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a b s t r a c t

In this paper, well-posedness of a general class of elliptic mixed hemivariational–
variational inequalities is studied. This general class includes several classes of
the previously studied elliptic mixed hemivariational–variational inequalities as
special cases. Moreover, our approach of the well-posedness analysis is easily
accessible, unlike those in the published papers on elliptic mixed hemivariational–
variational inequalities so far. First, prior theoretical results are recalled for a class
of elliptic mixed hemivariational–variational inequalities featured by the presence
of a potential operator. Then the well-posedness results are extended through
a Banach fixed-point argument to the same class of inequalities without the
potential operator assumption. The well-posedness results are further extended to a
more general class of elliptic mixed hemivariational–variational inequalities through
another application of the Banach fixed-point argument. The theoretical results are
illustrated in the study of a contact problem. For comparison, the contact problem
is studied both as an elliptic mixed hemivariational–variational inequality and as
an elliptic variational–hemivariational inequality.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The main goal of this paper is to provide a well-posedness analysis of a general class of elliptic mixed
hemivariational–variational inequalities of the following form:

Problem 1.1. Find (u, λ) ∈ KV ×KΛ such that

⟨Au, v − u⟩ + b(v − u, λ) + Φ(u, v) − Φ(u, u) + Ψ0(u; v − u) ≥ ⟨f, v − u⟩ ∀ v ∈ KV , (1.1)
b(u, µ− λ) ≤ 0 ∀µ ∈ KΛ. (1.2)
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In Problem 1.1, KV and KΛ are closed convex sets in Hilbert spaces, A is a Lipschitz continuous and
trongly monotone operator, b is a continuous bilinear form, Φ is continuous and convex with respect

to its second argument, Ψ is locally Lipschitz continuous and Ψ0 denotes its generalized directional
derivative in the sense of Clarke, and f is a given linear continuous functional. Precise descriptions of
the assumptions on the data will be given in Section 4. Of particular relevance to applications is the case
where the term Ψ0(u; v − u) in (1.1) is replaced by I∆(ψ0(u; v − u)), which is the integration over ∆ of
the generalized directional derivative of a function ψ and ∆ represents a subset of the spatial domain of
the application problem or a part of the boundary of the spatial domain. The corresponding elliptic mixed
hemivariational–variational inequality is studied at the end of Section 4.

Elliptic mixed hemivariational–variational inequalities of special types have been studied in the literature.
For example, the problem of finding (u, λ) ∈ KV ×KΛ such that

⟨Au, v − u⟩ + b(v − u, λ) + I∆(ψ0(u; v − u)) ≥ ⟨f, v − u⟩ ∀ v ∈ KV ,

b(u, µ− λ) ≤ 0 ∀µ ∈ KΛ

was studied in [1], where I∆ represents the integration over a measurable set ∆ of the boundary of the spatial
omain for the problem. A closely related problem of finding (u, λ) ∈ KV ×KΛ such that

⟨Au, v − u⟩ + b(v − u, λ) + Ψ0(u; v − u) ≥ ⟨f, v − u⟩ ∀ v ∈ KV ,

b(u, µ− λ) ≤ 0 ∀µ ∈ KΛ

was studied in [2,3]. The results in [2] are extended in [4] to the following problem of finding (u, λ) ∈ KV ×KΛ

such that

⟨Au, v − u⟩ + b(v − u, λ) + Φ(v) − Φ(u) + Ψ0(u; v − u) ≥ ⟨f, v − u⟩ ∀ v ∈ KV , (1.3)
b(u, µ− λ) ≤ 0 ∀µ ∈ KΛ. (1.4)

In these references, the main theoretical tools for proving solution existence are rather complicated fixed-
point principles for set-valued mappings. In the more recent paper [5], under an additional assumption that
A is a potential operator, the problem (1.3)–(1.4) is studied based on an equivalent saddle-point formulation.
A minimax principle on the saddle-point formulation provides an elementary proof of the solution existence
on the mixed hemivariational–variational inequality, thus avoiding the need of the complicated fixed-point
principles for set-valued mappings.

The novelty of this paper is reflected in two aspects. First, Problem 1.1 and its analogue where Ψ0

is replaced by I∆(ψ0) are more general than the mixed hemivariational–variational inequalities studied
in the references cited above. Second, we prove the well-posedness of the problems without applying the
complicated fixed-point principles for set-valued mappings and our technique is easily accessible by applied
mathematicians and engineers. More precisely, we start with the well-posedness results proved in [5] on the
problem (1.3)–(1.4), and extend the solution existence and uniqueness without requiring the operator A to
be potential. Then we further extend the well-posedness analysis to Problem 1.1 through the use of a basic
fixed-point principle: the Banach fixed-point theorem.

Hemivariational inequalities are useful for applications involving non-smooth, non-monotone and set-
valued relations among physical quantities. Since the pioneering work of Panagiotopoulos four decades
ago [6], modelling, analysis, numerical solution and applications of hemivariational inequalities have at-
tracted more and more attention from the research community. One has witnessed a substantial increase in
the number of publications related to hemivariational inequalities in recent years. As representative recent
references, one is referred to [7] for well-posedness analysis results of hemivariational inequalities, and to [8]

for a survey of numerical analysis of hemivariational inequalities.
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Mixed formulations are known to be useful especially in the numerical solution of problems with certain
constraints. A well-known example of mixed formulations is the treatment of the incompressibility constraint
for fluid flow problems. Moreover, mixed formulations are useful in developing efficient numerical methods
for the computation of physical quantities other than the original unknown variable of the underlying partial
differential equations. See [9] on mixed finite element methods for solving a variety of boundary value
problems through their mixed formulations. Mixed hemivariational inequalities and their numerical solutions
of the Stokes equations and Navier–Stokes equations can be found in [10–12].

The rest of the paper is organized as follows. In Section 2, we review preliminary materials needed later;
in particular, we review results from [5] on solution existence results and minimax principles for the elliptic
mixed hemivariational–variational inequality (1.3)–(1.4) when the operator A is potential. In Section 3,
he elliptic mixed hemivariational–variational inequality (1.3)–(1.4) is reconsidered and solution existence
s proved without assuming the operator A to be potential. In Section 4, well-posedness is proved for the
ore general elliptic mixed hemivariational–variational inequality (1.1)–(1.2) and its analogue where Ψ0 is

eplaced by I∆(ψ0). In Section 5, we apply the theoretical results in the study of a contact problem. For
omparison, the contact problem is studied both as an elliptic mixed hemivariational–variational inequality
nd as an elliptic variational–hemivariational inequality.

