(0;whk
nτ ) ≤ c0τ∥whk

nτ∥ ≤ δ ∥whk
n ∥

2
+ c.

Thus, ∫
Γ3

j0(whk
nτ ; −whk

nτ ) da ≤
(
c2τ c2τ + δ

)
∥whk

n ∥
2
V + c. (3.24)

Finally,

(fn,whk
n )V ≤ δ ∥whk

n ∥
2
V + c ∥fn∥2

V . (3.25)

Use (3.22)–(3.25) in (3.20),(
mA − c2τ c2τ − 4 δ

)
∥whk

n ∥
2
V ≤ c k

n−1∑
i=1

∥whk
i ∥

2
V + c,
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where the constant c depends on ∥A(0)∥Q , ∥B(0, 0)∥Q , ∥f ∥C([0,T ];V ), and an upper bound on ∥uhk
0 ∥V . By choosing δ =

(mA − c2τ c2τ )/8, we have

∥whk
n ∥

2
V ≤ c k

n−1∑
i=1

∥whk
i ∥

2
V + c.

Applying the Gronwall inequality, we get

∥whk
n ∥

2
V ≤ c, 1 ≤ n ≤ N.

The proof is completed. ■

We will make use of several relations presented in [4]. By [4, (3.25)],

∥un − uhk
n−1∥

2
V ≤ c

(
h2

+ k2
)
+ c k

n−1∑
i=1

∥wi − whk
i ∥

2
V . (3.26)

By [4, (3.27)],

∥un − uhk
n ∥

2
V ≤ c

(
h2

+ k2
)
+ c k

n∑
i=1

∥wi − whk
i ∥

2
V . (3.27)

By [4, (3.59)],

∥ζn − ζ hkn ∥
2
Z0 + k

n∑
i=1

|ζi − ζ hki |
2
Z ≤ c

(
h2

+ k2 + k
n−1∑
i=1

∥ui − uhk
i ∥

2
V

)
. (3.28)

By [4, (3.71)],

∥σn − σhk
n ∥

2
Q ≤ c

(
∥wn − whk

n ∥
2
V + ∥ζn − ζ hkn−1∥

2
Z0

)
+ c k

n−1∑
i=1

∥wi − whk
i ∥

2
V + c

(
h2

+ k2
)
. (3.29)

From the regularity assumption (3.16), we see that

∥ζn − ζn−1∥Z0 = O(k). (3.30)

By (2.13) (b),

mA∥wn − whk
n ∥

2
V ≤

(
Aε(wn) − Aε(whk

n ), ε(wn − whk
n )
)
Q . (3.31)

For any vh
n ∈ V h, write(

Aε(wn) − Aε(whk
n ), ε(wn − whk

n )
)
Q =

(
Aε(wn) − Aε(whk

n ), ε(wn − vh
n )
)
Q +

(
Aε(wn) − Aε(whk

n ), ε(vh
n − whk

n )
)
Q .

From (2.34) at t = tn,

Aε(wn) = σn − B(ε(un), ζn).

From (3.8),

PQ hAε(whk
n ) = σhk

n − PQ hB(ε(uhk
n−1), ζ

hk
n−1).

Thus,

PQ h (Aε(wn) − Aε(whk
n )) = (σn − σhk

n ) − (I − PQ h )σn − PQ h (B(ε(un), ζn) − B(ε(uhk
n−1), ζ

hk
n−1)).

Then, from (3.7),(
Aε(wn) − Aε(whk

n ), ε(vh
n − whk

n )
)
Q

= (σn − σhk
n , ε(v

h
n − whk

n ))Q − ((I − PQ h )σn, ε(vh
n − whk

n ))Q
− (B(ε(un), ζn) − B(ε(uhk

n−1), ζ
hk
n−1), ε(v

h
n − whk

n ))Q
≤ (σn − σhk

n , ε(v
h
n − whk

n ))Q + c
(
∥un − uhk

n−1∥V + ∥ζn − ζ hkn−1∥Z0

)
∥vh

n − whk
n ∥V

+ ∥(I − PQ h )σn∥Q∥ε(vh
n − whk

n )∥Q .

Apply the above relations in (3.31) to obtain

mA∥wn − whk
n ∥

2
V ≤ c ∥wn − whk

n ∥V∥wn − vh
n∥V + (σn − σhk

n , ε(v
h
n − whk

n ))Q
+ c

(
∥un − uhk

n−1∥V + ∥ζn − ζ hkn−1∥Z0

)
∥vh

n − whk
n ∥V + c h ∥vh

n − whk
n ∥V . (3.32)
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By the triangle inequality of the norm,

∥vh
n − whk

n ∥V ≤ ∥wn − vh
n∥V + ∥wn − whk

n ∥V .

