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Summary. This work considers semi- and fully discrete approximations to
the primal problem in elastoplasticity. The unknowns are displacement and
internal variables, and the problem takes the form of an evolution variational
inequality. Strong convergenceof time-discrete, aswell as spatially and fully
discrete approximations, is established without making any assumptions of
regularity over and above those established in the proof of well-posedness
of this problem.
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1 Introduction

In a recent work [4], Han and Reddy have revisited the problem of obtaining
estimates for the rate of convergence of approximations to semi- and fully
discrete problems of elastoplasticity. In that work the authors have taken as
their point of departure thedual formulationstudied in theextendedwork [3],
which gives adetailed account of the variational basis of hardening problems
in plasticity, and investigates the theoretical basis of various approximation
schemes. The work [3] makes reference to two alternative forms of the
problem: the primal form, in which the flow law is formulated in terms
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of the dissipation function, and for which case the unknown variables are
displacement, plastic strain and internal variables; and the dual form, in
which the flow law is written in terms of the yield function, with the result
that the unknown variables are displacement and generalized stress.

Convergence of semi- and fully discrete finite element approximations
was proved in [3] under conditions in which not much attention was given
to the degree of smoothness expected of the solutions. Thus, for the primal
problem convergence was established under the assumption that the solu-
tions satisfy particular regularity requirements; for example, for the primal
problem in which linear kinematic and isotropic hardening are present, it is
required that the displacementu belong toW 1,2(0, T ;H2(Ω)3), and that
the internal variablesξ belong toW 1,2(0, T ;H1(Ω)n), for suitablen. On
the other hand, it is shown that a unique solution(u, ξ) to the primal prob-
lem exists withu ∈ W 1,2(0, T ;H1(Ω)3) andξ ∈ W 1,2(0, T ;L2(Ω)n).
Similar disparities are present in the case of the dual problem.

In [4], theauthors haveproved convergenceof approximations to thedual
problem under the minimum conditions of regularity, that is, the regularity
established in the existence proof. The purpose of this contribution is to
achieve the same goal in respect of the primal problem.

By way of background, it is worth mentioning some works that have
preceded the analyses in [3] and [4]. An early contribution in this area was
that of Johnson [8], who considered a formulation with stress as the primary
variable, and who derived error estimates for the fully discrete problem.
About the same time, independent work by Korneev and others was carried
out on such problems (see, for example, [11] and the monograph [10]).
Related work may also be found in [6]. Johnson [9] subsequently analyzed
fully discrete finite element approximations of the problem with hardening,
in the context of a mixed formulation in which both stress and velocity are
the variables.With regard to the primal problem, the first detailed analysis of
convergence of finite element approximations was provided by Han, Reddy
and Schroeder [5]. The work [3] served the purpose of synthesising and
generalizing the results referred to above.

This paper is organized as follows. In Sect. 2 the primal problem is for-
mulated, both in classical and variational forms. Section 3 is concerned
with time-discrete approximations of an abstract problem, of which the
primal problem is an example. The main result in this section establishes
strong convergence of such time-discrete approximations, under conditions
of minimal regularity of the solution. Then, in Sect. 4, strong convergence
of spatially and fully discrete approximations is established, again under
conditions of minimal regularity. Finally in Sect. 5, we apply the conver-
gence results proved for the abstract problem to conclude the convergence
of various schemes for solving the primal problem of elastoplasticity.
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2 Formulation of the primal problem

Consider the initial-boundary value problem for quasistatic behavior of an
elastoplastic body which occupies a bounded domainΩ ⊂ IRd (d ≤ 3
for practical applications) with Lipschitz boundaryΓ . We assume that de-
formations are sufficiently small to warrant adoption of the small strain
assumption. The plastic behavior of the material is assumed to be describ-
able within the classical framework of a convex, elastic domain coupled
with the normality law. The material is assumed to undergo kinematic or
isotropic hardening or a combination of both.

