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Summary. This work considers semi- and fully discrete approximations to
the primal problem in elastoplasticity. The unknowns are displacement and
internal variables, and the problem takes the form of an evolution variational
inequality. Strong convergence of time-discrete, as well as spatially and fully
discrete approximations, is established without making any assumptions of
regularity over and above those established in the proof of well-posedness
of this problem.
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1 Introduction

In arecentwork [4], Han and Reddy have revisited the problem of obtaining
estimates for the rate of convergence of approximations to semi- and fully
discrete problems of elastoplasticity. In that work the authors have taken as
their point of departure the dual formulation studied in the extended work [3],
which gives a detailed account of the variational basis of hardening problems
in plasticity, and investigates the theoretical basis of various approximation
schemes. The work [3] makes reference to two alternative forms of the
problem: the primal form, in which the flow law is formulated in terms
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of the dissipation function, and for which case the unknown variables are
displacement, plastic strain and internal variables; and the dual form, in
which the flow law is written in terms of the yield function, with the result
that the unknown variables are displacement and generalized stress.

Convergence of semi- and fully discrete finite element approximations
was proved in [3] under conditions in which not much attention was given
to the degree of smoothness expected of the solutions. Thus, for the primal
problem convergence was established under the assumption that the solu-
tions satisfy particular regularity requirements; for example, for the primal
problem in which linear kinematic and isotropic hardening are present, it is
required that the displacemeatbelong toWW2(0, T; H?(£2)?3), and that
the internal variableg belong toW-2(0, T; H'(£2)"), for suitablen. On
the other hand, it is shown that a unique solutian &) to the primal prob-
lem exists withu € W12(0,T; H'(£2)?) and¢ € W12(0,T; L2(2)").
Similar disparities are present in the case of the dual problem.

In[4], the authors have proved convergence of approximations to the dual
problem under the minimum conditions of regularity, that is, the regularity
established in the existence proof. The purpose of this contribution is to
achieve the same goal in respect of the primal problem.

By way of background, it is worth mentioning some works that have
preceded the analyses in [3] and [4]. An early contribution in this area was
that of Johnson [8], who considered a formulation with stress as the primary
variable, and who derived error estimates for the fully discrete problem.
About the same time, independent work by Korneev and others was carried
out on such problems (see, for example, [11] and the monograph [10]).
Related work may also be found in [6]. Johnson [9] subsequently analyzed
fully discrete finite element approximations of the problem with hardening,
in the context of a mixed formulation in which both stress and velocity are
the variables. With regard to the primal problem, the first detailed analysis of
convergence of finite element approximations was provided by Han, Reddy
and Schroeder [5]. The work [3] served the purpose of synthesising and
generalizing the results referred to above.

This paper is organized as follows. In Sect. 2 the primal problem is for-
mulated, both in classical and variational forms. Section 3 is concerned
with time-discrete approximations of an abstract problem, of which the
primal problem is an example. The main result in this section establishes
strong convergence of such time-discrete approximations, under conditions
of minimal regularity of the solution. Then, in Sect. 4, strong convergence
of spatially and fully discrete approximations is established, again under
conditions of minimal regularity. Finally in Sect. 5, we apply the conver-
gence results proved for the abstract problem to conclude the convergence
of various schemes for solving the primal problem of elastoplasticity.
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2 Formulation of the primal problem

Consider the initial-boundary value problem for quasistatic behavior of an
elastoplastic body which occupies a bounded donfaic R? (d < 3

for practical applications) with Lipschitz boundafy We assume that de-
formations are sufficiently small to warrant adoption of the small strain
assumption. The plastic behavior of the material is assumed to be describ-
able within the classical framework of a convex, elastic domain coupled
with the normality law. The material is assumed to undergo kinematic or
isotropic hardening or a combination of both.

Suppose that the system is initially at rest, and that it is initially un-
deformed and unstressed. A time-dependent field of body ff(aet) is
given, with f(x,0) = 0. Then the problem is governed by the following set
of equations in2:

the equilibrium equation

(2.1) dve+ f=0,
the additive decomposition of strain
(2.2) e=e+p,
and the strain-displacement relation
(2.3) e(u) = 3(Vu + (Vu)T).
Here o is the stress tensog, is the strain tensoms the displacement
vector, p the plastic strain tensor ardlthe elastic strain. All the tensors

encountered here are symmetric. The plastic deformation is assumed to be
incompressible so that

(2.4) trp=20 or Ed: pii = 0.
=1
For simplicity, and with little loss in generality, we assume that
(2.5) u=0 on I,
while the initial conditions are assumed to be

(2.6) u(x,0) =0 and p(x,0) = 0.
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2.1 Constitutive relations

There is a linear relation between stress and the elastic strain, that is,
(2.7) o =Ce=C(e(u) —p),

whereC is the elasticity modulus.

The features of hardening behavior are captured through the introduction
of a set of scalar and/or tensorial internal variables, denoted collectively here
by anm-dimensional unknown variable We also introduce a stress-like
variablex conjugate to the internal variabfe in the sense that

whereH is a hardening modulus. The ordered paits= (o, x) andP =
(p, &) are referred to respectively as theneralized stressndgeneralized
plastic strain

The generalized stress takes values only in a closed convex;dbe
interior of K contains the origin and is called the elastic region while its
boundary is known as the yield surface. Thenftbe lawor normality law
governing the evolution of the plastic strain and internal variables takes the
form

(2.9) P = (p,€) € Nx(X),

whereNg(X)={M | M : (T — ¥) <0 VT € K} denotes the normal
cone toK atX.

The primal formulation is based on an alternative description of the flow
law which uses the support function &f, defined by

(2.10) D(P)=sup{T : P|T € K}.

The functionD is nonnegative and may take on the valueo. From the
theory of convex analysis, the flow law (2.9) is equivalent to the relation

(cf. [3])
(2.11) X € dD(P),

wheredD(P) denotes the subdifferential &f at P, defined by
(212) D(g;m) 2 D(p.€) +o:(q-p)+x:(n—E&) Vig.mn).

In the context of plasticity, the functioP is a measure of the rate of irre-
versible or plastic work, and is known as ttissipation function



Convergence of approximations to the primal problem in plasticity 287

2.2 Primal variational formulation of the problem

We first introduce some spaces and functionals that are required for the
primal formulation. The spack of displacements is defined by

V = [Hg(£2)]%
Let
Q =1{q = (¢ij)axa | Gi = Gij, a:; € L*(2)},

with the usual inner product and norm of the spatg 2)]4*?. Then the
spacel) of plastic strains is a closed subspac&)defined by

Qo={qeQ|trg=0ae.in2}.