For any δ > 0, we apply (3.21) and derive from (3.32) that

(mA − 2 δ) ∥wn − whk
n ∥

2
V ≤ c ∥wn − vh

n∥
2
V + (σn − σhk

n , ε(v
h
n − whk

n ))Q
+ c

(
h2

+ ∥un − uhk
n−1∥

2
V + ∥ζn − ζ hkn−1∥

2
Z0

)
. (3.33)

Using (3.26) to bound the term ∥un − uhk
n−1∥

2
V , we get from (3.33) that

(mA − 2 δ) ∥wn − whk
n ∥

2
V ≤ c ∥wn − vh

n∥
2
V + (σn − σhk

n , ε(v
h
n − whk

n ))Q

+ c

(
h2

+ k2 + k
n−1∑
i=1

∥wi − whk
i ∥

2
V + ∥ζn − ζ hkn−1∥

2
Z0

)
. (3.34)

We take v = whk
n ∈ V h in (2.35) at t = tn to get

−(σn, ε(whk
n − wn))Q ≤

∫
Γ3

j0(wnτ ;whk
nτ − wnτ ) da − (fn,whk

n − wn)V . (3.35)

From (3.9),

−(σhk
n , ε(v

h
− whk

n ))Q ≤

∫
Γ3

j0(whk
nτ ; v

h
τ − whk

nτ ) da − (fn, vh
− whk

n )V (3.36)

Write

(σn − σhk
n , ε(v

h
n − whk

n ))Q = (σn, ε(vh
n − wn))Q − (σn, ε(whk

n − wn))Q − (σhk
n , ε(v

h
n − whk

n ))Q .

By using (3.35) and (3.36) with vh
= vh

n , we then have

(σn − σhk
n , ε(v

h
n − whk

n ))Q ≤ (σn, ε(vh
n − wn))Q − (fn, vh

n − wn)V

+

∫
Γ3

[
j0(wnτ ;whk

nτ − wnτ ) + j0(whk
nτ ; v

h
nτ − whk

nτ )
]
da.

By the sub-additivity of the generalized directional derivative,

j0(whk
nτ ; v

h
nτ − whk

nτ ) ≤ j0(whk
nτ ; v

h
nτ − wnτ ) + j0(whk

nτ ;wnτ − whk
nτ ).

By (2.18) (d),

j0(wnτ ;whk
nτ − wnτ ) + j0(whk

nτ ;wnτ − whk
nτ ) ≤ c2τ∥wnτ − whk

nτ∥
2.

Hence,

(σn − σhk
n , ε(v

h
n − whk

n ))Q ≤ (σn, ε(vh
n − wn))Q − (fn, vh

n − wn)V

+

∫
Γ3

j0(whk
nτ ; v

h
nτ − wnτ ) da + c2τ c2τ ∥wn − whk

n ∥
2
V .
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Use this inequality in (3.34),(
mA − c2τ c2τ − 2 δ

)
∥wn − whk

n ∥
2
V

≤ c ∥wn − vh
n∥

2
V + (σn, ε(vh

n − wn))Q − (fn, vh
n − wn)V +

∫
Γ3

j0(whk
nτ ; v

h
nτ − wnτ ) da

+ c

(
h2

+ k2 + k
n−1∑
i=1

∥wi − whk
i ∥

2
V + ∥ζn − ζ hkn−1∥

2
Z0

)
. (3.37)

Recall the smallness assumption (2.31). We can choose δ > 0 sufficiently small and derive from (3.37) that

∥wn − whk
n ∥

2
V ≤ c

[
∥wn − vh

n∥
2
V + (σn, ε(vh

n − wn))Q − (fn, vh
n − wn)V

]
+ c

∫
Γ3

j0(whk
nτ ; v

h
nτ − wnτ ) da

+ c

(
h2

+ k2 + k
n−1∑
i=1

∥wi − whk
i ∥

2
V + ∥ζn − ζ hkn−1∥

2
Z0

)
.

