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a b s t r a c t

This paper is devoted to a well-posedness analysis of elliptic variational–hemivariational
inequalities in Banach spaces. The differential operator associated with the variational–
hemivariational inequality is assumed to be strongly monotone of a general order,
in contrast to that in the majority of existing references on this subject where the
differential operator is assumed to be strongly monotone of order 2. Moreover, the so-
lution existence is proved with an approach more accessible to applied mathematicians
and engineers, instead of through an abstract surjectivity result for pseudomonotone
operators in existing references. Equivalent minimization principles are established
for certain variational–hemivariational inequalities, which are valuable for developing
efficient numerical algorithms. The theoretical results are applied to the analysis of a
mixed hemivariational inequality in the study of a generalized Newtonian fluid flow
problem involving a nonsmooth slip boundary condition of friction type. Existence
and uniqueness of both the velocity and pressure unknowns are shown for the mixed
hemivariational inequalities.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Similar to variational inequalities, hemivariational inequalities play an important role in modeling and studying
onlinear, nonsmooth problems in applications. Variational inequalities refer to inequality problems in which non-smooth
erms have a convex structure, whereas hemivariational inequalities are inequality problems in which non-smooth
erms are allowed to be non-convex. Rigorous mathematical analysis on variational inequalities began in the 1960s, and
he theory of variational inequalities forms a pretty mature area. Interest in hemivariational inequalities was started
y Panagiotopoulos in the early 1980s [1], in responding to the need of modeling and solving engineering problems
nvolving non-smooth, non-monotone or set-valued relations among physical quantities. Recent years have witnessed
xplosive growth in the literature on modeling, analysis, numerical approximation and simulations, and applications
f hemivariational inequalities, or more generally, of variational–hemivariational inequalities. In this paper, the two
erms ‘‘hemivariational inequalities’’ and ‘‘variational–hemivariational inequalities’’ are used interchangeably. Variational–
emivariational inequalities have the features of both variational inequalities and hemivariational inequalities, i.e., both
onvex and non-convex non-smooth terms are present in such problems. For two recent representative references, we
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refer to [2] on theoretical analysis and to [3] on numerical analysis of variational–hemivariational inequalities. The latter
reference employs the finite element method for the spatial discretization; other numerical methods have also been used
for the spatial discretization, cf. [4–6] on the analysis of the virtual element method for solving such problems.

In general, variational–hemivariational inequalities do not correspond to minimization principles. Nevertheless, in [7],
inimization principles are shown for some particular variational–hemivariational inequalities. A further step is taken

n [8] where solution existence and uniqueness are proved for general variational–hemivariational inequalities start-
ng with the results in [7]. The ‘‘standard’’ technique to prove the solution existence for variational–hemivariational
nequalities is through applications of abstract surjectivity results for pseudomonotone operators (e.g., [2] and the
eferences therein). The alternative approach presented in [8] on the study of variational–hemivariational inequalities
voids referencing to pseudomonotone operators and the related abstract surjectivity results, and is more accessible for
pplied mathematicians and engineers. Additional references in this regard include [9–11]. The well-posedness theories
eveloped in the majority of the literature on variational–hemivariational inequalities are for the case of a strongly
onotone operator of order 2 (e.g., [2,8,12,13]) and are thus essentially in the setting of Hilbert spaces. In this paper,
e extend the alternative approach to study variational–hemivariational inequalities with a strongly monotone operator
f a general order p > 1 which is genuinely in a Banach space setting. As an example of applications of the theoretical
esults, we study a generalized Newtonian fluid flow problem subject to a non-smooth slip boundary condition.

Early references on mathematical models for viscous incompressible Newtonian fluid flows involving nonsmooth slip or
eak boundary conditions are [14,15]. Further studies of such problems can be found in numerous references, e.g., [16,17]
n variational inequalities governed by the Stokes equations, and [18,19] on variational inequalities governed by the
avier–Stokes equations. In these references, the slip and leak boundary conditions are expressed by monotone relations
etween physical quantities, and thus the mathematical formulations of the problems are in the form of variational
nequalities. When the nonsmooth boundary conditions involve non-monotone relations between physical quantities,
he mathematical formulations become hemivariational inequalities, cf. [20–23]. Mixed finite element methods have been
tudied for the numerical solution of a stationary hemivariational inequality of the Stokes equations with the slip boundary
ondition in [24], and for that of the Navier–Stokes equations in [25]. Recently, hemivariational inequalities arising in
on-Newtonian or generalized Newtonian fluid flow problems have been studied in several papers, cf. [26–28]. In a non-
ewtonian fluid, the viscosity depends on the unknown solution. Non-Newtonian fluids are found in various industrial
nd engineering applications, cf. [29,30] and more recently [31].
Let us briefly summarize the main novelty of this paper. We provide a well-posedness analysis of elliptic variational–

emivariational inequalities in Banach spaces, starting with minimization principles for a special variational–hemivariation
nequality. With applications in mind, we provide additional theoretical results that are not explored by other researchers
Theorems 4.1 and 4.4). These results are new and are presented in a way more accessible to applied mathematicians
nd engineers. The minimization principles are of independent importance, especially when the numerical solution of
ariational–hemivariational inequalities is concerned. In the study of the variational–hemivariational inequalities for the
eneralized Newtonian fluid flow problem with a non-smooth slip boundary condition of friction type, we provide not
nly the existence and uniqueness of the velocity variable, but also that of the pressure variable that is not available in
he existing literature.

The rest of the paper is organized as follows. In Section 2, we review definitions and basic properties of the generalized
irectional derivative and generalized subdifferential in the sense of Clarke, and provide a detailed discussion of operators
f strong monotonicity of a general order p > 1 in a Banach space. In Section 3, we consider an elliptic variational–
emivariational inequality in a reflexive Banach space, and prove the solution existence and uniqueness of the problem
hrough the study of an equivalent minimization principle. In Section 4, we introduce variants of the results in Section 3
hich are more relevant to applications, and extend the results to more general elliptic variational–hemivariational

nequalities in a reflexive Banach space. In Section 5, we apply the theory developed in previous sections to the study of
he steady incompressible generalized Newtonian fluid flow problem subject to non-smooth slip boundary conditions of
riction type.

. Preliminaries

This section consists of two parts. The first part provides a brief review of the generalized directional derivative and
eneralized subdifferential in the sense of Clarke. The second part discusses the strong convexity for functionals on a
anach space.
We first briefly recall the notions and basic properties of the generalized directional derivative and generalized

ubdifferential in the sense of Clarke [32,33]. Let V be a real Banach space. Denote by V ∗ the dual space of V , and by
⟨·, ·⟩ the duality pairing between V ∗ and V . For a locally Lipschitz continuous functional Ψ : V → R defined on V , the
eneralized (Clarke) directional derivative of Ψ at u ∈ V in the direction v ∈ V is

Ψ 0(u; v) := lim sup
w→u, λ↓0

Ψ (w + λv) − Ψ (w)
λ

.

Then, the generalized subdifferential of Ψ at u ∈ V is defined as a subset of V ∗:

∂Ψ (u) :=
{
u∗

∈ V ∗
| Ψ 0(u; v) ≥ ⟨u∗, v⟩ ∀ v ∈ V

}
.

2
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Some basic properties needed later are stated below. Details of the generalized directional derivative and the
eneralized subdifferential can be found in [33].

roposition 2.1. Let V be a real Banach space.
(i) For a locally Lipschitz continuous functional Ψ : V → R,

Ψ 0(u; v) = max
{
⟨u∗, v⟩ | u∗

∈ ∂Ψ (u)
}

∀ u, v ∈ V . (2.1)

(ii) Let Ψ ,Ψ1,Ψ2 : V → R be locally Lipschitz continuous. Then ∂(λΨ )(u) = λ ∂Ψ (u) for all λ ∈ R and all u ∈ V . Moreover,
the inclusion

∂(Ψ1 + Ψ2)(u) ⊂ ∂Ψ1(u) + ∂Ψ2(u) ∀ u ∈ V (2.2)

holds. This inclusion relation is equivalent to the inequality

(Ψ1 + Ψ2)0(u; v) ≤ Ψ 0
1 (u; v) + Ψ 0

2 (u; v) ∀ u, v ∈ V . (2.3)

(iii) If Ψ : V → R is locally Lipschitz continuous and convex, then the subdifferential ∂Ψ (u) at any u ∈ V in the sense of
Clarke coincides with the convex subdifferential ∂Ψ (u).