We will use M = [L?(£2)]™ for the space of internal variabl&s The
product space’ =V x Q¢ x M is a Hilbert space with the inner product

(w,2)z = (u,v)y + (p,q)q + (&, m)m

and norm
I2llz = (2,2),
wherew = (u,p,£&) andz = (v, q,n).
Corresponding to the séf,, = dom D, the effective domain oD, we
define

(2.13) Zy={z=(v,q,n) € Z|(q,n) € K a.e.in 2},

which is a non-empty, closed, convex con&in
Over the space, we introduce the bilinear form

(214) a(w,z) = /Q (Cle(w) - p) : (e(v) — q) + € - Hy] d,

the linear functional
(2.15) (L(t), z) = / f(t) - vdx
0

and the functional
(2.16) j(z) = /Q D(q.n)dr,

where as beforew = (u,p, &) andz = (v, q,n).

From the properties ab, we see thaj(-) is a convex, positively homo-
geneous, honnegative and I.s.c. functional.

Then the primal variational problem of elastoplasticity takes the follow-
ing form.



288 W. Han, B.D. Reddy

Problem PRIM. Given ¢ € H'(0,T;Z*) with £(0) = 0, find w =
(u,p, &) : [0,T] — Z with w(0) = 0, such that for aimost all € (0, 7),
w(t) € Z, and

a(w(t), z —w(t)) +j(z) — j(w(t))
(2.17) > (U(t),z—w(t)) YVzeZ,.

Later on, we will take as working examples the special cases of combined
linear kinematic and isotropic hardening, or linear kinematic hardening only,
together with the von Mises yield function. For the former case the unknown
variables are the displacemenmt plastic strainp, and isotropic hardening
variabley. We use the spacé&sandQ) for displacements and plastic strains,
and the spac#/ of isotropic hardening variables is definedhly= L?(2).

In this special context the subsgt of Z defined in (2.13)) is given by

Zp={z=(v,q,n) € Z : |q| < pae. in 2}.

The bilinear forme : Z x Z — IR becomes
otw.2) = [ [Cle(w) ~p): (elv) ~ @) + Fip: a + ko] da

(2.18) = /Q [Cijrr (€55(w) — pij)(€r(v) — qrr) + k1pijqi; + koyp) de,

while the functional; is defined by (2.16), with the dissipation functiéh
being given by

_ [colgl, iflal < p,
(2.19) D(q,p) = {4_00, otherwise.

Here,o > 0Oisthe constantinthe von Mises yield condition. The linear func-
tional £(¢) is as in (2.15). With these modifications, the primal variational
problem of elastoplasticity with combined linear kinematic and isotropic
hardening, and with the von Mises yield criterion, is

Problem KIN-ISO.Given/ € H(0,T; Z*), £(0) = 0, findw = (u, p,7) :
[0,T] — Z with w(0) = 0, such that for almost all € (0,7"), w(t) € Z,

and

a(w(t), z —w(t)) +j(z) — j(w(t) = (L), z —w(t)) Vz
(2.20) = (v,q,pn) € Zp.

The problem for the case of linear kinematic hardening with the von
Mises vyield crierion can be viewed as a degenerate case of Prabism
Iso, with k5 = 0. The unknown variables for this case are the displacement
u and the plastic straip. We still usel” and@) as previously defined, and
the solution space is now = V' x g, with the inner product

(w7 z)Z = (u’ U)V + (p7 Q)Q
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and the norm)|z||z = (z,z)lz/z, wherew = (u,p) andz = (v, q). This

time, instead of (2.19), the dissipation function takes the simple form

(2.21) D(q) = colgq| Yq € Qo,

so that the functional

(2.22) j(z) = / D(q)dx forz = (v,q) € Z
Q

is finite on the whole spac&. The bilinear formu : Z x Z — R is now

(223) a(w,z) = /Q (Cle(w) —p) : (e(v) — @) + k1p : q] da

while the linear functional(t) is unchanged from (2.15). We can now define
the primal variational problem corresponding to linear kinematic hardening
with the von Mises yield function.

PrOBLEM KIN. Given/ € H(0,T;2*), ¢(0) = 0, findw = (u, p) :
[0,T] — Z with w(0) = 0, such that for almost atl € (0,T),

a(w(t), z—w(t))+j(z)—j(w(t)) > (((t), z—w(t)) Vz=(v,q)€ Z
(2.24)

2.3 Properties of material parameters

The elasticity tenso€' has the symmetry properties
(2.25) Cijkt = Cjitt = Chuij,

and we assume that
(2.26) Cijkl S LOO(Q)

and thatC' is pointwise stable: that is, there exists a consgant> 0 such
that

(2.27) Cija(®) (3G = Col¢)? V¢ € R (T = ¢, ae.in .

The hardening modulu&Z, viewed as a linear operator frol®™ into
itself, is assumed to possess the symmetry property

(2.28) ¢ HX=X H¢
and it is further assumed that

(2.29) Hij € L®(02)
and that a constarif; > 0 exists such that

(2.30) £ -HE > Hyl€)> VE € R™, ae.inf.
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3 Time-discrete approximations of an abstract problem

The primal formulation is a particular case of the following abstract problem.

Problem ABS.Findw : [0,7] — H, w(0) = 0, such that for almost all
te€(0,T7),w(t) € K and

(3.1) a(w(t),z —w(t)) +j(z) — j(w(t)) > (U(t),z —w(t)) VzeK.
Under the assumptions that

— H is a Hilbert space

— K C H is a non-empty, closed, convex cone

—a: Hx H — IR is a bilinear form onH, symmetric, bounded and
H-elliptic

— (e HY(0,T; H*), £(0) =0

— j: K — IRis non-negative, convex, positively homogeneous and Lips-
chitz continuous

we have the existence of a unique solutios H'(0,T; H) of the problem
ABs (cf. [3]).

In this section we will prove the strong convergence of time-discrete
solutions of the problem\Bs under the basic regularity assumptionc
HY(0,T; H).

The following elementary result will be used repeatedly:

(3.2) a,by,r >0 and 22 <az+b=— 22 <a®>+2b.