. Preliminaries

In this section, we review some results proved in [5] on the elliptic mixed hemivariational–variational
nequality (1.3)–(1.4) when the operator A is assumed to be potential. In describing hemivariational
nequalities, we need the notions of the generalized directional derivative and generalized subdifferential
n the sense of Clarke for a locally Lipschitz continuous function [13]. Let Ψ :V → R be a locally Lipschitz
continuous functional defined on a real Banach space V . Then its generalized (Clarke) directional derivative
at u ∈ V in the direction v ∈ V is defined by

Ψ0(u; v) := lim sup
w→u, λ↓0

Ψ(w + λv) − Ψ(w)
λ

,

hereas the generalized subdifferential of Ψ at u ∈ V is

∂Ψ(u) :=
{
η ∈ V ∗ | Ψ0(u; v) ≥ ⟨η, v⟩ ∀ v ∈ V

}
.

We note that if Ψ :V → R is locally Lipschitz continuous and convex, then the subdifferential ∂Ψ(u) at
any u ∈ V in the sense of Clarke coincides with the convex subdifferential ∂Ψ(u). Hence, the notion of the
Clarke subdifferential can be viewed as a generalization of that of the convex subdifferential. For all λ ∈ R
and all u ∈ V , we have

∂(λΨ)(u) = λ∂Ψ(u).
oreover, for locally Lipschitz functions Ψ1,Ψ2 :V → R, the inclusion

∂(Ψ1 + Ψ2)(u) ⊂ ∂Ψ1(u) + ∂Ψ2(u) ∀u ∈ V (2.1)

olds, which is equivalent to the inequality

(Ψ1 + Ψ2)0(u; v) ≤ Ψ0
1 (u; v) + Ψ0

2 (u; v) ∀u, v ∈ V. (2.2)

Detailed discussions of the generalized directional derivative and the generalized subdifferential for locally
Lipschitz continuous functionals, including their properties, can be found in several references, e.g. [13,14].

Following [5], from now on, we let V and Λ be two real Hilbert spaces. Their dual spaces are denoted by
V ∗ and Λ∗. The symbol ⟨·, ·⟩ denotes the duality pairing between V ∗ and V , or between Λ∗ and Λ; it should

e clear from the context which duality pairing is meant by ⟨·, ·⟩. Let KV ⊂ V and KΛ ⊂ Λ.
Given operators and functionals A : V → V ∗, b : V × Λ → R, Φ : V → R, Ψ : V → R, and f ∈ V ∗, we
consider the mixed inequality problem defined by (1.3)–(1.4).
3
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Problem 2.1. Find (u, λ) ∈ KV ×KΛ such that

⟨Au, v − u⟩ + b(v − u, λ) + Φ(v) − Φ(u) + Ψ0(u; v − u) ≥ ⟨f, v − u⟩ ∀ v ∈ KV , (2.3)
b(u, µ− λ) ≤ 0 ∀µ ∈ KΛ. (2.4)

In the study of Problem 2.1, we will use the following conditions on the problem data.

• H(KV ) V is a real Hilbert space, KV ⊂ V is non-empty, closed and convex.
• H(KΛ) Λ is a real Hilbert space, KΛ ⊂ Λ is non-empty, closed and convex.
• H(A) A :V → V ∗ is Lipschitz continuous and strongly monotone.
• H(b) b : V × Λ → R is bilinear and bounded.
• H(Φ) Φ :V → R is convex and continuous.
• H(Ψ) Ψ :V → R is locally Lipschitz continuous, and there exists a constant αΨ ≥ 0 such that

Ψ0(v1; v2 − v1) + Ψ0(v2; v1 − v2) ≤ αΨ∥v1 − v2∥2
V ∀ v1, v2 ∈ V. (2.5)

• H(f) f ∈ V ∗.

Related to the condition H(A), we will use MA > 0 for the Lipschitz constant:

∥Av1 −Av2∥V ∗ ≤ MA∥v1 − v2∥V ∀ v1, v2 ∈ V, (2.6)

nd use mA > 0 for the strong monotonicity constant:

⟨Av1 −Av2, v1 − v2⟩ ≥ mA∥v1 − v2∥2
V ∀ v1, v2 ∈ V. (2.7)

elated to the condition H(b), we will use Mb > 0 for the boundedness constant:

|b(v, µ)| ≤ Mb∥v∥V ∥µ∥Λ ∀ v ∈ V, µ ∈ Λ. (2.8)

ssumption H(b) allows us to define an operator B ∈ L(V ;Λ∗) by the relation

⟨Bv, µ⟩ = b(v, µ) ∀ v ∈ V, µ ∈ Λ.

n H(Φ), the convex function Φ :V → R is assumed to be continuous, instead of l.s.c. from V to the extended
eal line. As is explained in [15,16], there is no loss of generality with the stronger assumption of continuity
or a vast majority of applications.

When KΛ is an unbounded set in Λ and KV is a subspace of V , we will assume the bilinear form b(·, ·)
atisfies an inf–sup condition: there exists a constant αb > 0 such that

sup
0 ̸=v∈KV

b(v, µ)
∥v∥V

≥ αb∥µ∥Λ ∀µ ∈ Λ. (2.9)

We recall that an operator A : V → V ∗ is potential if there exists a Gâteaux differentiable functional
A :V → R such that A = F ′

A; the functional FA is called a potential of A. Detailed discussion on potential
perators can be found in [17, Section 41.3].

In the special case where A is a potential operator, Problem 2.1 admits an equivalent saddle-point
eformulation. Define

L(v, µ) = FA(v) + Φ(v) + Ψ(v) − ⟨f, v⟩ + b(v, µ), v ∈ KV , µ ∈ KΛ, (2.10)

nown as a Lagrangian functional. Then, we consider a saddle-point problem corresponding to Problem 2.1.

4
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Problem 2.2. Find (u, λ) ∈ KV ×KΛ such that

L(u, µ) ≤ L(u, λ) ≤ L(v, λ) ∀ v ∈ KV , µ ∈ KΛ. (2.11)

An equivalence result between Problems 2.1 and 2.2 is shown in [5].

Theorem 2.3. Assume H(KV ), H(KΛ), H(A), H(b), H(Φ), H(Ψ), H(f), αΨ < mA, and A is a potential
operator with the potential FA. Then, Problems 2.1 and 2.2 are equivalent, i.e., (u, λ) ∈ KV ×KΛ is a solution
of Problem 2.1 if and only if it is a solution of Problem 2.2.

The assumption αΨ < mA in Theorem 2.3 is known as a smallness condition in the literature.
The next existence result on Problem 2.1 is also proved in [5]. We distinguish two cases: the case with a

bounded KΛ, and the case with an unbounded KΛ.

Theorem 2.4. Assume H(KV ), H(KΛ), H(A), H(b), H(Φ), H(Ψ), H(f), αΨ < mA, and A is a potential
operator. Moreover, assume either

KΛ is bounded,

or

KΛ is unbounded; KV is a subspace of V ; Φ : V → R is Lipschitz continuous on KV ; there exist
non-negative constants c0, c1 and κ ∈ [0, 2) such that

∥∂Ψ(v)∥V ∗ ≤ c0 + c1∥v∥κV ∀ v ∈ V ; (2.12)

and the inf–sup condition (2.9) holds.

Then Problem 2.1 has a solution (u, λ) ∈ KV ×KΛ, and the first component u of the solution is unique.