Because of Proposition 2.1 (iii), we use the same symbol ∂ to denote the subdifferential operator in the sense of Clarke
as well as that in convex analysis.

Next, we discuss about strong convexity of functionals, strong monotonicity of operators, both of a general order
p ∈ (0,∞). The presentation of this part extends that in [34] where notions of strong convexity and strong monotonicity
of order 2 are discussed. For convenience, we provide detailed arguments of the results.

Definition 2.2. An operator A : V → V ∗ is said to be strongly monotone of order p if there exists a constant mA > 0 such
that

⟨Av1 − Av2, v1 − v2⟩ ≥ mA∥v1 − v2∥
p
V ∀ v1, v2 ∈ V . (2.4)

Definition 2.3. A functional Φ : V → R is said to be strongly convex of order p if there exists a constant mΦ > 0 such
that

Φ(λ u + (1 − λ) v) ≤ λΦ(u) + (1 − λ)Φ(v) − mΦλ (1 − λ) ∥u − v∥
p
V ∀ u, v ∈ V , ∀ λ ∈ [0, 1]. (2.5)

Proposition 2.4. Assume (2.5). Then

Φ(v) −Φ(u) ≥ ⟨u∗, v − u⟩ + mΦ∥v − u∥p
V ∀ u, v ∈ V , ∀ u∗

∈ ∂Φ(u). (2.6)

Proof. We switch u and v in (2.5) to obtain

Φ(u) −Φ(v) +
1
λ
[Φ(u + λ (v − u)) −Φ(u)] ≤ −mΦ (1 − λ) ∥v − u∥p

V ∀ λ ∈ (0, 1].

he condition (2.5) implies that Φ is convex and is bounded above on a non-empty open set in V ; thus, Φ is locally
Lipschitz continuous on V (cf. [35, Corollary 2.4, p. 12]). Take the upper limit as λ → 0+ in the previous inequality,

Φ(u) −Φ(v) +Φ0(u; v − u) ≤ −mΦ∥v − u∥p
V ,

.e.,

Φ(v) −Φ(u) ≥ Φ0(u; v − u) + mΦ∥v − u∥p
V . (2.7)

hanks to the property (2.1), we deduce the inequality (2.6) from (2.7). ■

orollary 2.5. A functional strongly convex of order p > 1 is coercive.

roof. Assume Φ : V → R is strongly convex. Choose an element u0 ∈ V and u∗

0 ∈ ∂Φ(u0). Then by Proposition 2.4,

Φ(v) ≥ m ∥v − u ∥
p

+ ⟨u∗, v − u ⟩ +Φ(u ) ∀ v ∈ V .
Φ 0 V 0 0 0

3
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Hence,

Φ(v) ≥ mΦ | ∥v∥V − ∥u0∥V |
p
− ∥u∗

0∥V∗ (∥v∥V + ∥u0∥V )+Φ(u0)

≥
1
2
mΦ∥v∥

p
V − c1∥v∥V − c2

or some constants c1, c2 ∈ R. So Φ(·) is coercive on V . ■

Proposition 2.6. Assume (2.6). Then we have a modified version of (2.5):

Φ(λ u + (1 − λ) v) ≤ λΦ(u) + (1 − λ)Φ(v) − mΦcpλ (1 − λ) ∥u − v∥
p
V ∀ u, v ∈ V , ∀ λ ∈ [0, 1]. (2.8)

here

cp =

{
22−p if p ∈ (0, 1] ∪ (2,∞),
1 if p ∈ (1, 2]. (2.9)

roof. Let ξ ∈ ∂Φ(λ u + (1 − λ) v). Then from (2.6),

Φ(u) −Φ(λ u + (1 − λ) v) ≥ (1 − λ) ⟨ξ, u − v⟩ + mΦ (1 − λ)p ∥u − v∥
p
V ,

Φ(v) −Φ(λ u + (1 − λ) v) ≥ λ ⟨ξ, v − u⟩ + mΦλ
p
∥u − v∥

p
V .

We multiply the first inequality by λ, multiply the second inequality by (1− λ), and add the two resulting inequalities to
obtain

λΦ(u) + (1 − λ)Φ(v) −Φ(λ u + (1 − λ) v) ≥ mΦλ (1 − λ) gp(λ) ∥v − u∥p
V , (2.10)

here

gp(λ) = λp−1
+ (1 − λ)p−1 , λ ∈ (0, 1).

hrough elementary calculations, it can be shown that

inf
{
gp(λ) | 0 < λ < 1

}
= cp.

hen (2.8) follows from (2.10) for λ ∈ (0, 1) and the observation that (2.8) is obvious for λ = 0, 1. ■

roposition 2.7. Assume (2.6). Then

⟨u∗
− v∗, u − v⟩ ≥ 2mΦ∥u − v∥

p
V ∀ u, v ∈ V , ∀ u∗

∈ ∂Φ(u), v∗
∈ ∂Φ(v). (2.11)

roof. For any u, v ∈ V and any u∗
∈ ∂Φ(u), v∗

∈ ∂Φ(v), we have from (2.6) that

Φ(v) −Φ(u) ≥ ⟨u∗, v − u⟩ + mΦ∥v − u∥p
V ,

Φ(u) −Φ(v) ≥ ⟨v∗, u − v⟩ + mΦ∥u − v∥
p
V .

dding these two inequalities, we obtain (2.11). ■

roposition 2.8. Assume (2.11). Then we have a modified version of (2.6):

Φ(v) −Φ(u) ≥ ⟨u∗, v − u⟩ +
2
p
mΦ∥v − u∥p

V ∀ u, v ∈ V , ∀ u∗
∈ ∂Φ(u). (2.12)

Proof. For fixed u, v ∈ V , consider the function

g(λ) = Φ(λ v + (1 − λ) u), 0 ≤ λ ≤ 1.

Assumption (2.11) implies the convexity of g . By [36, Theorem 2.3.4],

Φ(v) −Φ(u) = g(1) − g(0) = ⟨u∗, v − u⟩ +

∫ 1

0
⟨ξλ − ξ0, v − u⟩ dλ,

where u∗
= ξ0 ∈ ∂Φ(u) and ξλ ∈ ∂Φ(λ v + (1 − λ) u). Denote w = λ v + (1 − λ) u. Then,

w − u = λ (v − u)

and

⟨ξλ − ξ0, v − u⟩ =
1

⟨ξλ − ξ0, w − u⟩.

λ

4
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Apply the condition (2.11),

⟨ξλ − ξ0, w − u⟩ ≥ 2mΦ∥w − u∥p
V = 2mΦλ

p
∥v − u∥p

V .

ence,

Φ(v) −Φ(u) ≥ ⟨ξ0, v − u⟩ +

∫ 1

0
2mΦλ

p−1
∥v − u∥p

Vdλ

= ⟨ξ0, v − u⟩ +
2
p
mΦ∥v − u∥p

V .

Therefore, (2.12) holds. ■

We end the section with a summarizing result on the strong convexity of a general order p.