We analyze a family of semi-discrete schemes which are obtained by
discretizing the time interval. For notational simplicity, we use a uniform
partition of the time interval0, 7'] with node pointg,, = nk,0 <n < N,
wherek = T'/N is the step-size. We willusk, = [t,,—1,t,],n=1,--- N,
to denote the time sub-intervals. We remark that the following analysis can
be easily modified for the case of a non-uniform partition; in this case the
step-sizek in the error bounds is replaced by the maximum step-size of the
partition. For the given linear functionélc H'(0,T; H*) and the solution
w € HY(0,T; H), we use the notatiofy, = /(t,,) andw,, = w(t,), which
are well-defined because of the continuous embeddihy®, 7'; H*) C
C([0,T); H*) andH'(0,T; H) C C([0,T]; H). The symbolAw, is used
to denote the backward differeneg — w,,_1, andéw,, = Aw,,/k denotes
the backward divided difference.

Letd € [%, 1] be a parameter. A family of generalized mid-point time-
discrete approximations of the problefiss is
Problem ABS. Find w* = {wk}N_, ¢ H, wf = 0, such that fom =
1,...,N,éwk € Kand

a(@wk + (1 —0)wk |,z —owk) +j(2)

n—1»

(3.3) —j(6wk) > (b 149,72 — OwF) VzeK.
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Here, /119 = l(tn_149), @andt, 1.9 = (n—1+60)k = 0t, + (1 —
0)tn—1. It is shown in [3] that the use of ¢ [3,1] leads to a divergent
scheme. For simplicity in writing, the dependence of the soluii6ron ¢
will not be indicated explicitly.

Set
(3.4) Enp(w) = 0w, + (1 —0) wy—1 — wn_140;

then the following inequality is the basis for order error estimates (cf. [3]):

..k
 max, |wn, — wp || #

N-1
<c (IIEN,e(w)IIH + ) 1 Bng(w) - En+17e(w)HH>
n=1

N 1/2

n=1

Nevertheless, we cannot use (3.5) for a convergence analysis under the
basic regularity conditionv € H'(0,7; H), because then the pointwise
valuesuw,, 1.9 Occurring in (3.5) are not well-defined. Thus it is necessary
to derive a result similar to (3.5), in which the termg 1, ¢ are not present.
For this purpose we will need the following density result (for a proof, see,
e.g. [15)]).

Theorem 3.1. The space>>°([0, T|; H) is dense inH' (0, T; H); that is,
givenw € H'(0,T; H), for anye > 0 there is a functions € C°°([0, T];
H) such that

(3.6) |w =0 0,1 < &

The inequality (3.6) can be equivalently written in the form

T T
| oo~ o)+ [ o) — o) e < 2
0 0
In addition,
|w — | oo (0,7 11) = €SS SUP<y<pllw(t) — W(2)[| 1
(37) S CHM_EHHI(O,T;H) S Cce.
We will also need the following results, proved in [3].
Lemma 3.2. Under the assumptioi € L'(0,7; H),
[Eno(w)lle <20 (1 —0)k 0l b.,m-
If it is assumed further that € L>°(0,T'; H), then

0(1—0)
2

[ Enp(w)l|a < ]2 (16| oo (0,7, 1) -
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Lemma 3.3. Under the assumptiots € L'(0,T; H),
[ Eno(w) = Enyro(w)|lm < ckll@llpaw, yt0;m)-
If it is assumed further that(®) € L1(0,7; H), then

1Enp(w) = Ensro()llar < ek 0@ g, ,00m)-

3.1 A bound onw,, — w*

n

Sete, = w, — wk, 0 < n < N, with ey = 0. From the assumptions on

the bilinear forma(-, -), we see that the terffw||, = a(w, w)'/? defines a

norm onH, which is equivalent tgw|| ;7. Consider the quantity
Apn=al@e,+ (1 —0)en_1,0€,).

Sinced € [3, 1], we have a lower bound

1

(3.8) An > o (lleall? = llen-112)
Next, we derive an upper bound fdr,. We have

Ap = a(@wy, + (1 —0)wp—1, dw, — 5wa)

—a(Awk + (1 - 0)wk_|, 6w, — suwk).

We use (3.3) withh = dw,, for the second term on the right hand side of the
above inequality to obtain

Ap < a(@wy, + (1 = 0) wy_1, 6w, — dwk)

+5(8wn) = j(6wh) = (o149, Swn — Swy).

Combining the lower and upper bound, we have the inequality

1
% (llenll = llen—112)
< a(@w,+ (1 —0)w,_1, 0w, — 5w,’j) + j(dwy,)
(3.9) —j(Owk) — (€119, 6wy, — wk).

Now takez = dw¥ in (3.1); then
a(w(t), Swk — () + j(0wk) — j(w(t)) > (£(t), Sw) — w(t)).

We then integrate the relation ovEy to obtain

0< ]1/[ a(w(t), owk — i(#)) dt + ;/ J(Gwh)dt

In,
310) -2 [ @) dt— < [ ), owt

— (1)) dt.
P, i), w(t))

n



Convergence of approximations to the primal problem in plasticity

Adding the inequalities (3.9) and (3.10) we find that

@11) o (lenll — llentl2) < @1+ Qo+ @5,
where
Q1 =alw, + (1 —0)wy_1, 0w, — 5w7’§)
+;/ a(w(t),swk —w(t)) dt,
I’!L
1
Q2= [ 1itoun) ~ ste)) .

1

Qs = ~(tarso, b, — ) — 1 [ (6(6), 60t~ o) de.

293

kJr,
We now estimate each of these three terms. Define the local averagg of
by
1
(3.12) wf;:k/ w(t)dte H, n=1,---,N,
I
and by analogy with (3.4) introduce the quantities
(3.13) mo(w) = 0wy + (1 —0) wp—1 — wy.
Then
Q1 =a(0w, + (1 —0)wyp—1 — wy, dwy, — 6wf;')
1 1
+— [ a(w(t),dw,)dt — / a(w(t),w(t))dt
kJi, kJ,
=af( Z’g(w), owy,, — 5wa) + a(wy, dwy,)
1
_ﬁ [a(wm wn) - a('wn—la wn—l)]
1
= = a( Z,e(w)’ en — €n—1)
+ﬁ 12 a(wyp, wy — Wn—1) — a(Wn, W) + a(Wp—1, Wn—1)] .
Since
2 a(w27 Wn, — wn—l) - a(wru wn) + a(wn—h wn—l)
= a(2wy — Wy — Wp—1, Wy — Wp—1)
we see that
1
Q1= = af Z,e(w)7 en — €n—1)
1
(314) +% a(wgz - % (wn + wnfl)y Wn — wnfl)'
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For the second ter®2, we use the Lipschitz continuity ¢f-) on K to
obtain

c .
Qul < § [ 16wn — (o)

c 1 ) .
_ k/ k/j (0le) = () |
< k2/] [ i(e) = (o) s
_w%[/ [lei(s) — ()l + e (t) — ()1

+[w(s) —wi(t )HH] ds dt

=5 [ it —wem i+ 5 [
eiaskéﬂmw—mmmw+céﬂmmmﬁ.