With the use of (3.30), we rewrite the above inequality as

∥wn − whk
n ∥

2
V ≤ c

[
∥wn − vh

n∥
2
V + (σn, ε(vh

n − wn))Q − (fn, vh
n − wn)V

]
+ c

∫
Γ3

j0(whk
nτ ; v

h
nτ − wnτ ) da

+ c

(
h2

+ k2 + k
n−1∑
i=1

∥wi − whk
i ∥

2
V + ∥ζn−1 − ζ hkn−1∥

2
Z0

)
. (3.38)

From (3.28),

∥ζn−1 − ζ hkn−1∥
2
Z0 ≤ c

(
h2

+ k2 + k
n−2∑
i=1

∥ui − uhk
i ∥

2
V

)
.

Use (3.27),

k
n−2∑
i=1

∥ui − uhk
i ∥

2
V ≤ c

(
h2

+ k2
)
+ c k

n−2∑
i=1

∥wi − whk
i ∥

2
V .

Hence, from (3.38),

∥wn − whk
n ∥

2
V ≤ c

[
∥wn − vh

n∥
2
V + (σn, ε(vh

n − wn))Q − (fn, vh
n − wn)V

]
+ c

∫
Γ3

j0(whk
nτ ; v

h
nτ − wnτ ) da + c

(
h2

+ k2 + k
n−1∑
i=1

∥wi − whk
i ∥

2
V

)
.

By an application of the Gronwall inequality,

∥wn − whk
n ∥

2
V ≤ c

[
∥wn − vh

n∥
2
V + (σn, ε(vh

n − wn))Q − (fn, vh
n − wn)V

]
+ c

∫
Γ3

j0(whk
nτ ; v

h
nτ − wnτ ) da + c

(
h2

+ k2
)
. (3.39)

We multiply (3.17) by an arbitrary v ∈ V , integrate over Ω and perform an integration by parts,∫
Γ

σν · v da −

∫
Ω

σ · ε(v) dx +

∫
Ω

f0 · v dx = 0.

Split the integral over Γ to three sub-integrals: the sub-integral over Γ1 is zero since v = 0 on Γ1; for the sub-integral
over Γ2, we apply the relation (3.18); for the sub-integral over Γ3, we use the relation (3.19). As a result,∫

Ω

σ · ε(v) dx −

∫
Ω

f0 · v dx −

∫
Γ2

f2 · v da =

∫
Γ3

στ · vτ da.
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Thus, (3.39) can be reduced to

∥wn − whk
n ∥

2
V ≤ c

(
∥wn − vh

n∥
2
V + h2

+ k2
)
+ c

∫
Γ3

[
σnτ · (vh

nτ − wnτ ) + j0(whk
nτ ; v

h
nτ − wnτ )

]
da. (3.40)

Since σ ∈ C([0, T ];H1(Ω)d×d) by (3.15), we have

στ ∈ C([0, T ]; L2(Γ3)d).

Thus, ∫
Γ3

σnτ · (vh
nτ − wnτ ) da ≤ c ∥στ∥C([0,T ];L2(Γ3)d)∥v

h
nτ − wnτ∥L2(Γ3)d .

By Lemma 3.2, ∥whk
n ∥V is uniformly bounded. Then, from (2.18) (c),

j0(whk
nτ ; v

h
nτ − wnτ ) ≤ c

(
1 + ∥whk

nτ∥
)
∥vh

nτ − wnτ∥,

we have a constant c depending on the upper bound M from Lemma 3.2 that∫
Γ3

j0(whk
nτ ; v

h
nτ − wnτ ) da ≤ c ∥vh

nτ − wnτ∥L2(Γ3)d .

Therefore, from (3.40), we can derive the inequality

∥wn − whk
n ∥

2
V ≤ c

(
∥wn − vh

n∥
2
V + ∥vh

nτ − wnτ∥L2(Γ3)d + h2
+ k2

)
∀ vh

∈ V h. (3.41)

Based on (3.41), (3.27) and (3.28), we have proved the following Céa inequality for error estimation.

Theorem 3.3. Assume the conditions stated in Theorem 2.3. Let (u, ζ ) be the solution of Problem 2.2, w = u̇, and let
(uhk,whk, ζ hk) be defined by Problem 3.1. Then under the solution regularity assumptions (3.14)–(3.16), and (3.6) on the initial
values for the discrete problem, we have

max
n

∥wn − whk
n ∥V + max

n
∥un − uhk

n ∥V + max
n

∥ζn − ζ hkn ∥Z0 +

(
k

N∑
n=1

|ζn − ζ hkn |
2
Z

)1/2

≤ c (h + k)+ c max
n

inf
vhn∈Vh

(
∥wn − vh

n∥V + ∥vh
nτ − wnτ∥

1/2
L2(Γ3)d

)
. (3.42)

We can apply the standard finite element approximation theory (cf. [26–28]) to bound the error

max
n

inf
vhn∈Vh

(
∥wn − vh

n∥V + ∥vh
nτ − wnτ∥

1/2
L2(Γ3)d

)
in (3.42), and derive the next result from Theorem 3.3.