Theorem 2.9. Let V be a real Banach space, Φ : V → R, and p ∈ (0,∞). If (2.11) holds, then Φ is strongly convex of order
over V .

roof. By Proposition 2.8, the assumption (2.11) implies (2.12). By Proposition 2.6, the following inequality holds for any
, v ∈ V and any λ ∈ [0, 1],

Φ(λ u + (1 − λ) v) ≤ λΦ(u) + (1 − λ)Φ(v) −
2
p
mΦcpλ (1 − λ) ∥u − v∥

p
V .

hus, Φ is strongly convex of order p over V . ■

. A variational–hemivariational inequality in a reflexive banach space and a minimization principle

In this and the next sections, we will make the following assumption.
(K ): V is a real reflexive Banach space, K ⊂ V is non-empty, closed and convex.
From now on, the range of the order p is limited to (1,∞). Consider the following variational–hemivariational

inequality.

Problem 3.1. Find an element u ∈ K such that

⟨Au, v − u⟩ +Φ(v) −Φ(u) + Ψ 0(u; v − u) ≥ ⟨f , v − u⟩ ∀ v ∈ K . (3.1)

We will consider the case where A is a potential operator; note that this is a dominant case for applications in physical
sciences and engineering. Recall that A is a potential operator if A = F ′

A is the Gâteaux derivative of a functional FA : V → R.
The functional FA is known as a potential of A, and we will use the symbol FA for the potential of A. Given a potential
operator A, its potential functional FA is not unique and the difference between any two potential functionals is a constant.
The formula

FA(v) =

∫ 1

0
⟨A(t v), v⟩ dt (3.2)

provides one potential functional. Discussions of potential operators can be found in [37, Section 41.3].
The assumptions on the data are as follows.

H(A): A : V → V ∗ is a locally Lipschitz potential operator and is strongly monotone of order p > 1 over V :

⟨Av1 − Av2, v1 − v2⟩ ≥ mA∥v1 − v2∥
p
V ∀ v1, v2 ∈ V . (3.3)

H(Φ): Φ : V → R is convex and continuous.
H(Ψ ): Ψ : V → R is locally Lipschitz, and for a constant mΨ ≥ 0,

Ψ 0(v1; v2 − v1) + Ψ 0(v2; v1 − v2) ≤ mΨ ∥v1 − v2∥
p
V ∀ v1, v2 ∈ V . (3.4)

H(f ): f ∈ V ∗.
H(s): mΨ < mA.

Let us make some comments on the assumption H(Φ). In the literature, the convex function Φ is usually assumed to
be proper and l.s.c. from V to R ∪ {+∞}. By redefining the constraint set K to reflect the effective domain of Φ , we may
restrict our attention to the case where the symbol Φ represents a real-valued function on V . By [35, Corollary 2.5, p. 13],
a real-valued l.s.c. convex function on a Banach space is continuous. Moreover, from [35, Corollary 2.4, p. 12], we know
that the convex function Φ : V → R is continuous if and only if it is locally Lipschitz continuous, and if and only if it is
bounded above on a non-empty open set in V .
5
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By an argument similar to that found on page 124 in [2], it can be shown that (3.4) is equivalent to

⟨η1 − η2, v1 − v2⟩ ≥ −mΨ ∥v1 − v2∥
p
V ∀ vi ∈ V , ηi ∈ ∂Ψ (vi), i = 1, 2. (3.5)

In the literature, a condition of the form H(s) is called a smallness condition.
Corresponding to Problem 3.1, we introduce a minimization problem.

Problem 3.2. Find an element u ∈ K such that

E(u) = inf {E(v) | v ∈ K } , (3.6)

here the energy functional

E(v) = FA(v) +Φ(v) + Ψ (v) − ⟨f , v⟩. (3.7)

We first provide a result on the local Lipschitz continuity of the potential FA. For r > 0, we denote by Br (0) the closed
all in V with radius r centered at 0.

emma 3.3. If A : V → V ∗ is locally Lipschitz continuous, then the potential FA : V → R is locally Lipschitz continuous.

roof. Fix a positive number r > 0. Then there is a number cr > 0 such that

∥Au − Av∥V∗ ≤ cr∥u − v∥V ∀ u, v ∈ Br (0).

or any u, v ∈ Br (0),

FA(u) − FA(v) =

∫ 1

0

d
ds

FA(v + s (u − v)) ds

=

∫ 1

0
⟨A(v + s (u − v)), u − v⟩ ds

=

∫ 1

0
⟨A(v + s (u − v)) − A(0), u − v⟩ ds + ⟨A(0), u − v⟩.

hen,

|FA(u) − FA(v)| ≤ (cr r + ∥A(0)∥V∗) ∥u − v∥V .

ence, FA : V → R is locally Lipschitz continuous. ■

heorem 3.4. Assume H(K ), H(A), H(Φ), H(Ψ ), H(f ) and H(s). Then Problem 3.2 and Problem 3.1 are equivalent, and both
dmit the same unique solution u ∈ K . The solution u depends Hölder-continuously on f ; more precisely, if u1, u2 ∈ V are the
olutions of Problem 3.1 corresponding to f = f1 ∈ V ∗ and f = f2 ∈ V ∗, then

∥u1 − u2∥V ≤ (mA − mΨ )−1/(p−1)
∥f1 − f2∥

1/(p−1)
V∗ . (3.8)

roof. First, we show that Problem 3.2 has a unique solution. Under the stated assumptions, we know that the functional
: V → R is locally Lipschitz continuous; the local Lipschitz continuity property of FA follows from Lemma 3.3, while that
or Φ follows from H(Φ) and properties of convex functions ([35, Chapter I, Section 2.3]). Applying Proposition 2.1, we
ave

∂E(v) ⊂ Av + ∂Φ(v) + ∂Ψ (v) − f .

o for vi ∈ V , ζi ∈ ∂E(vi), i = 1, 2, we can write

ζi = Avi + ξi + ηi − f , i = 1, 2,

here ξi ∈ ∂Φ(vi), ηi ∈ ∂Ψ (vi). Then

⟨ζ1 − ζ2, v1 − v2⟩ = ⟨Av1 − Av2, v1 − v2⟩ + ⟨ξ1 − ξ2, v1 − v2⟩ + ⟨η1 − η2, v1 − v2⟩.

ince Φ is convex, ⟨ξ1 − ξ2, v1 − v2⟩ ≥ 0. Applying (3.3) and (3.5), we have

⟨ζ1 − ζ2, v1 − v2⟩ ≥ mA∥v1 − v2∥
p
V + 0 − mΨ ∥v1 − v2∥

p
V = (mA − mΨ ) ∥v1 − v2∥

p
V . (3.9)

ote that by H(s), mA−mΨ > 0. Thus, by Theorem 2.9, the functional E is strongly convex of order p. Moreover, under the
tated assumptions on the data, E is continuous. Hence, by a standard result on convex minimization (cf. e.g. [38, Section
.3]), Problem 3.2 has a unique solution.
6
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Denote by

IK (v) =

{
0, v ∈ K ,
+∞, v ̸∈ K

the indicator functional of K . It is known that IK : V → R is proper, convex and l.s.c. The solution u ∈ K of Problem 3.2
satisfies

0 ∈ ∂ (E(u) + IK (u)) ⊂ Au + ∂Φ(u) + ∂ IK (u) + ∂Ψ (u) − f .

hen,

⟨Au, v − u⟩ +Φ(v) −Φ(u) + Ψ 0(u; v − u) ≥ ⟨f , v − u⟩ ∀ v ∈ K .

hus, the solution u ∈ K of Problem 3.2 is also a solution of Problem 3.1. Suppose ũ ∈ K is another solution of Problem 3.1.
hen,

⟨Aũ, v − ũ⟩ +Φ(v) −Φ(ũ) + Ψ 0(ũ; v − ũ) ≥ ⟨f , v − ũ⟩ ∀ v ∈ K . (3.10)

ake v = ũ in (3.1), take v = u in (3.10), and add the two inequalities to obtain

⟨Aũ − Au, ũ − u⟩ ≤ Ψ 0(ũ; u − ũ) + Ψ 0(u; ũ − u).