In the next two sections, we will consider Problem 2.1 again, without assuming A to be a potential
operator, and will extend the results to the more general form, Problem 1.1.

3. A class of elliptic mixed hemivariational–variational inequality

We continue to consider Problem 2.1, but without assuming A to be a potential operator.

Theorem 3.1. Keep the assumptions stated in Theorem 2.4, except that A is not necessarily potential.
Then, Problem 2.1 has a solution (u, λ) ∈ KV ×KΛ, and the first component u of the solution is unique.

Proof. For any θ > 0, (2.3)–(2.4) is equivalent to

(u, v − u)V + θ
[
b(v − u, λ) + Φ(v) − Φ(u) + Ψ0(u; v − u)

]
≥ (u, v − u)V − θ ⟨Au, v − u⟩ + θ ⟨f, v − u⟩ ∀ v ∈ KV , (3.1)

θ b(u, µ− λ) ≤ 0 ∀µ ∈ KΛ. (3.2)

Now let θ ∈ (0, α−1
Ψ ). Then for any w ∈ KV , we can apply Theorem 2.4 to conclude that there exists

(u, λ) ∈ KV ×KΛ, u being unique, such that

(u, v − u)V + θ
[
b(v − u, λ) + Φ(v) − Φ(u) + Ψ0(u; v − u)

]

≥ (w, v − u)V − θ ⟨Aw, v − u⟩ + θ ⟨f, v − u⟩ ∀ v ∈ KV , (3.3)

5
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θ b(u, µ− λ) ≤ 0 ∀µ ∈ KΛ. (3.4)

ince u is unique, we can define a mapping Pθ :KV → KV by the formula

u = Pθ(w), w ∈ KV .

Let us prove that the mapping Pθ :KV → KV is a contraction. For any w1, w2 ∈ KV , denote u1 = Pθ(w1)
nd u2 = Pθ(w2). Then there exist λ1, λ2 ∈ KΛ such that

(u1, v − u1)V + θ
[
b(v − u1, λ1) + Φ(v) − Φ(u1) + Ψ0(u1; v − u1)

]
≥ (w1, v − u1)V − θ ⟨Aw1, v − u1⟩ + θ ⟨f, v − u1⟩ ∀ v ∈ KV , (3.5)

θ b(u1, µ− λ1) ≤ 0 ∀µ ∈ KΛ, (3.6)

nd

(u2, v − u2)V + θ
[
b(v − u2, λ2) + Φ(v) − Φ(u2) + Ψ0(u2; v − u2)

]
≥ (w2, v − u2)V − θ ⟨Aw2, v − u2⟩ + θ ⟨f, v − u2⟩ ∀ v ∈ KV , (3.7)

θ b(u2, µ− λ2) ≤ 0 ∀µ ∈ KΛ. (3.8)

We take v = u2 in (3.5), v = u1 in (3.7), and add the two resulting inequalities to obtain

∥u1 − u2∥2
V ≤ θ

[
−b(u1 − u2, λ1 − λ2) + Ψ0(u1;u2 − u1) + Ψ0(u2;u1 − u2)

]
+ (w1 − w2, u1 − u2)V − θ ⟨Aw1 −Aw2, u1 − u2⟩. (3.9)

From (3.6) and (3.8),

b(u1, λ2 − λ1) ≤ 0,
b(u2, λ1 − λ2) ≤ 0.

Hence,
−b(u1 − u2, λ1 − λ2) = b(u1, λ2 − λ1) + b(u2, λ1 − λ2) ≤ 0.

Thus, we derive from (3.9) that

∥u1 − u2∥2
V ≤ θ

[
Ψ0(u1;u2 − u1) + Ψ0(u2;u1 − u2)

]
+ (w1 − w2, u1 − u2)V − θ ⟨Aw1 −Aw2, u1 − u2⟩.

Applying the condition (2.5),

(1 − θ αΨ ) ∥u1 − u2∥2
V ≤ (w1 − w2, u1 − u2)V − θ ⟨Aw1 −Aw2, u1 − u2⟩. (3.10)

Let J :V ∗ → V be the Riesz mapping. Recall that

⟨g, v⟩ = (J g, v)V ∀ g ∈ V ∗, v ∈ V,

∥J g∥V = ∥g∥V ∗ ∀ g ∈ V ∗.

Then
⟨Aw1 −Aw2, u1 − u2⟩ = (J (Aw1 −Aw2), u1 − u2)V ,

and we can rewrite (3.10) as

(1 − θ α ) ∥u − u ∥2 ≤ ((w − w ) − θJ (Aw −Aw ), u − u ) .
Ψ 1 2 V 1 2 1 2 1 2 V

6
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Hence,
(1 − θ αΨ ) ∥u1 − u2∥V ≤ ∥(w1 − w2) − θJ (Aw1 −Aw2)∥V . (3.11)

Now

∥(w1 − w2) − θJ (Aw1 −Aw2)∥2
V = ∥w1 − w2∥2

V − 2 θ (J (Aw1 −Aw2), w1 − w2)V
+ θ2∥J (Aw1 −Aw2)∥2

V .

By assumptions H(A), we have

∥J (Aw1 −Aw2)∥2
V = ∥Aw1 −Aw2∥2

V ∗ ≤ M2
A∥w1 − w2∥2

V

nd
(J (Aw1 −Aw2), w1 − w2)V = ⟨Aw1 −Aw2, w1 − w2⟩ ≥ mA∥w1 − w2∥2

V .

o
∥(w1 − w2) − θJ (Aw1 −Aw2)∥2

V ≤
(
1 − 2 θmA + θ2M2

A

)
∥w1 − w2∥2

V .

herefore, we square both sides of (3.11) and derive that

∥u1 − u2∥2
V ≤ 1 − 2 θmA + θ2M2

A

(1 − θ αΨ )2 ∥w1 − w2∥2
V . (3.12)

ote that
1 − 2 θmA + θ2M2

A

(1 − θ αΨ )2 < 1 (3.13)

f and only if (
M2
A − α2

Ψ

)
θ < 2 (mA − αΨ ) . (3.14)

ince αΨ < mA ≤ MA and θ ∈ (0, α−1
Ψ ), (3.14) is valid. In other words, for θ ∈ (0, α−1

Ψ ), (3.13) holds and
he operator Pθ :KV → KV is a contraction. By the Banach fixed-point theorem (e.g., [18, Section 5.1]), Pθ
as a unique fixed-point u ∈ KV : Pθ(u) = u. Then for some λ ∈ KΛ, the pair (u, λ) satisfies (3.1)–(3.2), or

equivalently (2.3)–(2.4), i.e., it is a solution of Problem 2.1.
The uniqueness of u follows from the uniqueness of the fixed point of the operator Pθ for θ ∈ (0, α−1

Ψ ). It
can also be proved directly. ■

4. A general class of elliptic mixed hemivariational–variational inequalities

In this section, we consider Problem 1.1, which is more general than Problem 2.1. It can also be termed as
an elliptic mixed hemivariational–quasivariational inequality. For convenience, we restate the problem next.