Analogously to (3.12), we define the local averagé by

dTH ds dt

o= 1/ (tydt € H, n—=1,---,N.
k

Then

Qs = (12 — U119, 0wy, — 6wk + ;/ (0(t), i (t) — dwy,) dt.

In
Now
[ o swyar =i [ e, [ ies)ds) = [ e a

In k In In In

so that

1 1 .
Q3= (ly —lo_149,€n — €n1) + / (0(t) — €2, (t)) dt.
k kJr,
(3.16)
Combining (3.11), (3.14), (3.15) and (3.16) we obtain
leallz = llen—1llz < 2a(E; g(w), en — en—1)

+ 2@(’[0;7; - % (wn + wnfl)awn - wnfl)

e wmw—awwHﬁ+ck¢mmeﬁ

In

F 2000 — by 11 en — en1) + 2 / (U(t) — 09,0 (t)) dt.
In
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Adding the above inequalities from= 1 to n, and observing thaty = 0,
we have

lenll < 2 Za( To(w), e —ej-1)
tn . tn .
e / () — () st + ck / i)
0 0
+22£—@ 1+9,ej—ejl+22/ t) — £9,(t)) dt
= 2a(Ey g(w), e +QZQ — Ef 1 9(w),€))
Z 3 (wj + wj—1), w; — wj—1)
n—1
20y — ln1109,€n) +2 ZW? —Llj—1+9) — (511 — Ljve), €j)
j=1
+22/ £) — 02, (1)) dt
tn . tn .
+c/ ||w(t)—w(t)\Hdt+ck/ [5(¢) | rdt.
0 0

SetM = maxj<p<n |enll«- Then from the above inequality we get

MQScM{HE?ve HH+ZHE39 — En (W)l
N-1
+110% — v —vyollas + D (€% = €u140)
n=1

— (Goy1 — €n+9)HH*}

+c2||w L (wn + wo1)||#r ]| wn — wn1 || &
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N
ey /] 16E) — £+ i (8) st
n=1 n

T _ T
e / () — () st + / () .

Applying the result (3.2), we then have

lg%XN lenlla

N-1
< C{IIE?V,Q(w)IIH + ) B g(w) = By p(w)
n=1

N-1
Ik — En—rvollm + D 1106 = laiso) — (G — €n+e)IIH*}

n=1

N
+C{ Z [wy, — % (wn + wn-1)||m||wn — wn-1|lg

n=1

T
+ /0 () — @o(e) | et

T N 1/2
+k‘/0 H?'f'f(t)HHdtJr;/In |f(t)—€?1||H*||w(t)HHdt} :
(3.17)

We now analyze each term on the right hand side of (3.17). First, for the
terms involvingE? ,(w), we have

15 0(w) = En o)l < [[Er (@) = By 0(W0)l 1
(3.18)  +|Ejp(w —w)|[a + By p(w —0)]|a-

Sincew(t) — w(t) is continuous irt, it follows that

1
wy — Wy = % [w(t) —w(t)]dt = w(ry) —w(1y), forsome T, € I,,.
In

Hence

g,e(w —w) =0 (w, —Wy,) + (1 = 0) (wp—1 — Wp—1)

—(w(ma) — (7))

—9 / “[ib(t) — ()] dt + (1 — 0) / “[i(t) — (8] dt,
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and so

tn .
Iﬂﬂw;WM§c/ i (t) — T (t)] .
n—1

Similarly, it can be shown that

tn+1 .
1B s olw =) < [ ) = 0) .
Now observing that
1
(W) = Ey g(W) + Wp—140 — k/ w(t) dt,
I

we have
0 (W) — Ef 1 g(W0) = (Enp(W) — Epy10(w))

+<@n_1+9 - % /In w(t) dt) — (m+9 = ]t/[n w(t) dt)-

By Lemma 3.3,

1En0(@) = Ens10(@) |1 < ckl[wlpa, yt0;m)-

We use the Taylor expansion

t
W(t) = Wp—1+6 + Wn—-1+0(t — tn_119) + / (t—s)w(s)ds

tn—1+0
to get
1 1-260 .
Wp—146 — / w(t)dt = — 5 kw116
(3.19) —// (t — s)w(s) dsdt.
I, tn— 146
So
1 1
Wy14g — — | W) dt) — (Wpap — w(t) dt
(w0 g | wO@) = (@oo— [ w1
1—29

k [wn+9 - wn 1+9]

—// (t—s)w(s)dsdt+ — / / (t —s)w(s)dsdt
In Jtn_119 Int1 Jtnte

1 — 2 9 nt6
/ w(t) dt
tp— 146

1 t
—/ / (t—s)w(s)dsdt + — / / (t — s)w(s)dsdt,
Iy Jtn_149 k Int1 Jtnge
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and hence

1Eno(@) = Epi1p(@)l| 1 < | Enp(W) = Eny1,0(w)||#

(@n_Hg - % /I ) w(t) dt) - (@n+9 - % /I w(t) dt)

n+1

+

H
which implies that

127 6(@) — Ep i1 o (@)l < ekl 110, t05m0)-

Therefore from (3.18),
15 6(w) — En 1 o()lla < ek Wl L, tp0:m)

o / " () — (e e,

tn—1
and thus
N-1
Z | Eno(w) — Ep i g(w)la < ck[[wl|po,rm
n=1
(3.20) +c i =W Loy < ek Wl Lo, + e

The formula (3.19) witm = N implies that

1
fovcvo -4 f w0,
N

< ek (@) ooy msr) + TN L1 gen i) -
By Lemma 3.2,
”EN,Q(@)HH <ck ||ﬁHL1(tN717tN§H)'