y H(A) and H(Ψ ),

mA∥ũ − u∥p
V ≤ mΨ ∥ũ − u∥p

V .

ince mA > mΨ , the above inequality is possible only if ∥ũ − u∥V = 0, i.e., ũ = u. So a solution of Problem 3.1 is unique.
In conclusion, under the stated assumptions, both Problem 3.2 and Problem 3.1 have u ∈ K as the unique solution,

nd therefore, the two problems are equivalent.
Finally, let us prove (3.8). Take v = u2 in the defining inequality (3.1) for u1 to obtain

⟨Au1, u2 − u1⟩ +Φ(u2) −Φ(u1) + Ψ 0(u1; u2 − u1) ≥ ⟨f1, u2 − u1⟩.

imilarly,

⟨Au2, u1 − u2⟩ +Φ(u1) −Φ(u2) + Ψ 0(u2; u1 − u2) ≥ ⟨f2, u1 − u2⟩.

dd the two inequalities,

⟨Au1 − Au2, u1 − u2⟩ ≤ Ψ 0(u1; u2 − u1) + Ψ 0(u2; u1 − u2) + ⟨f1 − f2, u1 − u2⟩. (3.11)

pply the conditions (3.3) and (3.4) to the above inequality,

mA∥u1 − u2∥
p
V ≤ mΨ ∥u1 − u2∥

p
V + ∥f1 − f2∥V∗∥u1 − u2∥V .

o

(mA − mΨ ) ∥u1 − u2∥
p−1
V ≤ ∥f1 − f2∥V∗

rom which we deduce (3.8). ■

We comment that in [28], a solution existence and uniqueness result for Problem 3.1 is proved under somewhat
ifferent assumptions: instead of H(A), it is assumed that A : V → V ∗ is pseudomonotone and strongly monotone of
rder p > 1, and an additional assumption is made on the growth of the subdifferential ∂Ψ . The proof there is achieved
hrough an application of an abstract surjectivity result for pseudomonotone operators. For applications, we usually need
variant of Theorem 3.4, cf. Theorem 4.1 next section.

. Variant and generalization

In some applications (cf. Section 5), we need a variant of the theory developed in Section 3. This need is based on the
bservation that in the assumption (3.4) on Ψ , the exponent p is typically 2, even for problems where the operator A is
trongly monotone of a general order p > 1. In other words, Theorem 3.4 is not directly applicable because of a mismatch
etween the two exponents in (3.3) and (3.4) when the norm in the original space V is used. To deal with this issue, in
ddition to the reflexive Banach space V , we introduce another reflexive Banach space V1 such that V is continuously
mbedded in V1. The strong convexity assumption on the operator A : V → V ∗ will be made over the space V1 instead
f V . In this section, the duality pairing between V ∗ and V will be indicated by the full notation ⟨·, ·⟩V∗×V . Also, to avoid
otential confusion, we use p1 ∈ (1,∞) to denote the order of the strong convexity of A : V → V ∗ over V1. Specifically,
e replace H(K ), H(A), H(Ψ ) and H(f ) by the following:
(K )1: V and V1 are real reflexive Banach spaces with V continuously embedded in V1, and K ⊂ V is non-empty, closed
nd convex.
7
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A

H(A)1: A : V → V ∗ is a locally Lipschitz potential operator and is strongly monotone of order p1 > 1 over V1:

⟨Av1 − Av2, v1 − v2⟩V∗×V ≥ mA∥v1 − v2∥
p1
V1

∀ v1, v2 ∈ V . (4.1)

H(Ψ )1: Ψ : V → R is locally Lipschitz, and for a constant mΨ ≥ 0,

Ψ 0(v1; v2 − v1) + Ψ 0(v2; v1 − v2) ≤ mΨ ∥v1 − v2∥
p1
V1

∀ v1, v2 ∈ V . (4.2)

H(f )1: f ∈ V ∗

1 .
A modification of Theorem 3.4 is the next result.

Theorem 4.1. Assume H(K )1, H(A)1, H(Φ), H(Ψ )1, H(f )1 and H(s). Then Problems 3.2 and 3.1 are equivalent, and both admit
the same unique solution u ∈ K . For f1, f2 ∈ V ∗

1 and the corresponding solutions u1, u2 ∈ V of Problem 3.1,

∥u1 − u2∥V1 ≤ (mA − mΨ )−1/(p1−1)
∥f1 − f2∥

1/(p1−1)
V∗
1

.

Since V is continuously embedded in V1, we may view V ∗

1 as a subspace of V ∗. The proof of Theorem 3.4 can be adapted
for the proof of Theorem 4.1 when we replace (3.9) by

⟨ζ1 − ζ2, v1 − v2⟩V∗×V ≥ (mA − mΨ ) ∥v1 − v2∥
p1
V1
.

We comment that Theorem 3.4 may be viewed as a special case of Theorem 4.1 with V1 = V and p1 = p. In our
application problems to be discussed in Section 5, we apply Theorem 3.4 with V ⊂ W 1,p(Ω;Rd) and p ≥ 2; and when
we apply Theorem 4.1, we use in addition V1 ⊂ H1(Ω;Rd) and p1 = 2.

We now consider a problem more general than Problem 3.1.

Problem 4.2. Find an element u ∈ K such that

⟨Au, v − u⟩V∗×V +Φ(u, v) −Φ(u, u) + Ψ 0(u; v − u) ≥ ⟨f , v − u⟩V∗×V ∀ v ∈ K . (4.3)

Note that in (4.3), the functional Φ has two arguments. In the study of Problem 4.2, we modify the condition H(Φ) on
Φ to one of the following two forms.
H(Φ)′: Φ : V × V → R is convex and continuous with respect to its second argument, and for a constant mΦ > 0,

Φ(u1, v2) +Φ(u2, v1) −Φ(u1, v1) −Φ(u2, v2) ≤ mΦ∥u1 − u2∥
p−1
V ∥v1 − v2∥V ∀ u1, u2, v1, v2 ∈ V . (4.4)

H(Φ)′1: Φ : V × V → R is convex and continuous with respect to its second argument, and for a constant mΦ > 0,

Φ(u1, v2) +Φ(u2, v1) −Φ(u1, v1) −Φ(u2, v2) ≤ mΦ∥u1 − u2∥
p1−1
V1

∥v1 − v2∥V1 ∀ u1, u2, v1, v2 ∈ V . (4.5)

Moreover, we modify H(s) as follows.
H(s)′: mΨ + mΦ < mA.

A generalization of Theorem 3.4 is the next result.

Theorem 4.3. Assume H(K ), H(A), H(Φ)′, H(Ψ ), H(f ), and H(s)′. Then Problem 4.2 has a unique solution u ∈ K. For f1, f2 ∈ V ∗

and the corresponding solutions u1, u2 ∈ V of Problem 4.2,

∥u1 − u2∥V ≤ (mA − mΦ − mΨ )−1/(p−1)
∥f1 − f2∥

1/(p−1)
V∗ . (4.6)

Proof. For any w ∈ K , we apply Theorem 3.4 to know that there is a unique element u ∈ K such that

⟨Au, v − u⟩V∗×V +Φ(w, v) −Φ(w, u) + Ψ 0(u; v − u) ≥ ⟨f , v − u⟩V∗×V ∀ v ∈ K .

This defines a mapping P : K → K by the formula u = P(w).
Let us show that the mapping P is a contraction on K . For this purpose, let w1 and w2 be any elements in K , and denote

u1 = P(w1) and u2 = P(w2). Then

⟨Au1, v − u1⟩V∗×V +Φ(w1, v) −Φ(w1, u1) + Ψ 0(u1; v − u1) ≥ ⟨f , v − u1⟩V∗×V ∀ v ∈ K ,

⟨Au2, v − u2⟩V∗×V +Φ(w2, v) −Φ(w2, u2) + Ψ 0(u2; v − u2) ≥ ⟨f , v − u2⟩V∗×V ∀ v ∈ K .