Problem 4.1. Find (u, λ) ∈ KV ×KΛ such that

⟨Au, v − u⟩ + b(v − u, λ) + Φ(u, v) − Φ(u, u) + Ψ0(u; v − u) ≥ ⟨f, v − u⟩ ∀ v ∈ KV , (4.1)
b(u, µ− λ) ≤ 0 ∀µ ∈ KΛ. (4.2)

In the study of Problem 4.1, we modify H(Φ) to H(Φ)2; the subscript 2 in H(Φ)2 reminds the reader
that this is a condition for the case where Φ depends on two variables.

• H(Φ)2 Φ : V × V → R; for any u ∈ V , Φ(u, ·) : V → R is convex and bounded above on a non-empty
open set; and there exists a constant αΦ ≥ 0 such that
Φ(u1, v2) − Φ(u1, v1) + Φ(u2, v1) − Φ(u2, v2) ≤ αΦ∥u1 − u2∥ ∥v1 − v2∥ ∀u1, u2, v1, v2 ∈ V. (4.3)
7
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Note that the assumption Φ(u, ·) : V → R being convex and bounded above on a non-empty open set
mplies that Φ(u, ·) is continuous on V (cf. [19]).

heorem 4.2. Assume H(KV ), H(KΛ), H(A), H(b), H(Φ)2, H(Ψ), H(f), and αΦ+αΨ < mA. Moreover,
ssume either

KΛ is bounded,

r

KΛ is unbounded; KV is a subspace of V ; for any u ∈ V , Φ(u, ·) : V → R is Lipschitz continuous on
KV ; there exist non-negative constants c0, c1 and κ ∈ [0, 2) such that

∥∂Ψ(v)∥V ∗ ≤ c0 + c1∥v∥κV ∀ v ∈ V ;

and the inf–sup condition (2.9) holds.

Then, Problem 4.1 has a solution (u, λ) ∈ KV ×KΛ and the first component u of a solution is unique.

Proof. For any w ∈ KV , we consider the auxiliary problem of finding (u, λ) ∈ KV ×KΛ such that

⟨Au, v − u⟩ + b(v − u, λ) + Φ(w, v) − Φ(w, u) + Ψ0(u; v − u) ≥ ⟨f, v − u⟩ ∀ v ∈ KV , (4.4)
b(u, µ− λ) ≤ 0 ∀µ ∈ KΛ. (4.5)

Under the stated assumptions, we apply Theorem 3.1 to conclude that there is a pair (u, λ) ∈ KV × KΛ

satisfying (4.4)–(4.5) and u is unique. This allows us to define a mapping P :KV → KV by the relation

P (w) = u.

Let us show that P :KV → KV is a contraction. For any w1, w2 ∈ KV , denote u1 = P (w1), u2 = P (w2).
y the definition of the mapping P , there exist λ1, λ2 ∈ KΛ such that

⟨Au1, v − u1⟩ + b(v − u1, λ1) + Φ(w1, v) − Φ(w1, u1) + Ψ0(u1; v − u1)
≥ ⟨f, v − u1⟩ ∀ v ∈ KV , (4.6)

b(u1, µ− λ1) ≤ 0 ∀µ ∈ KΛ (4.7)

nd

⟨Au2, v − u2⟩ + b(v − u2, λ2) + Φ(w2, v) − Φ(w2, u2) + Ψ0(u2; v − u2)
≥ ⟨f, v − u2⟩ ∀ v ∈ KV , (4.8)

b(u2, µ− λ2) ≤ 0 ∀µ ∈ KΛ. (4.9)

e take v = u2 in (4.6), v = u1 in (4.8), and add the two resulting inequalities to obtain

⟨Au1 −Au2, u1 − u2⟩ ≤ −b(u1 − u2, λ1 − λ2) + Ψ0(u1;u2 − u1) + Ψ0(u2;u1 − u2)
+ Φ(w1, u2) − Φ(w1, u1) + Φ(w2, u1) − Φ(w2, u2). (4.10)

rom (4.7) and (4.9),

b(u1, λ2 − λ1) ≤ 0,
b(u2, λ1 − λ2) ≤ 0.
8
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Hence,
−b(u1 − u2, λ1 − λ2) = b(u1, λ2 − λ1) + b(u2, λ1 − λ2) ≤ 0.

hus, by making use of the assumptions H(A), H(Ψ) and H(Φ)2, we derive from (4.10) that

mA∥u1 − u2∥2
V ≤ αΨ∥u1 − u2∥2

V + αΦ∥w1 − w2∥V ∥u1 − u2∥V .

hen,
∥u1 − u2∥V ≤ αΦ

mA − αΨ
∥w1 − w2∥V .

ote that the smallness assumption αΦ+αΨ < mA implies αΦ/(mA−αΨ ) < 1. So from the above inequality,
e deduce that the mapping P :KV → KV is contractive. By the Banach fixed-point theorem, the mapping
has a unique fixed-point u ∈ KV . From u = P (u), it is easy to see that for some λ ∈ KΛ, the pair

u, λ) ∈ KV ×KΛ is a solution of Problem 4.1. Moreover, the first component u of the solution of Problem 4.1
s unique due to the uniqueness of the fixed-point of the mapping P . ■

Now we present a Lipschitz continuous dependence property of the solution on the right side.

Theorem 4.3. Keep the assumptions stated in Theorem 4.2. Then, for solutions (u1, λ1), (u2, λ2) ∈ KV ×KΛ

of Problem 4.1 with f = f1, f2 ∈ V ∗, the following inequality holds:

∥u1 − u2∥V ≤ 1
mA − αΦ − αΨ

∥f1 − f2∥V ∗ . (4.11)

roof. By the definition of a solution of Problem 4.1, we have

⟨Au1, v − u1⟩ + b(v − u1, λ1) + Φ(u1, v) − Φ(u1, u1) + Ψ0(u1; v − u1)
≥ ⟨f1, v − u1⟩ ∀ v ∈ KV , (4.12)

b(u1, µ− λ1) ≤ 0 ∀µ ∈ KΛ (4.13)

nd

⟨Au2, v − u2⟩ + b(v − u2, λ2) + Φ(u2, v) − Φ(u2, u2) + Ψ0(u2; v − u2)
≥ ⟨f2, v − u2⟩ ∀ v ∈ KV , (4.14)

b(u2, µ− λ2) ≤ 0 ∀µ ∈ KΛ. (4.15)

e take v = u2 in (4.12), v = u1 in (4.14), and add the two resulting inequalities to obtain

⟨Au1 −Au2, u1 − u2⟩ ≤ −b(u1 − u2, λ1 − λ2) + Ψ0(u1;u2 − u1) + Ψ0(u2;u1 − u2)
+ Φ(u1, u2) − Φ(u1, u1) + Φ(u2, u1) − Φ(u2, u2)
+ ⟨f1 − f2, u1 − u2⟩. (4.16)

As in the proof of Theorem 4.2, we deduce from (4.13) and (4.15) that

−b(u1 − u2, λ1 − λ2) = b(u1, λ2 − λ1) + b(u2, λ1 − λ2) ≤ 0.