It is not difficult to see that

1Ex6(w) — ER o)z <c  sup [lw(t) —w(t)||a-
tny—1<t<tn

Applying (3.7), we then have
I1ENo(w) = ER p(w)|| 5 < ce.
Using the last several bounds in the inequality
IEX o (W)l < [|EX o(w) — EX o(w) ||z

1
+En ()|l + H@N—Ha - k/ w(t) dtH
Iy H
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we obtain

HE?V,G(M)”H S ce+ ck [“@”Lw(t]v_l,tN;H) + Hﬁ‘|L1(tN,1,tN;H):| .
(3.21)

We will carry out similar manipulations on the terms involving approx-
imations of¢. First another application of Theorem 3.1 yields the existence
of an? € C*°(]0,T]; H*) such that

(3.22) 1€ = el 0,150y < &

We also have

(3.23) 1€ = Ul oo,y < cll€ = Ll o rimey < ce
Thus

He?\f - £N71+9”H* < HZ?\[ — ZN*1+9”H*
—a
+¢% — x|
—a - —
S HKN - 6N71+9”H* +c Hg - eHLOO(O,T;H*)

m + 1en—1+0 — In—1+0|H+

< |1y = En—rvoll + ce.
Now applying the formula (3.19) tbwe see that
12 = Tx—1solle < ek (I8l oqeny enstrey + 121 —yotnitr)| -
Hence

165 — en—1+0llH < ce+ck [HZHLOO(O,T;H*) + HZ”Ll(O,T;H*)} .
(3.24)

Similarly,

106 = bars0) = (Grir — bngo) |-

<10 = Cn1+0) = (Cpsy = Curo) | v
I = lay) = (O = Coyr) e
[ (bn110 = Lnyo) = (bn-146 — lnro)| 1~ '
<10 = Cn110) = (Cogr = baro) e + 1€ = Cl Ly tysme)-

Applying (3.19) tof once more, we have

1@ = ar40) = (Grr = luso) |- < kNl Lage, st ii0),
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and therefore
N-1
DN~ lorve) = (g — Lngo) | -

n=1
< ckllpomm + el = Ulpor.m-
Hence
N—-1 i
Z [(6n — Ln—1+0) — (€%+1 —lnyo)llgr < ck WHLl(o,T;H*) +ce.
n=1
(3.25)

For the last sumin (3.17), we first use the Cauchy-Schwarz inequality in the
form

N
S / 16(E) — £+ i(e) st
n=1 n

N 1/2
< [l z2(0,7:m) [Z/] |e(t) — EZH%{*dt] ,
n=1 n

then use the inequality

1€(2) — £

B e [100) = Tl + 106 = Tl + 10 = 7(0)

i
H*|»

to find that
N N
3 / o) — e 2dt < e S / 17(t) — 7|3 dt
n=1 In n=1 In
N

+ck Z |ee — 77

n=1

et clle— Z||%2(0,T;H*)-

Now

é/l 12(t) — 22|12 dt:i:l/fn H;/In[é(t)—g(s)]ds‘;
S Rl [

N .
< ckQZ/I 120 |1%-dt
n=1 n

= Ck2”z||%2(o7T;H*)a

dt
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and
N ~ N ~ )
Sl =Tl =X |5 [ e ~onar],
n=1 n=1 n
1 & _
<3 3 [ 1 -l a
n=1Y"n
1 _
< T 1€~ 5”%2(0,T;H*)-
Therefore,

N
Z/[ 16(t) = Lzt < e RP1OT 20,7y + €11 = U Z 20 .0r):
n=1"""n

and so
N
> [ et = o)
n=1 In
(3.26) < cllilzeomm kI8 + 2]

Finally, we estimate the termgv? — 1 (w, 4+ wn—1)|x and |lw, —
wp—1|lz. We have

1

wl — L (wp +wp_1) = Z /In [w(t) — % (wy, + wy—1)] dt

1 tn tn—1
=—— / w(s) ds—i—/ w(s)ds| dt,
2k Ji, | Je ¢

and so
[wp = 5 (wn + wn—1) |l < ¢ / [ () || rdt.
In
Also,
Jun = warlln = | [ aae], < [ Tl
I, H I,
Thus

N
> lwg = & (wn +wn1) || llwn — wo1llm
n=1

N 2
(3.27) <c) (/1 [ (8)|| dt) < ck||wl[20,7.m)-

n=1
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Summarizing then, by using (3.17), (3.20), (3.21), (3.24)—(3.27) and
the inequality

I = W0z < ellto = W 2oran < e

we obtain the error estimate

max [ —wnllm < e {e+k (] =0z + 18]l 0rm

100 e o105y + 130,130 ) §
e {e+k (Il + 10l 0rm)

. - 1/2
(3:28) +llitll 2oz (= + kWl 2omy) |

The following result is therefore valid.

Theorem 3.4. For the abstract problenA Bs, assume that is a Hilbert
space, K C H a non-empty, closed, convex cone; H x H — IR a
symmetric, bounded anfd-elliptic bilinear form onH, ¢ ¢ H'(0,T; H*),

¢(0) = 0andj : K — IR non-negative, convex, positively homogeneous
and Lipschitz continuous. Then the time-discrete solutibrconverges to

w in the sense that

k J—
(3.29) | max, |lwy — wy||g — 0 ask — 0.

4 Spatially and fully discrete approximations of the abstract problem

In this section, we prove the convergence of spatially and fully discrete
solutions for the abstract Problefmss.

In both the spatially and fully discrete approximations, the sgéde
replaced by a family of finite-dimensional subspafl$ }, and correspond-
ingly, the setK is replaced by a family of finite-dimensional subsgks”},
defined byk" = H"N K. The subspacddi”} are intended to be finite ele-
ment spaces, though much of the analysis applies to more general situations.
We useh € (0, 1] for the mesh parameter of a triangulation of the domain
(2, and make the following additional assumptions about the function space
and the finite element space.

Assumption(H). There exists a subspad®& C H with the property
that H'(0, T'; Hy) N H(0,T; K) is dense inH'(0, T; K) in the norm of
HY(0,T; H).

Assumptior{Hs). For some constantsanda > 0, the estimate

(4.1) inf ||z — 2"y <cllzllm, h® Yze HoNK
zheKh
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holds.
These two hypotheses will be verified later for the particular case of the
primal problem in elastoplasticity.

Spatially discrete approximations

The spatially discrete approximation of Probléms is the following.