Take v = u2 in the first inequality, take v = u1 in the second inequality, and add the two inequalities to obtain

⟨Au1 − Au2, u1 − u2⟩V∗×V ≤ Φ(w1, u2) +Φ(w2, u1) −Φ(w1, u1) −Φ(w2, u2)

+ Ψ 0(u1; u2 − u1) + Ψ 0(u2; u1 − u2).

pply assumptions H(A), H(Φ)′ and H(Ψ ),

m ∥u − u ∥
p

≤ m ∥w − w ∥
p−1

∥u − u ∥ + m ∥u − u ∥
p
.
A 1 2 V Φ 1 2 V 1 2 V Ψ 1 2 V

8
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Then, by H(s)′,

∥u1 − u2∥V ≤ α ∥w1 − w2∥V , α := (mΦ/(mA − mΨ ))1/(p−1) < 1.

Hence the mapping P : K → K is a contraction. By Banach fixed-point theorem, the operator P has a unique fixed-point
u ∈ K . It is easy to see that the fixed-point u ∈ K is the unique solution of Problem 4.2.

The proof of (4.6) is similar to that of (3.8). We replace (3.11) by

⟨Au1 − Au2, u1 − u2⟩V∗×V ≤ Φ(u1, u2) +Φ(u2, u1) −Φ(u1, u1) −Φ(u2, u2)

+ Ψ 0(u1; u2 − u1) + Ψ 0(u2; u1 − u2) + ⟨f1 − f2, u1 − u2⟩V∗×V .

hen we apply the conditions (3.3), (4.4) and (3.4) to obtain (4.6). ■

A generalization of Theorem 4.1 is the next result and its proof is similar to that of Theorem 4.3.

heorem 4.4. Assume H(K )1, H(A)1, H(Φ)′1, H(Ψ )1, H(f )1 and H(s)′. Then Problem 4.2 has a unique solution u ∈ K. For
1, f2 ∈ V ∗

1 and the corresponding solutions u1, u2 ∈ V of Problem 4.2,

∥u1 − u2∥V1 ≤ (mA − mΦ − mΨ )−1/(p1−1)
∥f1 − f2∥

1/(p1−1)
V∗
1

.

. Application to a steady incompressible generalized newtonian fluid flow problem

As an application of the theory developed in previous sections, we consider a model of steady incompressible
eneralized Newtonian fluids subject to a general slip boundary condition. We consider the fluid flow in a Lipschitz
omain Ω in Rd; for applications, we let d ≤ 3. The boundary ∂Ω of the domain Ω is split into two non-overlapping
arts: ∂Ω = Γ1 ∪ Γ2 with Γ1 and Γ2 relatively open, meas(Γ1) > 0, meas(Γ2) > 0, and Γ1 ∩ Γ2 = ∅. Since the boundary
Ω is Lipschitz continuous, the unit outward normal n = (n1, . . . , nd)T exists a.e. on ∂Ω . For a vector-valued function
on the boundary, we denote by un = u · n and uτ = u − unn the normal component and the tangential component,

espectively. With the flow velocity field u, we define the deformation rate tensor ε(u) = (∇u + (∇u)T )/2 which takes
n values in the space Sd of second-order symmetric tensors on Rd or, equivalently, the space of real symmetric matrices
f order d. We adopt the summation convention over a repeated index. The indices i and j are between 1 and d. The
anonical inner products and norms on Rd and Sd are

u · v = uivi, |v|Rd = (v · v)1/2 ∀ u = (ui), v = (vi) ∈ Rd,

σ : τ = σijτij, |σ|Sd = (σ : σ)1/2 ∀ σ = (σij), τ = (τij) ∈ Sd.

For σ ∈ Sd, let σn = n · σn and στ = σn − σnn be its normal component and the tangential component on the boundary
∂Ω .

We recall that in an incompressible non-Newtonian fluid, the stress is expressed as [39]

σ = −π I + S(ε(u)), (5.1)

where u is the velocity field, π is the pressure, I is the identity matrix of order d, and S(ε(u)) is the extra stress tensor,
S : Sd

→ Sd. In our study below, the constitutive function can be allowed to depend on the spatial location x: S = S(x, ε(u)).
However, for simplicity in writing, we focus on the case where S = S(ε(u)) is independent of x.

The classical formulation of the fluid problem we consider is the following [28].

roblem 5.1. Find a velocity u :Ω → Rp and a pressure π :Ω → R such that

−Div S + ∇π = f in Ω, (5.2)

div u = 0 in Ω, (5.3)

u = 0 on Γ1, (5.4)

uν = 0, −στ (u) ∈ ∂ψτ (uτ ) on Γ2. (5.5)

In the conservation law (5.2) for the stationary flow, f represents an external body force density function. The
incompressibility of the fluid is described by (5.3). The boundary condition (5.4) means that the fluid adheres to part of
the boundary, Γ1. The boundary condition (5.5) on Γ2 consists of the impermeability along the normal direction: uν = 0,
and a nonlinear slip relation of the friction type along the tangential direction: −στ (u) ∈ ∂ψτ (uτ ). When

ψτ (z) =
1
2
c0|z|2Rd ∀ z ∈ Rd

s a quadratic function, c0 > 0 being a constant or a positive-valued function on Γ2, the slip condition reduces to the
classical Navier condition [18]

−σ (u) = c u .
τ 0 τ

9
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The slip condition with

ψτ (z) = c0|z|Rd ∀ z ∈ Rd

s used in the study of variational inequalities for the Stokes and Navier–Stokes equations (e.g. [19]); note that the
bove function is non-smooth and convex. When we allow the function ψτ to be non-smooth and non-convex, the
eak formulation of Problem 5.1 will be a hemivariational inequality (in a reduced form where the pressure variable

s eliminated) or a mixed hemivariational inequality in which both the velocity and pressure variables are present.
Let us introduce assumptions on the data. In the following, p ≥ 2 is a given number, and p′

∈ (1,∞) is the conjugate
xponent of p, defined by the relation 1/p + 1/p′

= 1. We assume S can be generated from a potential functional
: Sd

→ R:

S(ε) =
∂U(ε)
∂ε

, i.e., Sij(ε) =
∂U(ε)
∂εij

, 1 ≤ i, j ≤ d. (5.6)

n addition, we assume

|S(ε)|Sd ≤ c
(
1 + |ε|

p−1
Sd

)
∀ ε ∈ Sd, (5.7)

∥S(ε(u1)) − S(ε(u2))∥Lp′ (Ω;Sd) ≤ b(∥u1∥V , ∥u2∥V ) ∥u1 − u2∥V ∀ u1, u2 ∈ V , (5.8)

here the function b(·, ·) is bounded over bounded ranges of its arguments, and either

(S(ε1) − S(ε2)) : (ε1 − ε2) ≥ mS |ε1 − ε2|
p
Sd ∀ ε1, ε2 ∈ Sd (5.9)

r

(S(ε1) − S(ε2)) : (ε1 − ε2) ≥ mS |ε1 − ε2|
2
Sd ∀ ε1, ε2 ∈ Sd. (5.10)

n ψτ :Rd
→ R, we assume

ψτ is locally Lipschitz continuous on Rd, (5.11)

|∂ψτ (ξ)|Rd ≤ c
(
1 + |ξ|

p−1
Rd

)
∀ ξ ∈ Rd, (5.12)

nd either

ψ0
τ (ξ1; ξ2 − ξ1) + ψ0

τ (ξ2; ξ1 − ξ2) ≤ Mψ |ξ1 − ξ2|
p
Rd ∀ ξ1, ξ2 ∈ Rd (5.13)

or

ψ0
τ (ξ1; ξ2 − ξ1) + ψ0

τ (ξ2; ξ1 − ξ2) ≤ Mψ |ξ1 − ξ2|
2
Rd ∀ ξ1, ξ2 ∈ Rd. (5.14)

On the source function, we assume

f ∈ V ∗. (5.15)

In the study of weak formulations of Problem 5.1, we need to introduce some function spaces. Let

V =
{
v ∈ W 1,p(Ω;Rd) | v = 0 on Γ1, vν = 0 on Γ2

}
, (5.16)

Ṽ = {v ∈ V | div v = 0 in Ω} , (5.17)

Q =

{
q ∈ Lp

′

(Ω) | (q, 1)Ω = 0
}
, (5.18)

where (q, 1)Ω stands for the integral of q over Ω . We will also use the following subspace of the space V :

V1 =
{
v ∈ H1(Ω;Rd) | v = 0 on Γ1, vν = 0 on Γ2

}
. (5.19)

There exists a constant c > 0, depending on Ω only, such that

∥v∥V1 ≤ c ∥v∥V ∀ v ∈ V .