Corollary 3.4. Keep the assumptions stated in Theorem 3.3. Under the additional solution regularity assumptions

w ∈ C([0, T ];H2(Ω)d), wτ |Γ3,i∈ C([0, T ];H2(Γ3,i)d), 1 ≤ i ≤ i3, (3.43)

we have the following error bound:

max
n

∥wn − whk
n ∥V + max

n
∥un − uhk

n ∥V + max
n

∥ζn − ζ hkn ∥Z0 +

(
k

N∑
n=1

|ζn − ζ hkn |
2
Z

)1/2

≤ c (h + k) . (3.44)

4. Numerical results

In this section, we report some computer simulation results. The spatial domain is a rectangle and we use the
finite element spaces specified at the beginning of Section 3 corresponding to a family of uniform triangulations of
the rectangle. To solve the discrete hemivariational inequality from (3.8)–(3.9), we reformulate it as an optimization
problem and use built-in constrained minimization algorithm from the Python library SciPy. A version of this approach
was presented in [29]. Other algorithms specialized for nonsmooth optimizations could also be adapted. The coupled
variational inequality for damage (3.10) is solved alongside in turns using the Uzawa approach. We also incorporate the
Schur complement method to decrease the dimension of the problem.

We employ the Kelvin–Voigt type short memory viscoelastic law for the isotropic body, modified to reflect the damage
effect on elastic properties of the body. The viscosity operator A and the elasticity operator B are defined by

A(τ) = 2 η τ + ξ tr(τ)I, τ ∈ S2,

B(τ, ζ ) = ζ (2µ τ + λ tr(τ)I), τ ∈ S2, ζ ∈ [0, 1],
(4.1)
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where I is the identity matrix, tr is the trace operator on a matrix, µ and λ are the Lamé coefficients, whereas η and ξ
represent the viscosity coefficients, µ, λ, η, ξ > 0. In all our simulations we take the following data

T = 1,
η = ξ = 2, µ = λ = 4,
u0(x) = (0, 0), x ∈ Ω,

j(ξ) = 20 ∥ξ∥, ξ ∈ R2,

φ(τ, ζ ) =

{
2 1−ζ

ζ
− 20 ∥τ∥

2, ζ ∈ [0.2, 1],
8 − 20 ∥τ∥

2, ζ ∈ [0, 0.2),
τ ∈ S2,

κ = 0.5.

(4.2)

We first demonstrate the effect of different partitions of the boundary and applied forces on the deformation of the
body. In all cases, we show the initial configuration along with the shape of the body and damage field at the final time
t = 1. Choose a rectangular-shaped domain Ω = (0, 2)× (0, 1) ⊂ R2. For spatial discretization, we use uniform triangular
partitions of Ω and the corresponding linear finite element spaces {V h

}h; here h represents the mesh-size such that the
unit length part {0} × [0, 1] of the boundary is divided into 1/h equal size sub-intervals. For the temporal discretization,
we use the uniform partitions of the time interval [0, 1] with the time step size k = 1/N for a positive integer N . The
numerical solutions correspond to the time step size k = 1/32 and the mesh-size h = 1/32.

Experiment 1: We take the following data

Γ1 = {0} × [0, 1],
Γ2 = ([0, 2] × {1}) ∪ ({2} × [0, 1]) ∪ ([0, 2] × {0}),
Γ3 = ∅,

f 0(x, t) = (0,−0.2), x ∈ Ω, t ∈ [0, T ],

f 2(x, t) = (0, 0), x ∈ Γ2, t ∈ [0, T ].

In this experiment we push the body down using a force with density f 0. In Fig. 1 we observe that the body is curved
downward. As a result of twisting forces, the damage inside the body gradually increases when the spatial point moves
closer to Γ1.

Experiment 2: We change the data to

Γ1 = {0} × [0, 1],
Γ2 = ([0, 2] × {1}) ∪ ({2} × [0, 1]) ∪ ([1, 2] × {0}),
Γ3 = [0, 1) × {0},
f 0(x, t) = (0,−0.8), x ∈ Ω, t ∈ [0, T ],

f 2(x, t) = (0, 0), x ∈ Γ2, t ∈ [0, T ].