Suppose that the system is initially at rest, and that it is initially un-
deformed and unstressed. A time-dependent field of body forcef(x, t) is
given, withf(x, 0) = 0. Then the problem is governed by the following set
of equations inΩ:

the equilibrium equation

div σ + f = 0,(2.1)

the additive decomposition of strain

ε = e + p,(2.2)

and the strain-displacement relation

ε(u) = 1
2(∇u + (∇u)T ).(2.3)

Hereσ is the stress tensor,ε is the strain tensor,u the displacement
vector,p the plastic strain tensor ande the elastic strain. All the tensors
encountered here are symmetric. The plastic deformation is assumed to be
incompressible so that

trp = 0 or
d∑
i=1

pii = 0.(2.4)

For simplicity, and with little loss in generality, we assume that

u = 0 on Γ,(2.5)

while the initial conditions are assumed to be

u(x, 0) = 0 and p(x, 0) = 0.(2.6)
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2.1 Constitutive relations

There is a linear relation between stress and the elastic strain, that is,

σ = Ce = C(ε(u) − p),(2.7)

whereC is the elasticity modulus.
The features of hardening behavior are captured through the introduction

of a set of scalar and/or tensorial internal variables, denoted collectively here
by anm-dimensional unknown variableξ. We also introduce a stress-like
variableχ conjugate to the internal variableξ, in the sense that

χ = −Hξ,(2.8)

whereH is a hardening modulus. The ordered pairsΣ = (σ,χ) andP =
(p, ξ) are referred to respectively as thegeneralized stressandgeneralized
plastic strain.

The generalized stress takes values only in a closed convex setK; the
interior ofK contains the origin and is called the elastic region while its
boundary is known as the yield surface. Then theflow lawor normality law
governing the evolution of the plastic strain and internal variables takes the
form

Ṗ ≡ (ṗ, ξ̇) ∈ NK(Σ),(2.9)

whereNK(Σ) = {M | M : (T − Σ) ≤ 0 ∀T ∈ K} denotes the normal
cone toK atΣ.

The primal formulation is based on an alternative description of the flow
law which uses the support function ofK, defined by

D(Ṗ ) = sup{T : Ṗ | T ∈ K}.(2.10)

The functionD is nonnegative and may take on the value+∞. From the
theory of convex analysis, the flow law (2.9) is equivalent to the relation
(cf. [3])

Σ ∈ ∂D(Ṗ ),(2.11)

where∂D(Ṗ ) denotes the subdifferential ofD at Ṗ , defined by

D(q,η) ≥ D(ṗ, ξ̇) + σ : (q − ṗ) + χ : (η − ξ̇) ∀ (q,η).(2.12)

In the context of plasticity, the functionD is a measure of the rate of irre-
versible or plastic work, and is known as thedissipation function.
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2.2 Primal variational formulation of the problem

We first introduce some spaces and functionals that are required for the
primal formulation. The spaceV of displacements is defined by

V = [H1
0 (Ω)]d.

Let
Q = {q = (qij)d×d | qji = qij , qij ∈ L2(Ω)},

with the usual inner product and norm of the space[L2(Ω)]d×d. Then the
spaceQ0 of plastic strains is a closed subspace ofQ defined by

Q0 = {q ∈ Q | tr q = 0 a.e. inΩ}.
We will useM = [L2(Ω)]m for the space of internal variablesξ. The
product spaceZ = V ×Q0 ×M is a Hilbert space with the inner product

(w,z)Z = (u,v)V + (p, q)Q + (ξ,η)M

and norm
‖z‖Z = (z,z)1/2Z ,

wherew = (u,p, ξ) andz = (v, q,η).
Corresponding to the setKp = domD, the effective domain ofD, we

define
Zp = {z = (v, q,η) ∈ Z | (q,η) ∈ Kp a.e. in Ω},(2.13)

which is a non-empty, closed, convex cone inZ.
Over the spaceZ, we introduce the bilinear form

a(w,z) =
∫
Ω

[C(ε(u) − p) : (ε(v) − q) + ξ · Hη] dx,(2.14)