Following a standard procedure, we can derive the next weak formulation of Problem 5.1.

Problem 5.2. Find a velocity u ∈ V and a pressure π ∈ Q such that∫
Ω

S(ε(u)) : ε(v) dx −

∫
Ω

π div v dx +

∫
Γ2

ψ0
τ (uτ ; vτ ) da ≥ ⟨f , v⟩V∗×V ∀ v ∈ V , (5.20)∫
Ω

q div u dx = 0 ∀ q ∈ Q . (5.21)

We can eliminate the constraint (5.21) to get a reduced weak formulation.
10
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Problem 5.3. Find a velocity u ∈ Ṽ such that∫
Ω

S(ε(u)) : ε(v) dx +

∫
Γ2

ψ0
τ (uτ ; vτ ) da ≥ ⟨f , v⟩V∗×V ∀ v ∈ Ṽ . (5.22)

We denote by cp > 0 (the best) constant of the inequality∫
Γ2

|vτ |
p
Rdda ≤ cp

∫
Ω

|ε(v)|pSddx ∀ v ∈ V . (5.23)

Theorem 5.4. Assume (5.6), (5.7), (5.8), (5.11), (5.12), and (5.15). Also assume either (5.9) and (5.13), or (5.10) and (5.14).
Then under the smallness condition cpMψ < mS , Problem 5.3 has a unique solution u ∈ Ṽ , which is also the unique minimizer
of the energy functional

E(v) =

∫
Ω

U(ε(v)) dx +

∫
Γ2

ψτ (vτ ) da − ⟨f , v⟩V∗×V (5.24)

ver Ṽ .

roof. We apply Theorem 3.4 or Theorem 4.1 with the operator A : V → V ∗ defined by

⟨Au, v⟩V∗×V =

∫
Ω

S(ε(u)) : ε(v) dx, (5.25)

he functionals

Φ ≡ 0, Ψ (v) =

∫
Γ2

ψτ (vτ ) da,

nd f ∈ V ∗ defined by ⟨f , v⟩V∗×V . Then A is well defined thanks to the assumption (5.7), and is locally Lipschitz continuous
hanks to the assumption (5.8). The assumption (5.9) implies

⟨Av1 − Av2, v1 − v2⟩V∗×V ≥ mS∥v1 − v2∥
p
V ∀ v1, v2 ∈ V

hereas (5.10) implies

⟨Av1 − Av2, v1 − v2⟩V∗×V ≥ mS∥v1 − v2∥2
V1 ∀ v1, v2 ∈ V1.

o H(A) or H(A)1 is satisfied with mA = mS . Since Φ ≡ 0, H(Φ) is trivial. From a slight variant of [40, Theorem 4.20], by
ssumptions (5.11) and (5.12), the functional Ψ is well-defined, is locally Lipschitz continuous on V , and moreover,

Ψ 0(u; v) ≤

∫
Γ2

ψ0
τ (uτ ; vτ ) da ∀ u, v ∈ V . (5.26)

hen, for any v1, v2 ∈ V , by (5.26),

Ψ 0(v1; v2 − v1) + Ψ 0(v2; v1 − v2) ≤

∫
Γ2

[
ψ0
τ (v1,τ ; v2,τ − v1,τ ) + ψ0

τ (v2,τ ; v1,τ − v2,τ )
]
da.

o it follows from (5.13) that

Ψ 0(v1; v2 − v1) + Ψ 0(v2; v1 − v2) ≤ Mψ∥v1,τ − v2,τ∥
p
Lp(Γ2;Rd)

≤ Mψcp∥v1 − v2∥
p
V ,

r from (5.14),

Ψ 0(v1; v2 − v1) + Ψ 0(v2; v1 − v2) ≤ Mψ∥v1,τ − v2,τ∥2
L2(Γ2;Rd) ≤ Mψc2∥v1 − v2∥2

V1 .

hus, H(Ψ ) or H(Ψ )1 holds true with mΨ = Mψcp. Then by Theorem 3.4 or Theorem 4.1, there is a unique element u ∈ Ṽ
atisfying∫

Ω

S(ε(u)) : ε(v) dx + Ψ 0(u; v) ≥ ⟨f , v⟩V∗×V ∀ v ∈ Ṽ .

ecause of (5.26), u is also a solution of Problem 5.3.
The uniqueness of a solution of Problem 5.3 can be proved similarly as that of Problem 3.1 in the proof of Theorem 3.4,

ith Ψ 0 replaced by the integral of ψ0 over Γ2; we omit the detailed argument here. ■

To recover the pressure variable from Problem 5.3, we recall two results below, the first being a special case of [41,
emma 2.2.2, Chapter II], whereas the second being a part of [41, Lemma 2.1.1, Chapter II].
11
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Lemma 5.5. Let Ω ⊂ Rd be a bounded Lipschitz domain, d ≥ 2, let p ∈ (1,∞) and let p′ be its conjugate. If ℓ ∈ W−1,p′

(Ω)d
satisfies

⟨ℓ, v⟩V∗×V = 0 ∀ v ∈ C∞

0 (Ω)d, div v = 0 in Ω,

then there exists a unique π ∈ Q such that

ℓ = ∇π in the sense of distributions.

Moreover, for two positive constants c1, c2, depending only on Ω and p,

c1∥ℓ∥V∗ ≤ ∥π∥Q ≤ c2∥ℓ∥V∗ .

Lemma 5.6. Let Ω ⊂ Rd be a bounded Lipschitz domain, d ≥ 2, let p ∈ (1,∞) and let p′ be its conjugate. Then for each
g ∈ Q , there exists at least one element v ∈ W 1,p

0 (Ω)d such that

div v = g in Ω, ∥v∥W1,p(Ω)d ≤ c ∥g∥Q ,

where c > 0 is a constant depending only on Ω and p.

Now we are ready to prove a unique solvability result for Problem 5.2.

Theorem 5.7. Under the assumptions stated in Theorem 5.4, Problem 5.2 has a unique solution (u, π ) ∈ V × Q ; in addition,
u ∈ Ṽ and it is the unique minimizer of the energy functional E(·) defined in (5.24) over Ṽ .

Proof. By Theorem 5.4, Problem 5.3 has a unique solution u ∈ Ṽ , which is also the unique minimizer of the energy
functional of E(·) over Ṽ . From (5.22), we deduce that∫

Ω

S(ε(u)) : ε(v) dx = ⟨f , v⟩V∗×V ∀ v ∈ C∞

0 (Ω)d, div v = 0 in Ω. (5.27)

Applying Lemma 5.5, we know that there is a unique element π ∈ Q such that∫
Ω

S(ε(u)) : ε(v) dx −

∫
Ω

π div v dx = ⟨f , v⟩V∗×V ∀ v ∈ C∞

0 (Ω)d.

By a density argument, we have∫
Ω

S(ε(u)) : ε(v) dx −

∫
Ω

π div v dx = ⟨f , v⟩V∗×V ∀ v ∈ W 1,p
0 (Ω)d. (5.28)

Now for any v ∈ V ,∫
Ω

div v dx =

∫
∂Ω

v·n da = 0.