Then, from (4.16) with the use of H(A), H(Ψ) and H(Φ)2,

mA∥u1 − u2∥2
V ≤ αΨ∥u1 − u2∥2

V + αΦ∥u1 − u2∥2
V + ∥f1 − f2∥V ∗∥u1 − u2∥V .

Therefore, (4.11) holds. ■
9
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Following [4], we can introduce several Minty-type equivalent formulations of Problem 4.1. The equivalent
formulations can be useful in numerical analysis of Problem 4.1, cf. [20] for such an example in the context
of numerical analysis of an elliptic variational–hemivariational inequality.

Let κA ∈ [0,mA] be a fixed constant.

roblem 4.4. Find (u, λ) ∈ KV ×KΛ such that

⟨Av, v − u⟩ + b(v − u, λ) + Φ(u, v) − Φ(u, u) + Ψ0(u; v − u)
≥ ⟨f, v − u⟩ + κA∥v − u∥2

V ∀ v ∈ KV , (4.17)
b(u, µ− λ) ≤ 0 ∀µ ∈ KΛ. (4.18)

Problem 4.5. Find (u, λ) ∈ KV ×KΛ such that

⟨Au, v − u⟩ + b(v, λ) − b(u, µ) + Φ(u, v) − Φ(u, u) + Ψ0(u; v − u)
≥ ⟨f, v − u⟩ ∀ v ∈ KV , µ ∈ KΛ. (4.19)

Problem 4.6. Find (u, λ) ∈ KV ×KΛ such that

⟨Av, v − u⟩ + b(v, λ) − b(u, µ) + Φ(u, v) − Φ(u, u) + Ψ0(u; v − u)
≥ ⟨f, v − u⟩ + κA∥v − u∥2

V ∀ v ∈ KV , µ ∈ KΛ. (4.20)

Theorem 4.7. Assume H(KV ), H(KΛ), H(A), H(b), H(Φ)2, H(Ψ), H(f), and let κA ∈ [0,mA]. Then,
Problems 4.1, 4.4, 4.5, and 4.6 are all equivalent in the sense that if (u, λ) ∈ KV × KΛ is a solution of one
f these problems, it is also a solution of all the other problems.

roof. Let (u, λ) ∈ KV ×KΛ be a solution of Problem 4.1. From the monotonicity condition (2.7), we have
he inequality

⟨Av, v − u⟩ ≥ ⟨Au, v − u⟩ +mA∥v − u∥2
V .

hen, it is easy to see that (u, λ) ∈ KV ×KΛ is a solution of Problem 4.4.
Conversely, assume (u, λ) ∈ KV × KΛ is a solution of Problem 4.4. In (4.17), we replace the arbitrary

lement v ∈ KV by u+ t (v − u) ∈ KV for any t ∈ (0, 1) and any v ∈ KV , to obtain

t ⟨A(u+ t (v − u)), v − u⟩ + t b(v − u, λ) + Φ(u, u+ t (v − u)) − Φ(u, u) + Ψ0(u; t (v − u))
≥ t ⟨f, v − u⟩ + κAt

2∥v − u∥2
V . (4.21)

By the convexity of Φ with respect to its second argument,

Φ(u, u+ t (v − u)) ≤ tΦ(u, v) + (1 − t)Φ(u, u).

Also note that Ψ0(u; t (v − u)) = tΨ0(u; v − u). Then from (4.21), after dividing by t,

⟨A(u+ t (v − u)), v − u⟩ + b(v − u, λ) + Φ(u, v) − Φ(u, u) + Ψ0(u; v − u)
≥ ⟨f, v − u⟩ + κAt ∥v − u∥2

V .

Take the limit t → 0+ to recover (4.1). Thus, (u, λ) ∈ KV ×KΛ is a solution of Problem 4.1.
Now we show the equivalence between Problems 4.1 and 4.5. Assume (4.1) and (4.2) hold. Then, for any

v ∈ KV and any µ ∈ KΛ,

b(v, λ) − b(u, µ) = b(v − u, λ) + b(u, λ− µ) ≥ b(v − u, λ).

10
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d

Thus, (4.19) is valid. Conversely, assume (4.19) holds. We take µ = λ in (4.19) to recover (4.1), and take
v = u in (4.19) to recover (4.2).

The proof of the equivalence between Problems 4.5 and 4.6 is similar to that between Problems 4.1 and
4.4, and is hence omitted here. ■

We comment that not all the assumptions listed in Theorem 4.7 are necessary for the equivalence of the
problems, e.g., (2.5) and (4.3) are not needed for the equivalence.

Finally, we focus on the case where Ψ is defined as an integral of a function ψ. In most applications, a
hemivariational inequality describes a physical problem on a spatial domain in a finite-dimensional Euclidean
space Rd. Denote by ∆ the domain or its sub-domain, or its boundary or part of the boundary. Let I∆
stand for the integration over ∆. We will need a space Vψ and a linear operator γψ from V to Vψ. Assume
elements from the space Vψ are Rm-valued functions, for some positive integer m. In applications in contact
mechanics, the operator γψ is either the normal trace operator and then m = 1, or the tangential component
trace operator and then m = d. We will take Vψ = L2(∆;Rm). Let us introduce the following assumption
on the function ψ.

• H(ψ) γψ ∈ L(V ;L2(∆;Rm)); ψ :∆ × Rm → R; ψ(·, v) is measurable on ∆ for all v ∈ Rm; ψ(x, ·) is
locally Lipschitz continuous on Rm for a.e. x ∈ ∆; and for some non-negative constants c and αψ,

|∂ψ(·, v)| ≤ c (1 + |v|Rm) ∀ v ∈ Rm, a.e. on ∆, (4.22)
ψ0(v1; v2 − v1) + ψ0(v2; v1 − v2) ≤ αψ|v1 − v2|2Rm ∀ v1, v2 ∈ Rm, a.e. on ∆. (4.23)

Consider the following analogue of Problem 4.1 in which Ψ0 is replaced by the integral of ψ0 over the
omain ∆.