Problem ABS. Findw" : [0,T] — H", w"(0) = 0, such that for almost
allt € (0,7),w"(t) € K" and

a(w(t), 2" — " (t)) + j(z") — j(@"(1))
(4.2) > ((t), 2" — () Ve K"

We note that for any giveh, K" is a non-empty, closed, convex cone
in H", and the problem has a unique solutioh € H'(0,T; H). In [3], it
is proved that

M

(4.3) flw— wh||L°°(0,T;H) <c inf [ — L2(0,T;H)

zhe2(0,T;KM)

The inequality (4.3) is the basis for various asymptotic error estimates.
Here we will use the inequality to prove the convergence of the approximate
solution under the basic regularity conditienc H'(0,T; H).

By Assumption H), for anye > 0 there existat € H'(0,T; Ho) N
H'(0,T; K) such that

(4.4) |w — @ g1 o,rm) < €

Sincew € H'(0,T; Hy) N H*(0,T; K), by using AssumptionH>) we
have

inf W — 2" o < eh®lw o
SheL?(0,T;K™) | le2.riany < e h®[wllz2o,rimmo)

Therefore

inf W — 2" oy < |l — ,
heL?(0,T;K™) | lzrien < 22 0.:m1)

inf w— 2" o < e+ chw L
2heL2(0,T;K") H ”LQ(OﬂTfH) — H HL2(0,T,H0)

Now the inequality (4.3) yields

1/2
lw = w" | o7y < €VE + h BN o -

and so we have the following result.
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Theorem 4.1. Letw € H'(0,T; H) be the solution to ProblemBs, and
wh € H'(0,T; H") the solution to the spatially discrete Problefss”.
Then under the set of assumptions followifigl ), together with those on
H", and AssumptionBl; andH,, w" converges tav in the sense that

(4.5) ||w — whHLoo(O’T;H) —0 ash—0.

Fully discrete approximations

We partition the time interval = [0,7] as in Sect.3,and consider the
following family of fully discrete schemes.

Problem AB&*. Find wh* = {whk N, wherew'* € H" 0 <n < N,
with wf* = 0, such that fom = 1,2,..., N, 5whk € K"and

a (9 w4+ (1 — g)wh” |, 2" — 5wﬁk> + j(2")
(4.6) _j (5w2k> > <en,1+9, P 5w,’;k> vt e Kb

It has been shown in [3] that ProbleABs”* has a unique solution, and
that the estimate

max [wn — wi¥|| g < e | [|Eng(w)|a+ Z 1Ejo(w

j+10(w ||H+k:ZH5wg 2

1/2

+clk max | Eno(w)| a Z [0w; — z; e

1/2

N
(4.7) e kY bj_iyo — 2 H

holds. This estimate in turn leads to optimal order error estimates under
suitable assumptions about the regularity of the solution. Here, as before, we
are interested in proving the convergence of the numerical solution under the
basic regularity condition € H'(0, T; H). For this purpose, the inequality
(4.7)is no longer useful since it involves the pointwise valies; , o which
are not defined. We will derive an estimate similar to (4.7) without the
occurrence of pointwise values 6f

First note that, by Assumptiom(), (4.4) still holds.
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We sete,, = w, — w'*, 0 < n < N, with ¢g = 0, and consider the
guantities

A, =ale,+ (1 —0)ey_1,e,), n=1,...,N.

Sinced € [3, 1], a lower bound of4,, is

1
(4.8) An 2 o (llenlla = llen-1lla) -

To obtain an upper bound we begin with
Ay =a(0w, + (1 —0) wy— 1,5wn (5whk)
—a(@w* + (1 — ) wh* | sw, — sw*)
a(@w, + (1 —0) wn_l,éwn — 5w )
—a(@w 4+ (1 = 0) wh* |, sw, — 21
—(1(0 wgk + (1 - 9) wzlil’ Zn T 5wn )7
wherez!" ¢ K" is arbitrary. Using (4.6) in the last term, we obtain
Ap <a(@w, +(1—0) wn 1, 0w, — dw!*)
—a(0wh* + (1 - 0) wh* |, 5wn — 2z
(4.9) +j(z) = J(0wn®) = (o146, 2y — Owpt).

Now integrate (3.1) withy = sw’* ¢ K fromt = t,,_; tot = t,, to obtain
1 1
0< / a(w(t), Sw™™ —w(t)) dt + / 7 (6w dt
k I, k In

(4.10) —i/lnj(w(t))dt— ;/In(ﬁ(t),dwﬁk —(t)) dt.
We then add (4.10) to (4.9) to obtain
(4.11) An < Ry + Ra+ Rs,
where
Ry =a(@wn + (1 —0)wn_1,0en)
(9w T (1— 0wy, sw, — zh)

n ]1{/] a (w(e), sul — () d,

n

Ro= 3 [ D)~ stao)) dr

In

1
R3 = — <€n—1+97 Z'Z - 6w2k> - % <£(t)’ 6wﬁk - U](t)) dt.
In
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We now use the definitions (3.12) and (3.13) to obtain

B = a (Egg(w),ee) + 1 [ aw(t) s, — (o) de

+a(96n+( —0)en— 1,5wn72>
z

4.12)  —a (9 wn 4 (1 — 6) wn_1, Swy —

)

Since

Ro= 3 [ [iGD - i)

In

using the Lipschitz continuity of(-) on K, we have

C . C .
@13) R < [ b= o®llude < [ ah— ) .
In I,
Finally, R3 can be rewritten as

Q3 = <£?L - En—1+97 66n>
@18) by [ (0000~ )t~ (loorio, 2~ B,
In

By combining (4.8) with (4.11)—(4.14), we find that

lenllZ = len—1ll2 < 2a(Eg g(w), en — en—1)
+2 /I a(w(t), Swn, — (1)) dt
+2 kan(ﬁ en+ (1 —0)en_1, 0w, — 2)
—2ka(@w, + (1 —0) wy—1, 0w, — zﬁ)
vo [l = Ol + 2 (6 = orsoren = en)

+2/I (U(t), (t) — Swy) dt — 2k (by_149, 21" — Swy).
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Again we setM = maxj<,<n ||enllq, @nd carry out a series of manipula-
tions very similar to those leading to (3.17), to obtain eventually

N-—1
M < C{IIE&e(w)IIH + D B g(w) = By p(w)|
n=1

N
+E > [6wn — 2l

n=1
N-1
+110% — v —ayollae + Y (6 — Cu-140)
n=1

(4.15) — (fat1 = bnso)llm-

N
+c {k‘ (1wl zoe 0,11y + 1€l oo (0,1 E%)) Z | 6wy, — ZZHH

n=1

N
T (loll st + Wl rsars) S /I "
n=1v""n

N 1/2
+Z/I \w<t)—z’;tHHdt} -
n=1v"n

We now estimate the term

Z/ |0wn — i (t)| & dt.