the linear functional

〈�(t),z〉 =
∫
Ω

f(t) · v dx(2.15)

and the functional

j(z) =
∫
Ω
D(q,η) dx,(2.16)

where as beforew = (u,p, ξ) andz = (v, q,η).
From the properties ofD, we see thatj(·) is a convex, positively homo-

geneous, nonnegative and l.s.c. functional.
Then the primal variational problem of elastoplasticity takes the follow-

ing form.
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Problem PRIM. Given � ∈ H1(0, T ;Z∗) with �(0) = 0, find w =
(u,p, ξ) : [0, T ] → Z with w(0) = 0, such that for almost allt ∈ (0, T ),
ẇ(t) ∈ Zp and

a(w(t),z − ẇ(t)) + j(z) − j(ẇ(t))
≥ 〈�(t),z − ẇ(t)〉 ∀z ∈ Zp.(2.17)

Later on,wewill take asworking examples the special cases of combined
linear kinematic and isotropic hardening, or linear kinematic hardeningonly,
together with the vonMises yield function. For the former case the unknown
variables are the displacementu, plastic strainp, and isotropic hardening
variableγ.Weuse the spacesV andQ0 for displacements and plastic strains,
and the spaceM of isotropic hardening variables is defined byM = L2(Ω).

In this special context the subsetZp of Z defined in (2.13)) is given by

Zp = {z = (v, q, µ) ∈ Z : |q| ≤ µ a.e. in Ω}.
The bilinear forma : Z × Z → IR becomes

a(w, z) =
∫
Ω

[C(ε(u) − p) : (ε(v) − q) + k1p : q + k2γµ] dx

=
∫
Ω

[Cijkl (εij(u) − pij)(εkl(v) − qkl) + k1pijqij + k2γµ] dx,(2.18)

while the functionalj is defined by (2.16), with the dissipation functionD
being given by

D(q, µ) =
{
c0|q|, if |q| ≤ µ,
+∞, otherwise.(2.19)

Here,c0 > 0 is theconstant in thevonMisesyield condition.The linear func-
tional �(t) is as in (2.15). With these modifications, the primal variational
problem of elastoplasticity with combined linear kinematic and isotropic
hardening, and with the von Mises yield criterion, is

ProblemKIN-ISO.Given� ∈ H1(0, T ;Z∗), �(0) = 0, findw = (u,p, γ) :
[0, T ] → Z with w(0) = 0, such that for almost allt ∈ (0, T ), ẇ(t) ∈ Zp
and

a(w(t),z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈�(t),z − ẇ(t)〉 ∀z

= (v, q, µ) ∈ Zp.(2.20)

The problem for the case of linear kinematic hardening with the von
Mises yield crierion can be viewed as a degenerate case of ProblemKin-
Iso, with k2 = 0. The unknown variables for this case are the displacement
u and the plastic strainp. We still useV andQ0 as previously defined, and
the solution space is nowZ = V ×Q0, with the inner product

(w,z)Z = (u,v)V + (p, q)Q
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and the norm‖z‖Z = (z,z)1/2Z , wherew = (u,p) andz = (v, q). This
time, instead of (2.19), the dissipation function takes the simple form

D(q) = c0|q| ∀ q ∈ Q0,(2.21)

so that the functional

j(z) =
∫
Ω
D(q) dx for z = (v, q) ∈ Z(2.22)

is finite on the whole spaceZ. The bilinear forma : Z × Z → IR is now

a(w,z) =
∫
Ω

[C(ε(u) − p) : (ε(v) − q) + k1p : q] dx(2.23)

while the linear functional�(t) is unchanged from (2.15).We can nowdefine
the primal variational problem corresponding to linear kinematic hardening
with the von Mises yield function.