Problem 4.8. Find (u, λ) ∈ KV ×KΛ such that

⟨Au, v − u⟩ + b(v − u, λ) + Φ(u, v) − Φ(u, u) + I∆(ψ0(γψu; γψv − γψu))
≥ ⟨f, v − u⟩ ∀ v ∈ KV , (4.24)

b(u, µ− λ) ≤ 0 ∀µ ∈ KΛ. (4.25)

Denote by c∆ > 0 the smallest constant in the inequality

I∆(|γψv|2Rm) ≤ c2
∆∥v∥2

V ∀ v ∈ V. (4.26)

Define the functional
Ψ(v) = I∆(ψ(γψv)), v ∈ V. (4.27)

Then under the assumption H(ψ), similar to the results and arguments in [14, Section 3.3], it can be shown
that Ψ(·) is well-defined and locally Lipschitz on V , and

Ψ0(u; v) ≤ I∆(ψ0(γψu; γψv)) ∀u, v ∈ V. (4.28)

Thus, (4.23) and (4.26) imply that for any v1, v2 ∈ V ,

Ψ0(v1; v2 − v1) + Ψ0(v2; v1 − v2) ≤ I∆(ψ0(γψv1; γψv2 − γψv1) + ψ0(γψv2; γψv1 − γψv2))
≤ I∆(αψ|γψ(v1 − v2)|2Rm)
≤ αψc

2
∆∥v1 − v2∥2

V , (4.29)

2
i.e., (2.5) is satisfied with αΨ = αψc∆.
11
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Theorem 4.9. Assume H(KV ), H(KΛ), H(A), H(b), H(Φ)2, H(ψ), H(f), and αΦ + αψc
2
∆ < mA.

oreover, assume either

KΛ is bounded,

r

KΛ is unbounded; KV is a subspace of V ; for any u ∈ V , Φ(u, ·) : V → R is Lipschitz continuous on
KV ; and the inf–sup condition (2.9) holds.

Then, Problem 4.8 has a solution (u, λ) ∈ KV ×KΛ and the first component u of a solution is unique.

roof. The assumption H(ψ) implies that the functional Ψ defined by (4.27) satisfies H(Ψ). Therefore, by
heorem 4.2 with κ = 1, Problem 4.1 has at least one solution (u, λ) ∈ KV ×KΛ. By (4.28), we recognize

hat (u, λ) ∈ KV ×KΛ satisfies (4.24)–(4.25).
To prove the uniqueness of the first component u of the solution, let (u1, λ1), (u2, λ2) ∈ KV ×KΛ be two

olutions of Problem 4.8. Similar to the proof of Theorem 4.2, we have the following analogue of (4.10):

⟨Au1 −Au2, u1 − u2⟩ ≤ −b(u1 − u2, λ1 − λ2)
+ I∆(ψ0(γψu1; γψu2 − γψu1) + ψ0(γψu2; γψu1 − γψu2))
+ Φ(u1, u2) − Φ(u1, u1) + Φ(u2, u1) − Φ(u2, u2),

here
−b(u1 − u2, λ1 − λ2) = b(u1, λ2 − λ1) + b(u2, λ1 − λ2) ≤ 0.

ence, by applying H(A), (4.29) and H(Φ)2,

mA∥u1 − u2∥2
V ≤ αψc

2
∆∥u1 − u2∥2

V + αΦ∥u1 − u2∥2
V .

Then, (
mA − αψc

2
∆ − αΦ

)
∥u1 − u2∥2

V ≤ 0.

ince mA − αψc
2
∆ − αΦ > 0, we conclude that u1 − u2 = 0. In other words, the first component u of the

olution is unique. ■

. An example in contact mechanics

In this section we discuss an example from contact mechanics to illustrate the application of the theoretical
esults shown in previous sections.

Consider the deformation of a deformable body whose initial configuration is a Lipschitz domain Ω ⊂ Rd

d ≤ 3). Since ∂Ω is Lipschitz continuous, the unit outward normal vector ν = (ν1, . . . , νd)T is defined a.e. on
Ω . For an Rd-valued function u on the boundary, its normal and tangential components are uν = u ·ν and
τ = u−uνν, respectively. Denote by Sd the space of second order symmetric tensors on Rd or, equivalently,

he space of symmetric matrices of order d. For an Sd-valued function σ on the boundary, we call σν = ν ·σν

nd στ = σν − σνν the normal and tangential components of σ on the boundary.
We adopt the summation convention over a repeated index. The indices i and j range between 1 and d.

The canonical inner products and norms on Rd and Sd are

u · v = uivi, |v| ≡ |v|Rd = (v · v)1/2 for all u = (ui), v = (vi) ∈ Rd,
σ : τ = σijτij , |σ| ≡ |σ|Sd = (σ : σ)1/2 for all σ = (σij), τ = (τij) ∈ Sd.
12
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To describe the contact problem, we split the boundary Γ = ∂Ω into four mutually disjoint parts:
= Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 with |Γ1| > 0, |Γ3| + |Γ4| > 0. The classical formulation of the contact problem

s to find u : Ω̄ → R3 and σ : Ω̄ → S3 such that

Div σ + f0 = 0 in Ω , (5.1)
σ = Eε(u) in Ω , (5.2)
u = 0 on Γ1, (5.3)
σν = f2 on Γ2, (5.4)

− σν ∈ ∂ψν(uν), |στ | ≤ Fb(uν), −στ = Fb(uν) uτ
|uτ |

if uτ ̸= 0 on Γ3, (5.5)

στ = 0, σν ≤ 0, uν ≤ 0, σνuν = 0 on Γ4. (5.6)

Let us briefly comment on the equations and conditions in this problem. The equilibrium equation is
epresented by (5.1) where f0 is the density of the body force. The material is assumed to be elastic and
5.2) is the constitutive law in which E represents the elasticity operator. The condition (5.3) means that the
ody is fixed on Γ1. The condition (5.4) gives a surface traction condition on Γ2, where f2 is a given density
f the applied surface traction. Two types of contact conditions are considered on two different parts, Γ3
nd Γ4, of the contact boundary. On Γ3, we have a possibly non-monotone contact condition with normal
ompliance on contact of the deformable body with a reactive foundation, described by the first part of (5.5).
he function ψν is locally Lipschitz continuous and it may be non-convex. The second and third relations of

5.5) provide a version of static Coulomb’s law of dry friction, associated with the normal contact condition;
ere Fb is a given friction bound and it is allowed to depend on the normal displacement. The two relations
re equivalent to

|στ | ≤ Fb(uν), στ · uτ + Fb(uν) |uτ | = 0 on Γ3. (5.7)

echanical interpretation of (5.5) can be found in [21]. On Γ4, we specify a frictionless unilateral contact
ondition, cf. (5.6). For more details on (5.6) the reader may consult, for instance, [22,23]. Note that the
ssumption “|Γ3| + |Γ4| > 0” allows the possibility that |Γ3| > 0 and Γ4 = ∅, or |Γ4| > 0 and Γ3 = ∅; in the
ormer case, the contact problem contains the contact condition (5.5) only, whereas in the latter case, the
ontact problem contains the contact condition (5.6) only.

The elasticity operator E :Ω × Sd → Sd is assumed to have the following properties:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a) there exists LE > 0 such that for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω ,
|E(x, ε1) − E(x, ε2)| ≤ LE |ε1 − ε2|;

(b) there exists mE > 0 such that for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω ,

(E(x, ε1) − E(x, ε2)) : (ε1 − ε2) ≥ mE |ε1 − ε2|2;
(c) E(·, ε) is measurable on Ω , for any ε ∈ Sd;
(d) E(x,0) = 0 a.e. x ∈ Ω .