Thus, div v ∈ Q . Applying Lemma 5.6, we have the existence of an element v1 ∈ W 1,p
0 (Ω)d such that

div v1 = div v in Ω.

Then, (v − v1) ∈ Ṽ . Use (v − v1) as the test function in (5.22) to obtain∫
Ω

S(ε(u)) : ε(v − v1) dx +

∫
Γ2

ψ0
τ (uτ ; vτ ) da ≥ ⟨f , v − v1⟩V∗×V . (5.29)

By (5.28),∫
Ω

S(ε(u)) : ε(v1) dx −

∫
Ω

π div v1 dx = ⟨f , v1⟩V∗×V .

Hence, from (5.29),∫
Ω

S(ε(u)) : ε(v) dx −

∫
Ω

π div v1 dx +

∫
Γ2

ψ0
τ (uτ ; vτ ) da ≥ ⟨f , v⟩V∗×V .

Since div v1 = div v in Ω , we recover (5.20) from the above inequality. So (u, π ) ∈ V × Q is a solution of Problem 5.2.
It is easy to see that if (u, π ) ∈ V×Q is a solution of Problem 5.2, then u solves Problem 5.3 which has a unique solution.

From the first paragraph of the proof, we know that π ∈ Q is uniquely determined from u. In conclusion, (u, π ) ∈ V ×Q
is the unique solution of Problem 5.2. ■

In the rest of the section, we comment on the assumptions made on S and ψ .
τ
12



W. Han and M.Z. Nashed Communications in Nonlinear Science and Numerical Simulation 124 (2023) 107309

T

I

w

H

t

T

L

T

P

Let U : Sd
→ R be a potential of the operator S , cf. (5.6), and let us introduce conditions on U that imply the assumptions

on S . Assume, for some p ≥ 2 and constants c1, c2 > 0,

U(0) = 0,
∂U(0)
∂εij

= 0, 1 ≤ i, j ≤ d,

∂2U(ε)
∂εij∂εkl

ηijηkl ≥ c1
(
1 + |ε|Sd

)p−2
|η|

2
Sd ∀ ε, η ∈ Sd,⏐⏐⏐⏐ ∂2U(ε)

∂εij∂εkl

⏐⏐⏐⏐ ≤ c2
(
1 + |ε|Sd

)p−2
∀ ε ∈ Sd, 1 ≤ i, j, k, l ≤ d.

hen, it is shown in [39] that there exist constants c3, c4, c5 > 0 such that

|S(ε)|Sd ≤ c3
(
1 + |ε|Sd

)p−1
, (5.30)

(S(ε1) − S(ε2)) : (ε1 − ε2) ≥ max
{
c4|ε1 − ε2|

2
Sd , c5|ε1 − ε2|

p
Sd

}
∀ ε1, ε2 ∈ Sd. (5.31)

n other words, (5.7), (5.9) and (5.10) are satisfied. In addition, from

Sij(ε1) − Sij(ε2) =

∫ 1

0

∂2U
∂εij∂εkl

(ε2 + s (ε1 − ε2))(ε1 − ε2)kl ds, 1 ≤ i, j ≤ d,

e find

|S(ε1) − S(ε2)|Sd ≤ c
(
1 + |ε1|Sd + |ε2|Sd

)p−2
|ε1 − ε2|Sd .

ence, (5.8) holds:

∥S(ε(u1)) − S(ε(u2))∥Lp′ (Ω;Sd) ≤ c (1 + ∥u1∥V + ∥u2∥V )
p−2

∥u1 − u2∥V .

If

S(ε) = 2 ν(|ε|
2
Sd ) ε, ε ∈ Sd, (5.32)

he non-Newtonian fluid is called a generalized Newtonian fluid. In the special case where the viscosity coefficient ν > 0
is a constant, we recover from (5.32) the Stokes’ law:

S(ε) = 2 ν ε, ε ∈ Sd. (5.33)

For the generalized Newtonian fluid (5.32), we can define a potential function

U(ε) =

∫
|ε|

2
Sd

0
ν(s) ds, ε ∈ Sd, (5.34)

Next, we consider three concrete examples of (5.32) found in the literature. The following two inequalities will be
useful:

(1 + s)p−2
≥

1
2

(
1 + sp−2)

∀ s ≥ 0, p ≥ 2, (5.35)(
|ε1|

p−2ε1 − |ε2|
p−2ε2

)
: (ε1 − ε2) ≥ 22−pp−1

|ε1 − ε2|
p
Sd ∀ ε1, ε2 ∈ Sd, p ≥ 2. (5.36)

he first inequality can be found, e.g., in [39]. The second inequality follows, e.g., from [42] or [43, Lemma 3].

emma 5.8. For ε1, ε2 ∈ Sd, define

∆p(ε1, ε2) =

((
1 + |ε1|Sd

)p−2
ε1 −

(
1 + |ε2|Sd

)p−2
ε2

)
: (ε1 − ε2). (5.37)

hen, for p ≥ 2,

∆p(ε1, ε2) ≥ 2−1
|ε1 − ε2|

2
Sd + min{2−1(p − 1)−1, 8−112−p/2

}|ε1 − ε2|
p
Sd . (5.38)

roof. Write

∆p(ε1, ε2) =

∫ 1

0

d
ds

[(
1 + |ε2 + s (ε1 − ε2)|Sd

)p−2
(ε2 + s (ε1 − ε2))

]
ds : (ε1 − ε2)

= (p − 2)
∫ 1

(
1 + |ε2 + s (ε1 − ε2)|Sd

)p−3

| (ε2 + s (ε1 − ε2)) : (ε1 − ε2)|2ds

0 |ε2 + s (ε1 − ε2)|Sd

13
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+

∫ 1

0

(
1 + |ε2 + s (ε1 − ε2)|Sd

)p−2 ds |ε1 − ε2|
2
Sd .

hen,

∆p(ε1, ε2) ≥

∫ 1

0

(
1 + |ε2 + s (ε1 − ε2)|Sd

)p−2 ds |ε1 − ε2|
2
Sd . (5.39)

t is easy to see that

∆p(ε1, ε2) ≥ |ε1 − ε2|
2
Sd . (5.40)

urther, we use (5.39) to derive a second lower bound for ∆p(ε1, ε2). According to (5.35),(
1 + |ε2 + s (ε1 − ε2)|Sd

)p−2
≥

1
2

(
1 + |ε2 + s (ε1 − ε2)|

p−2
Sd

)
.

Thus,

∆p(ε1, ε2) ≥
1
2

|ε1 − ε2|
2
Sd +

1
2

∫ 1

0
|ε2 + s (ε1 − ε2)|

p−2
Sd ds |ε1 − ε2|

2
Sd .

o proceed further, we distinguish two cases.
If |ε2|Sd ≥ |ε1 − ε2|Sd , then

|ε2 + s (ε1 − ε2)|Sd ≥ |ε2|Sd − s |ε1 − ε2|Sd ≥ (1 − s) |ε1 − ε2|Sd .

ence,∫ 1

0
|ε2 + s (ε1 − ε2)|

p−2
Sd ds ≥

∫ 1

0
(1 − s)p−2ds |ε1 − ε2|

p−2
Sd =

1
p − 1

|ε1 − ε2|
p−2
Sd .

If |ε2|Sd < |ε1 − ε2|Sd , write∫ 1

0
|ε2 + s (ε1 − ε2)|

p−2
Sd ds =

∫ 1

0

|ε2 + s (ε1 − ε2)|
p
Sd

|ε2 + s (ε1 − ε2)|2Sd
ds.

For the denominator of the integrand,

|ε2 + s (ε1 − ε2)|2Sd ≤ (|ε2|Sd + |ε1 − ε2|Sd )
2

≤ 4 |ε1 − ε2|
2
Sd .