We have

/ 8w — o (t) 1
_/ sz/ [ (s) — i (t)] dsHHdt
// llis) — ()l + lleo(e)

)HH+Hw( )~ ()HH | dsat

=c [ i) — @)l de+ /1/ H/ dTHHdsdt

<o | () —wd)|udt+ ck / J(t) 1 di.
I, In

Therefore,
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Z f 16w, — i (t) || 17 dt < ¢ || — W[ 1078
(4.16) —i—ck | 10,750y < c€ + ek |[W| 10.7,)-
Next, from

i (t) = 2) | < [|6wn — @ (8)]|a + [|6wn — 2|1
we see that

Z/ s (¢ —zhHHdt<Z/ 18w — ()| 1 dt

(4.17) +k 2 6wy, — 20| .

n=1

It remains to estimate the term

N
B 6wn — 2 a.
n=1

We have
1 )
Swp — = 1 / w(t)d — 2h = 1 / [(t) — (1)) dt + 6, — 2,
k Jr, k Jr,
and so

1 . - ~
l6wn — 23l < [ o(t) — @)l dt + 1800 — 23],
k Jr,

N
k Z 16wn — 23| < b — @l 1.o.730)

n=1

N N
(4.18) k> |0t — 2y < ce+k Y (|0 — 2.
n=1 n=1
Using the bounds (3.20), (3.21), (3.24), (3.25), and (4.16)—(4.18) in the
inequality (4.15) and observing the arbitrariness:bfc K", we get the
estimate

max [t —wallir < e e+ k (1] 0m) + B 20738

(4.29) 12l <0 7:11+) + Il 2 0.7 ) + Do) }

e (e + k@20, + Duk(@) (1] 0

1/2
(4.20)+1|0 <oz + 1)}
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where
(4.21) Dy(w) =k Z 1nf 10, — 21| 5.
n=1 n€

By Assumption Hs), we see that
inf (|0, — 2 < ek 0wnllm < S [ ) [ dt
shekn ! T B o

and thus

N

Dpyp(w) =k Z lnf Ndwn — 2l < eh@l o7 o) -
71 n

Using this inequality in the estimate (4.20), we obtain

Jaxy lwp® — wnll < e {5 +k (@l Lo,y + 1[0l L1 0,10

(4.22) 12l oo 7114 + Wl 2o, ) + Bl 22 0.7}

+C{ (e+k ||ﬁ|’L1(0,T;H) + ha||lb\|L1(o,T;Ho)) ([]l Loe 0,751

. 1/2
(4.23) +l ooz +1)

which in turn gives the following result.

Theorem 4.2. Letw € H'(0,T; H) be the solution to ProblemBs, and
wh* ¢ H" the solution to the fully discrete Problefass”*. Then under
the set of assumptions followin@.1), together with those oii{”, and
Assumptiond; andH,, w"* converges tav in the sense that

(4.24) max. Jwh? — wyllg — 0 ash, k— 0.

5 Convergence of approximations of the primal variational problem
5.1 Time-discrete approximations

We apply Theorem 3.4 to time-discrete solutions of Problermv. First

we need to verify the assumptions stated in the theorem. As noted in [3],
in general there is no guarantee that the bilinear form (2.14) wilEbe
elliptic, and thus the convergence result contained in Theorem 3.4 cannot
be applied to the most general primal problem. On the other hand, all the
assumptions of Theorem 3.4 are satisfied in the practically important special
cases of ProblemKIn-Iso and Kin, with the von Mises yield function.
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Thus the convergence result is readily applicable to time-discrete solutions
of these two problems, and without any assumptions on the regularity of the
solution other than those implied by the existence result, we have, for the
time-discrete solutiofu”, p* v~} of Problem Kin-Iso,

n

ax, {HUZ —u(ta)|lv + 1Pk — p(ta)llo

+vh - ’Y(tn)”m(g)} —0 ask —0,
and for the time-discrete solutiqnu”, p£ } of Problem Kin,

max {ljuf —u(t)lv + [p5 —p(t)llo} =0 ask—0.

5.2 Spatially and fully discrete approximations

Here we want to apply Theorems 4.1 and 4.2 to Probl&ms-Iso and
KIN. The main issue here is verification of the hypotheség @nd H-)
made in Sect. 4.1t is easier to verify these hypotheses for Proenthan
for Kin-1Is0, so for brevity we will verify the hypotheses only for the latter
problem.

In the context of ProblenKiN-1so,

H =7 = (Hy(2))" x Qo x L*(12),
K=27Z,={z=(v,q,n) € Z:|q| < pae. in 2}
We will show that we can take

Hy = (Hy(£2) N C®(2))? x (Qo N C>(2))

(5.1) x(L*(02) N C™(N))
in (Hy) and H>). For this purpose, we need to make some preparations.

The following result is found in [15] (Proposition 23.2).
Proposition 5.1. Assume thak is a Banach spacd, < ¢ < oo. Then the
spaceC'([0,7]; X) is dense inL2(0,T; X).

Using this proposition, we can prove the next result.
Proposition 5.2. Assume thak is a Banach spacé, < ¢ < oo, andl anon-
negative integer. Then the spacé([0, T]; X) is dense in/%4(0, T; X).

Proof. We prove the result fof = 1. A similar argument applies for other
values ofl.

Letu € Wh4(0,T; X). Thenw’ € L4(0,T; X ). By Proposition 5.1, we
can find a sequende, } € C([0,T7]; X) such that

v, — v’ in LIY(0,T; X).
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Definew,, by
t
un(t) = u(0) —l—/ v (t) dt
0
Then{u,} c C([0,T]; X) and converges ta in W14(0,T; X). O
Define

m
P(O,T;X):{p:p(t):Zaiti, a; € X,0<i<m,m=0,1,---}.
=0

Obviously, P(0,7; X) Cc C*([0,T]; X). The following result is found in
[15] (page 442).