We once again push the body down, but in this case we introduce a rigid obstacle in contact with part of the body. In
Fig. 2 we see that severe damage occurs in an area near the point (1, 0), which is a corner point of the rigid foundation.
There is damage also in the upper part of the body, as a result of expansion of the material.

Experiment 3: In the final experiment we take

Γ1 = {0} × [0, 1],
Γ2 = ([0, 2] × {1}) ∪ ({2} × [0, 1]),
Γ3 = [0, 2] × {0},
f 0(x, t) = (0, 0), x ∈ Ω, t ∈ [0, T ],

f 2(x, t) = (−1,−1), x ∈ Γ2, t ∈ [0, T ].

In this case the entire bottom part of the body is in contact with a rigid obstacle, and we push the body down and to
the left using a force with density f 2. In Fig. 3 we see that as a result of the action of the boundary force, an increased
amount of damage is observed towards the upper and right side of the body. It is also interesting to examine the effect of
the frictional force on the interface Γ3 between the foundation and the body; the frictional force prevents the body from
moving further to the left.

We find that simulation results from these experiments agree with our physical intuition.
We now turn to explore the convergence orders of the numerical solutions of a model problem. We take a square-

shaped domain Ω = (0, 1) × (0, 1), use the same data as in (4.1) and (4.2) and

Γ1 = {0} × [0, 1],
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Fig. 1. Initial configuration, body position and damage in first experiment.

Fig. 2. Initial configuration, body position and damage in second experiment.

Fig. 3. Initial configuration, body position and damage in third experiment.

Γ2 = ([0, 1] × {1}) ∪ ({1} × [0, 1]),

Γ3 = [0, 1] × {0},

f 0(x, t) = (0, 0), x ∈ Ω, t ∈ [0, T ],

f 2(x, t) = (−1.4,−0.2), x ∈ Γ2, t ∈ [0, T ].

We use uniform triangulations of the spatial domain and uniform partitions of the time interval, and let h and k be
the spatial mesh-size and time step-size as defined above. We present a comparison of numerical errors ∥w − whk

∥V

and ∥ζ − ζ hk∥Z0 computed for a sequence of numerical solutions. The numerical solution corresponding to h = 1/128
and k = 1/128 is taken as the ‘‘true’’ solution w and ζ in computing the numerical errors; ∥w∥V

.
= 0.23525 and

∥ζ∥Z0
.
= 0.75375.

First, we fix k = 1/128 and start with h = 1/2, which is successively halved. The results are presented in Table 1 and
Fig. 4, where the dependence of the relative error estimates ∥w − whk

∥V and ∥ζ − ζ hk∥Z0 with respect to h are plotted on
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Fig. 4. Errors vs. h with fixed k = 1/128.

Fig. 5. Errors vs. k with fixed h = 1/128.

a log–log scale. Asymptotic convergence orders close to one for the velocity variable and slightly higher for the damage
variable can be observed for the numerical solutions.

Then, we fix h = 1/128 and start with k = 1/2, which is successively halved. The results are presented in Table 2 and
Fig. 5. Asymptotic convergence orders close to one for both unknowns can be observed.

Acknowledgments

The project has received funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No. 823731 CONMECH. It is supported by the projects financed by
the Ministry of Science and Higher Education of Republic of Poland under Grants Nos. 4004/GGPJII/H2020/2018/0 and
440328/PnH2/2019.



W. Han, M. Jureczka and A. Ochal / Journal of Computational and Applied Mathematics 377 (2020) 112886 15

Table 1
Numerical errors vs. h with fixed k = 1/128.
h 1/2 1/4 1/8 1/16 1/32

∥w − whk
∥V /∥w∥V 3.4889e−1 2.2027e−1 1.2745e−1 7.2811e−2 3.9967e−2

Convergence order 0.6635 0.7893 0.8077 0.8653

∥ζ − ζ hk∥Z0/∥ζ∥Z0 8.7595e−2 4.3672e−2 1.7248e−2 6.1124e−3 2.1316e−3
Convergence order 1.0041 1.3402 1.4966 1.5198

Table 2
Numerical errors vs. k with fixed h = 1/128.
k 1/2 1/4 1/8 1/16 1/32

∥w − whk
∥V /∥w∥V 8.5393e−2 6.8195e−2 3.2105e−2 1.4883e−2 7.0551e−3

Convergence order 0.3244 1.0868 1.1091 1.0766

∥ζ − ζ hk∥Z0/∥ζ∥Z0 4.0107e−1 5.6124e−2 2.2501e−2 8.4583e−3 4.3778e−3
Convergence order 2.8372 1.3186 1.4115 0.9502
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