For the numerator of the integrand, from∫ 1

0
|ε2 + s (ε1 − ε2)|2Sdds ≤

(∫ 1

0
|ε2 + s (ε1 − ε2)|

p
Sdds

)2/p

,

e have∫ 1

0
|ε2 + s (ε1 − ε2)|

p
Sdds ≥

(∫ 1

0
|ε2 + s (ε1 − ε2)|2Sdds

)p/2

=

(
|ε2|

2
Sd + ε2 : (ε1 − ε2) +

1
3

|ε1 − ε2|
2
Sd

)p/2

= 3−p/2 (
|ε1|

2
Sd + ε1 : ε2 + |ε2|

2
Sd

)p/2
≥ 6−p/2 (

|ε1|
2
Sd + |ε2|

2
Sd

)p/2
.

ince |ε1 − ε2|
2
Sd ≤ 2

(
|ε1|

2
Sd + |ε2|

2
Sd

)
,∫ 1

0
|ε2 + s (ε1 − ε2)|

p
Sdds ≥ 12−p/2

|ε1 − ε2|
p
Sd .

hus, ∫ 1

0
|ε2 + s (ε1 − ε2)|

p−2
Sd ds ≥

12−p/2
|ε1 − ε2|

p
Sd

4 |ε1 − ε2|
2
Sd

= 4−112−p/2
|ε1 − ε2|

p−2
Sd .

Summarizing the two cases, we have (5.38). ■

Similarly, we can prove the next result.
14
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Lemma 5.9. For ε1, ε2 ∈ Sd, define

∆̃p(ε1, ε2) =

((
1 + |ε1|

2
Sd

)p/2−1
ε1 −

(
1 + |ε2|

2
Sd

)p/2−1
ε2

)
: (ε1 − ε2). (5.41)

hen, for p ≥ 2,

∆̃p(ε1, ε2) ≥ 2−1
|ε1 − ε2|

2
Sd + min{2−1(p − 1)−1, 8−112−p/2

}|ε1 − ε2|
p
Sd . (5.42)

xample 5.10. In the first example,

S(ε) = 2 ν∞ε + 2 ν0|ε|
p−2
Sd ε, ε ∈ Sd. (5.43)

ssume ν∞, ν0 > 0. We have

ν(s) = ν∞ + ν0sp/2−1, s ≥ 0,

U(ε) = ν∞|ε|
2
Sd +

2 ν0
p

|ε|
p
Sd , ε ∈ Sd.

It is straightforward to verify (5.7) and (5.8). Consider

(S(ε1) − S(ε2)) : (ε1 − ε2) = 2 ν∞|ε1 − ε2|
2
Sd + 2 ν0

(
|ε1|

p−2
Sd ε1 − |ε2|

p−2
Sd ε2

)
: (ε1 − ε2).

pply the inequality (5.36) to obtain

(S(ε1) − S(ε2)) : (ε1 − ε2) ≥ 2 ν∞|ε1 − ε2|
2
Sd + 23−pp−1ν0|ε1 − ε2|

p
Sd .

ence, (5.9) holds with mS = 23−pp−1ν0; (5.10) also holds with mS = 2 ν∞. □

xample 5.11. In the second example,

S(ε) = 2 ν∞ε + 2 ν0
(
1 + |ε|Sd

)p−2
ε, ε ∈ Sd. (5.44)

ssume ν∞, ν0 > 0. We have

ν(s) = ν∞ + ν0(1 + s1/2)p−2, s ≥ 0,

U(ε) = ν∞|ε|
2
Sd + 2 ν0

∫
|ε|Sd

0
s (1 + s)p−2ds, ε ∈ Sd.

For ε1, ε2 ∈ Sd, by the definition (5.44),

(S(ε1) − S(ε2)) : (ε1 − ε2) = 2 ν∞|ε1 − ε2|
2
Sd + 2 ν0∆p(ε1, ε2),

here ∆p(ε1, ε2) is bounded below by Lemma 5.8.
We conclude that (5.9) holds with mS = ν0 min{2−1(p − 1)−1, 8−112−p/2

}, and (5.10) holds with mS = 2 ν∞ + ν0. □

xample 5.12. In the third example,

S(ε) = 2 ν∞ε + 2 ν0
(
1 + |ε|

2
Sd

)p/2−1
ε, ε ∈ Sd. (5.45)

ssume ν∞, ν0 > 0. We have

ν(s) = ν∞ + ν0(1 + s)p/2−1, s ≥ 0,

U(ε) = ν∞|ε|
2
Sd + ν0

∫
|ε|

2
Sd

0
(1 + s)p/2−1ds, ε ∈ Sd.

nalysis of this example is similar to that of Example 5.11, and we apply Lemma 5.9 instead of Lemma 5.8. Detail is
mitted. □

Finally, we examine one example of ψτ , written as ψ for simplicity.

xample 5.13. Following [27], for a constant a ∈ [0, 1), consider

ψ(z) = (a − 1) e−|z|Rd + a |z|Rd , z ∈ Rd. (5.46)

hen, (5.11) is obvious. Denote by B(0, 1) ⊂ Rd the unit closed ball centered at the origin. Since

∂ψ(z) =

{
B(0, 1)if z = 0,(

−|z| d
)

(1 − a) e R + a z/|z|Rd if z ̸= 0,
15
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it is easy to see that (5.12) is valid; indeed, ∂ψ(z) is bounded. Now we provide a detailed derivation of (5.14) for the
reader’s convenience. Note that (5.14) is equivalent to(

ξ1 − ξ2
)
· (z1 − z2) ≥ −Mψ |z1 − z2|2Rd ∀ z1, z2 ∈ Rd, ξ1 ∈ ∂ψ(z1), ξ2 ∈ ∂ψ(z2). (5.47)

We distinguish two cases.
Case 1: z1 ̸= 0, z2 ̸= 0. Then,(

ξ1 − ξ2
)
· (z1 − z2) =

∫ 1

0

d
ds
ψ(z2 + s (z1 − z2)) ds (z1 − z2)

= (z1 − z2)T
∫ 1

0
G(z2 + s (z1 − z2)) ds (z1 − z2) ,

here G is the Hessian matrix of ψ . Through elementary calculations, we find that

G(z) =
(
(1 − a) e−|z|Rd + a

)
|z|−1

Rd I +
(
(a − 1) e−|z|Rd |z|−2

Rd −
(
(1 − a) e−|z|Rd + a

)
|z|−3

Rd

)
z zT .

t can be shown that G(z) has two distinct eigenvalues

(a − 1) e−|z|Rd ,
(
(1 − a) e−|z|Rd + a

)
|z|−1

Rd .

The first eigenvalue is simple and the second eigenvalue has multiplicity (d − 1). Hence,

(z1 − z2)T G(z2 + s (z1 − z2))· (z1 − z2) ≥ −(1 − a) e−|z|Rd |z1 − z2|2Rd .

Therefore,(
ξ1 − ξ2

)
· (z1 − z2) ≥ −(1 − a) |z1 − z2|2Rd .

Case 2: z1 ̸= 0, z2 = 0. Let ξ2 ∈ ∂ψ(z2) = B(0, 1) be arbitrary. Then,(
ξ1 − ξ2

)
· (z1 − z2) =

((
(1 − a) e−|z1|Rd + a

)
z1/|z1|Rd − ξ2

)
·z1

=
(
(1 − a) e−|z1|Rd + a

)
|z1|Rd − ξ2 · z1

≥
(
(1 − a) e−|z1|Rd + a

)
|z1|Rd − |z1|Rd

= −(1 − a) |z1|Rd
(
1 − e−|z1|Rd

)
≥ −(1 − a) |z1|2Rd .

Summarizing, we see that (5.47) holds with Mψ = 1 − a. We comment that for a non-convex non-smooth function
ψτ , the natural choice of the exponent p in the condition (5.13) is p = 2. □
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