(5.8)

or the potential function ψν :Γ3 × R → R, assume⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(a) ψν(·, z) is measurable on Γ3 for all z ∈ R and ψν(·, 0) ∈ L1(Γ3);
(b) ψν(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3;
(c) |∂ψν(x, z)| ≤ c (1 + |z|) for all z ∈ R, a.e. x ∈ Γ3;
(d) ψ0

ν(x, z1; z2 − z1) + ψ0
ν(x, z2; z1 − z2) ≤ αψν |z1 − z2|2

for a.e. x ∈ Γ3, all z1, z2 ∈ R with αψν ≥ 0.

(5.9)

or the friction bound Fb :Γ3 × R → R+, assume⎧⎪⎪⎨⎪⎪⎩
(a) there exists LFb

> 0 such that for all z1, z2 ∈ R, a.e. x ∈ Γ3,
|Fb(x, z1) − Fb(x, z2)| ≤ LFb

|z1 − z2|;
(b) Fb(·, z) is measurable on Γ3, for all z ∈ R; (5.10)
(c) Fb(x, z) ≥ 0 for z ∈ R and Fb(x, 0) = 0, a.e. x ∈ Γ3.

13
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The contact problem will be studied as an elliptic mixed hemivariational–variational inequality, and for
comparison, it will be also studied as an elliptic variational–hemivariational inequality. For this purpose, we
will apply a result from [16, Theorem 4.10].

Theorem 5.1. Assume H(KV ), H(A), H(Φ)2, H(ψ), H(f), and αΦ +αψc2
∆ < mA. Then there is a unique

olution to the problem

u ∈ KV , ⟨Au, v − u⟩ + Φ(u, v) − Φ(u, u) + I∆(ψ0(γψu; γψv − γψu)) ≥ ⟨f, v − u⟩ ∀ v ∈ KV .

We will use the space
V =

{
v ∈ H1(Ω ;Rd) | v = 0 on Γ1

}
(5.11)

or the displacement variable. The trace of v ∈ V on the boundary is denoted by the same symbol v. Since
Γ1| > 0, Korn’s inequality holds (cf. [24, p. 79]): for some constant c > 0,

∥v∥H1(Ω ;Rd) ≤ c ∥ε(v)∥L2(Ω ;Sd) ∀ v ∈ V.

onsequently, we can define the norm ∥v∥V = ∥ε(v)∥L2(Ω ;Sd), which is equivalent to the standard norm
v∥H1(Ω ;Rd) on V . Define a subset of V :

K = {v ∈ V | vν ≤ 0 on Γ4} . (5.12)

Let λν > 0 be the smallest eigenvalue of the eigenvalue problem

u ∈ V,

∫
Ω

ε(u) : ε(v) dx = λ

∫
Γ3

uνvν da ∀ v ∈ V,

nd let λτ > 0 be the smallest eigenvalue of the eigenvalue problem

u ∈ V,

∫
Ω

ε(u) : ε(v) dx = λ

∫
Γ3

uτ · vτ da ∀ v ∈ V.

hen we have the trace inequalities

∥vν∥L2(Γ3) ≤ λ−1/2
ν ∥v∥V ∀ v ∈ V, (5.13)

∥vτ∥L2(Γ3;Rd) ≤ λ−1/2
τ ∥v∥V ∀ v ∈ V. (5.14)

tudy of the contact problem as an elliptic variational–hemivariational inequality. In the deriva-
ion of the elliptic variational–hemivariational inequality for the contact problem defined by (5.1)–(5.6), we
ssume that there is a smooth function u ∈ V such that (5.1)–(5.6) hold pointwise. For any smooth function
∈ V , we multiply (5.1) by (v − u), integrate over Ω , and perform an integration by parts to obtain

−
∫
Γ

σν · (v − u) da+
∫
Ω

σ : ε(v − u) dx =
∫
Ω

f0 · (v − u) dx. (5.15)

By applying the boundary conditions (5.3) and (5.4), we have

−
∫
Γ

σν · (v − u) da = −
∫
Γ2

f2 · (v − u) da−
∫
Γ3

σν · (v − u) da−
∫
Γ4

σν · (v − u) da.

To apply the boundary conditions (5.5) and (5.6), we write

σν · (v − u) = σ (v − u ) + σ · (v − u ).
ν ν ν τ τ τ

14
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w

On Γ3, by (5.5), we have

−σν(vν − uν) ≤ ψ0
ν(uν ; vν − uν),

−στ · (vτ − uτ ) ≤ Fb(uν) (|vτ | − |uτ |) ,

here the second inequality can be easily derived by making use of (5.7). Hence,

−
∫
Γ3

σν · (v − u) da ≤
∫
Γ3

[
ψ0
ν(uν ; vν − uν) + Fb(uν) (|vτ | − |uτ |)

]
da.

By applying the boundary condition (5.6),

−
∫
Γ4

σν · (v − u) da = −
∫
Γ4

σν(vν − uν) da ≤ 0, (5.16)

where we use the relations σνuν = 0 and σνvν ≥ 0 on Γ4. Summarizing, we arrive at the following
variational–hemivariational inequality: find a displacement field u ∈ K such that

⟨Au,v − u⟩ +
∫
Γ3

[
ψ0
ν(uν ; vν − uν) + Fb(uν) (|vτ | − |uτ |)

]
da

≥ ⟨f ,v − u⟩V ∗×V ∀ v ∈ K, (5.17)

where the operator A :V → V ∗ and the functional f ∈ V ∗ are defined by

⟨Au,v⟩ =
∫
Ω

E(ε(u)) : ε(v) dx ∀ u,v ∈ V, (5.18)

⟨f ,v⟩V ∗×V =
∫
Ω

f0 · v dx+
∫
Γ2

f2 · v da ∀ v ∈ V. (5.19)

Let us apply Theorem 5.1 to the inequality (5.17). Take KV = K, defined in (5.12). Obviously, H(KV )
is valid. Define the functional Φ by

Φ(u,v) =
∫
Γ3

Fb(uν) |vτ | da ∀ u,v ∈ V. (5.20)

By (5.8), A :V → V ∗ is Lipschitz continuous and is strongly monotone with

⟨Av1 −Av2,v1 − v2⟩ ≥ mE∥v1 − v2∥2
V ∀ v1,v2 ∈ V.

We take ∆ = Γ3, ψ = ψν , γψ as the normal trace operator:

γψv = vν ∀ v ∈ V,

m = 1 and Vψ = L2(Γ3). We have c2
∆ = λ−1

ν from (5.13). For any u1,u2,v1,v2 ∈ V ,

Φ(u1,v2) − Φ(u1,v1) + Φ(u2,v1) − Φ(u2,v2)

=
∫
Γ3

(Fb(u1,ν) − Fb(u2,ν)) (|v2,τ | − |v1,τ |) da

≤ LFb

∫
Γ3

|u1,ν − u2,ν | |v1,τ − v2,τ | da

≤ LFb
∥u1,ν − u2,ν∥L2(Γ3)∥v1,τ − v2,τ∥L2(Γ3)d

≤ LFb
λ−1/2
ν λ−1/2

τ ∥u1 − u2∥V ∥v1 − v2∥V .