Proposition 5.3. Assume tha is a Banach spaceX, C X is dense in
X, 1 < ¢ < o0, andl a non-negative integer. Tha(0,T; Xy) is dense in
CH([0,T7; X).

Combining Proposition 5.2 and Proposition 5.3, we have the following.
Proposition 5.4. Assume thafl is a Banach spaceX, C X is dense in
X, 1< g < oo, andl is a non-negative integer. Théi0, T'; Xj) is dense
in Wha(0, T; X).

Now we recall the following two smooth density results. lket> 0,
1 < p < oo;then

(5.2) Ce°(£2) is dense iV (12).
If the boundaryd(? is Lipschitz continuous, then
(5.3) C*°(R2) is dense ifV*?(12).

From Proposition 5.4, (5.2) and (5.3), we see tHat0, T'; C5°(£2)) is
dense inH'(0,T; H}(£2)),andH (0, T; C>°(£2)) is dense inf{ 1 (0, T; L?
(£2)). Thus givenw = (u,p,v) € H'(0,T; K), we can find a sequence
Wy = (Un, Py n) € HY(0,T;(C(82))7 x (C=(12))2¢ x C=(12))
converging tow in H'(0,T; Z). In order for the spacél, defined in (5.1)
to have the property

(5.4) HY0,T;HyN K) is dense inH' (0, T; K),

we require that
(5.5) Pn € Qo |Pp] <y in £2.

To verify (5.5), let us briefly review a typical proof of the density result (5.3)
(cf. [2]).

We first introduce some notation. Feg € R? andr > 0, we denote by
B(zo,r) = {z € R: |z — zo| <7}

and o
B(xg,r) ={x € R*: le — x| < r}
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the open and closed balls centered:@with radiusr. Here and below, the
vector norm ink? is the Euclidean norm. Define

1/(||l=|>-1)
_ cpe 3 ||:B” < 17
I(@) = {o, el > 1.

wherecy > 0 is chosen so that

/Rd J(x)dr = 1.

The functionJ(-) is infinitely smooth. Then we define the standard mollifier

Jd@) = 5 T(@/e)

which has the properties that
Je € C*(RY), / Je(x)dr =1, J(x)=0for |z| > e
R4

The main steps of the proof of (5.3) are as follows.

Step 1. Localization.Sincedf? is compact and is Lipschitz continuous,
there exists a finite number of points, € 942, positive numbers,,, > 0,
and Lipschitz continuous functions, : R*' — R,1 < m < M, such
that

002 C UM_ B(p,7m/2)

and for eachn, after relabelling the coordinate axes if necessary,
20 B(xm,rm) = {x € B(Tm,mm) : 24 > Ym(T1, -, 1q4-1)}.

Define
D =20 B(xm,rm/2), 1<m<M

and choose an open S8 CC 2 with the property
QcuM 0.

Let {¢n }M_, be a smooth partition of unity subordinate{t®,, }_:i.e.,
for eachm, ¢, € C*°, supp (¢(m) C 2, and

M
Z (m(x) =1, el
m=0

Then we have

M M
u=1u § Cm = § Um,,
m=0 m=0
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where
U, = U -

Step 2. Smooth approximation@f. Takeey € (0, dist (02, 042)), and
consider only thosewith e < ¢;/2. Define(2, = {x € 2 : dist (x,02) >
e0/2}, and define the mollification af, with respect to the spatial variable

by
uj(@) = (Uoxw)(@) = [ Jw)uole—y) dy
B(0,¢)
We then have, foe sufficiently small,
ufy € C5°(5%)
and
lim [Jug — uollwrr(o) = 0.

Step 3. Smooth approximationgf,, 1 <m < M. Fixm=1,---, M and
consider the smooth approximationgf. Recall thatthere exist, > 0and

a Lipschitz continuous function,, such that, upon relabelling the coordinate
axes if necessary,

2N B(xm,rm) = {T € B(Tm,Tm) : Tq > Ym(z1, -, 24-1)}-

Let(2,, = 2N B(xy, rm/2). Foranyz € 2,,, we definex = x+acee,,
where we choose = v/2 max{Lip (y,,), 1}. It can be verified that i is
small enough, then

B(zx¢) C 2N B(x,rm).

Now we let
v () = upm (), x € 2y
and define
(@) = (Jorop)@) = [ Julw) il ~ v d.
B(0,¢)
We have
us, € C™(2)
and

lim [z = wm | wrr(2) = 0.

Step 4. Global smooth approximation with respecttdDefine

M

€ __ €
u—E Uy, -

m=0
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Then B
ut € C(0)
and
u¢ —u in WHP(2)ase — 0.

It is evident from the proof that

pPEQo=p €Qo

and
|p| < va.e. in 2 = |p| <~%in f2.

Thus (5.4), and thereforéd(), is satisfied.

As for (H), we assume that the finite element spii¢eapproximating
V = (H(£2))? contains piecewise linear functions, and the finite element
spacei){)‘ C Qo andM" ¢ M contain piecewise constants. Then for any
z = (v,q,p) € HyN K, we definez = (IT"v, IT"q, IT"11), whereIl"v
is the piecewise linear interpolant of I1"q and IT" . are element-wise
averages off andy. It is not difficult to see that” € K". By the standard
theory of finite element interpolation (see, for example, [1]),

Iz = 2"z < ch(||vll ) + lall g + l1lm@)-

Hence H,) is satisfied.
We now have the following theorem on convergence.

Theorem 5.5. For the problemKIN-Iso, assume that the finite element
spaceV'" contains piecewise linear functions, and ti@$ and M" con-
tain piecewise constants. Then for the spatially discrete soluién=

(uh7ph77h)1
esssupg<i<r { [u(t) = w(0)]lv + [p(t) — P" (1)l
v (E) - ’Yh(t)HM} —0 ash—0,

and for the fully discrete solutiow™ = (u”* p"* ),

., hk _ o hk

v =il f =0 ash,k 0.
For ProblemKIN, assume that the finite element spa&decontains piece-
wiselinears, and tha@{)Z contains piecewise constants. Then for the spatially
discrete solutionv” = (u”, p"),

ess supg<ser { llu(t) — w Oy + Ip(t) = p*O)llg b = 0 ash -0,
{
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and for the fully discrete solutiow™* = (u"*, p"*),

. hk . hk
max {llwn =¥y + o, —ptlof 0 ashk -0
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