−1/2 −1/2
So (4.3) holds with αΦ = LFb
λν λτ .

15



W. Han and A. Matei Nonlinear Analysis: Real World Applications 66 (2022) 103553

t

S
n
p

h

T

S
T
o

e

A

N

T

T

Applying Theorem 5.1, we see that under the stated assumptions on the data and the smallness condition

LFb
λ−1/2
ν λ−1/2

τ + αψνλ
−1
ν < mE , (5.21)

he variational–hemivariational inequality (5.17) has a unique solution u ∈ KV .

tudy of the contact problem as an elliptic mixed variational–hemivariational inequality. We
ow turn to a mixed hemivariational–variational inequality for the contact problem. For simplicity, in this
art of the paper, we assume Ω is a C1,1 domain so that the unit outward normal vector ν is Lipschitz

continuous on the boundary Γ . We choose λ = −σν on Γ4 as the Lagrangian multiplier for the mixed
emivariational–variational inequality of the contact problem. For this purpose, we first introduce the space

Z =
{
z ∈ L2(Γ4) | z = vν a.e. on Γ4 for some v ∈ V

}
. (5.22)

his is a Hilbert space with the norm

∥z∥Z = inf {∥v∥V | z = vν a.e. on Γ4} . (5.23)

ince Ω is a C1,1 domain, the normal trace operator v ↦→ vν is surjective from H1(Ω ;Rd) to H1/2(Γ ) (cf. [25,
heorem 5.5]). So in the case Γ1 ∩ Γ4 = ∅, we may simply view the space Z as the restriction of H1/2(Γ )
ver Γ4.

We then introduce the dual space of Z:
Λ = Z∗ (5.24)

ndowed with the ordinary dual norm

∥µ∥Λ = sup
z∈Z

⟨µ, z⟩Λ×Z

∥z∥Z
. (5.25)

s usual, the duality ⟨µ, z⟩Λ×Z extends the L2(Γ4) inner product, i.e.,

⟨µ, z⟩Λ×Z =
∫
Γ4

µ z da for µ ∈ L2(Γ4), z ∈ Z.

Now we define the bilinear form

b(v, µ) = ⟨µ, vν⟩Λ×Z , v ∈ V, µ ∈ Λ. (5.26)

ote that if λ = −σν ∈ L2(Γ4), then

b(v, λ) = −
∫
Γ4

σνvν da for v ∈ V.

he continuity of the bilinear form b is readily seen:

|b(v, µ)| ≤ ∥µ∥Λ∥vν∥Z ≤ ∥µ∥Λ∥v∥V ∀ v ∈ V, µ ∈ Λ.

o establish the inf–sup condition for the bilinear form b, let us first prove that the infimum in the definition
of the norm ∥z∥Z in (5.23) can be achieved.

Lemma 5.2. For any z ∈ Z,

inf {∥v∥ | z = v a.e. on Γ } = min {∥v∥ | z = v a.e. on Γ } . (5.27)
V ν 4 V ν 4
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Proof. For any given z ∈ Z, denote

α = inf {∥v∥V | z = vν a.e. on Γ4} .

hen there is a sequence {vn} ⊂ V such that vn,ν = z on Γ4 and ∥vn∥V → α as n → ∞.
Since {vn} is a bounded sequence in the Hilbert space V , we have a subsequence, still denoted as {vn},

nd an element v0 ∈ V such that
vn ⇀ v0 in V.

ue to the l.s.c. of the norm (cf. [18, Exercise 3.3.6]),

∥v0∥V ≤ lim inf ∥vn∥V = α.

y the definition of α, we must have
∥v0∥V = α.

he two properties vn ⇀ v in V and ∥vn∥V → ∥v0∥V imply (cf. [18, Exercise 2.7.3])

vn → v0 in V.

n particular, since vn,ν = z on Γ4, we also have v0,ν = z on Γ4. In other words, the infimum on the left side
f (5.27) is achieved at the element v0. ■

Return to the definition (5.25) for the norm ∥µ∥Λ. For any z ∈ Z, by Lemma 5.2, we have the existence
f vz ∈ V with vz,ν = z on Γ4 such that ∥z∥Z = ∥vz∥V . Then,

∥µ∥Λ = sup
z∈Z

⟨µ, z⟩Λ×Z

∥z∥Z
= sup
z∈Z

⟨µ, vz,ν⟩Λ×Z

∥vz∥V
.

hus,
∥µ∥Λ ≤ sup

v∈V

⟨µ, vν⟩Λ×Z

∥v∥V
= sup

v∈V

b(v, µ)
∥v∥V

,

.e., the inf–sup condition for the bilinear form b holds, with the constant αb = 1 in (2.9).
Further, introduce a subset of Λ:

KΛ = {µ ∈ Λ | ⟨µ, vν⟩ ≤ 0 ∀ v ∈ V, vν ≤ 0 on Γ4} . (5.28)

In the derivation of the mixed hemivariational–variational inequality, instead of (5.16), we write

−
∫
Γ4

σν · (v − u) da = −
∫
Γ4

σν(vν − uν) da = b(v − u, λ).

Moreover, for any µ ∈ KΛ, we note that

b(u, µ− λ) =
∫
Γ4

uν(µ− λ) da =
∫
Γ4

uνµda ≤ 0.

Hence, the mixed formulation for the contact problem (5.1)–(5.6) is to find (u, λ) ∈ V ×KΛ such that

⟨Au,v − u⟩ + b(v − u, λ) +
∫
Γ3

[
ψ0
ν(uν ; vν − uν) + Fb(uν) (|vτ | − |uτ |)

]
da

≥ ⟨f ,v − u⟩V ∗×V ∀ v ∈ V, (5.29)
b(u, µ− λ) ≤ 0 ∀µ ∈ KΛ, (5.30)

where A :V → V ∗ is defined by (5.18) and f ∈ V ∗ is defined by (5.19).

17
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Let us apply Theorem 4.9 with KV = V , KΛ defined by (5.28), Φ defined by (5.20), b :V ×Λ → R defined
by (5.26), and the functional f defined by f . Obviously, H(KV ) and H(KΛ) hold. We already know that
A :V → V ∗ is Lipschitz continuous and is strongly monotone with the monotonicity constant mE . Moreover,
we have verified the continuity and the inf–sup condition for the bilinear form b :V ×Λ → R. We take ∆ = Γ3,

= ψν , γψ as the normal trace operator:

γψv = vν ∀ v ∈ V,

= 1 and Vψ = L2(Γ3). As previously, H(Φ)2 and H(ψ) are valid, c2
∆ = λ−1

ν , and αΦ = LFb
λ

−1/2
ν λ

−1/2
τ .

By Theorem 4.9, under the stated assumptions on the data and the smallness condition (5.21), the mixed
emivariational–variational inequality (5.29)–(5.30) has a solution (u, λ) ∈ V ×KΛ, and the first component
of the solution is unique.
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