Problem Kin. Given� ∈ H1(0, T ;Z∗), �(0) = 0, findw = (u,p) :
[0, T ] → Z with w(0) = 0, such that for almost allt ∈ (0, T ),

a(w(t),z−ẇ(t))+j(z)−j(ẇ(t)) ≥ 〈�(t),z−ẇ(t)〉 ∀z = (v, q) ∈ Z.
(2.24)

2.3 Properties of material parameters

The elasticity tensorC has the symmetry properties

Cijkl = Cjikl = Cklij ,(2.25)

and we assume that
Cijkl ∈ L∞(Ω)(2.26)

and thatC is pointwise stable: that is, there exists a constantC0 > 0 such
that

Cijkl(x)ζijζkl ≥ C0|ζ|2 ∀ ζ ∈ IRd×d , ζT = ζ, a.e. in Ω.(2.27)

The hardening modulusH, viewed as a linear operator fromIRm into
itself, is assumed to possess the symmetry property

ξ · Hλ = λ · Hξ(2.28)

and it is further assumed that

Hij ∈ L∞(Ω)(2.29)

and that a constantH0 > 0 exists such that

ξ · Hξ ≥ H0|ξ|2 ∀ ξ ∈ IRm, a.e. inΩ.(2.30)
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3 Time-discrete approximations of an abstract problem

Theprimal formulation is aparticular caseof the followingabstract problem.
Problem ABS.Findw : [0, T ] → H, w(0) = 0, such that for almost all
t ∈ (0, T ), ẇ(t) ∈ K and

a(w(t), z − ẇ(t)) + j(z) − j(ẇ(t)) ≥ 〈�(t), z − ẇ(t)〉 ∀ z ∈ K.(3.1)

Under the assumptions that

– H is a Hilbert space
– K ⊂ H is a non-empty, closed, convex cone
– a : H × H → IR is a bilinear form onH, symmetric, bounded and
H-elliptic

– � ∈ H1(0, T ;H∗), �(0) = 0
– j : K → IR is non-negative, convex, positively homogeneous and Lips-
chitz continuous

we have the existence of a unique solutionw ∈ H1(0, T ;H) of the problem
Abs (cf. [3]).

In this section we will prove the strong convergence of time-discrete
solutions of the problemAbs under the basic regularity assumptionw ∈
H1(0, T ;H).

The following elementary result will be used repeatedly:

a, b, x ≥ 0 and x2 ≤ a x+ b =⇒ x2 ≤ a2 + 2 b.(3.2)

We analyze a family of semi-discrete schemes which are obtained by
discretizing the time interval. For notational simplicity, we use a uniform
partition of the time interval[0, T ] with node pointstn = nk, 0 ≤ n ≤ N ,
wherek = T/N is the step-size.Wewill useIn = [tn−1, tn],n = 1, · · · , N ,
to denote the time sub-intervals. We remark that the following analysis can
be easily modified for the case of a non-uniform partition; in this case the
step-sizek in the error bounds is replaced by the maximum step-size of the
partition. For the given linear functional� ∈ H1(0, T ;H∗) and the solution
w ∈ H1(0, T ;H), we use the notation�n = �(tn) andwn = w(tn), which
are well-defined because of the continuous embeddingsH1(0, T ;H∗) ⊂
C([0, T ];H∗) andH1(0, T ;H) ⊂ C([0, T ];H). The symbol∆wn is used
to denote the backward differencewn−wn−1, andδwn = ∆wn/k denotes
the backward divided difference.

Let θ ∈ [12 , 1] be a parameter. A family of generalized mid-point time-
discrete approximations of the problemAbs is
Problem ABSk. Find wk = {wkn}Nn=0 ⊂ H, wk0 = 0, such that forn =
1, . . . , N , δwkn ∈ K and

a(θ wkn + (1 − θ)wkn−1, z − δwkn) + j(z)

−j(δwkn) ≥ 〈�n−1+θ, z − δwkn〉 ∀ z ∈ K.(3.3)
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Here,�n−1+θ = �(tn−1+θ), andtn−1+θ = (n − 1 + θ) k = θ tn + (1 −
θ) tn−1. It is shown in [3] that the use ofθ �∈ [12 , 1] leads to a divergent
scheme. For simplicity in writing, the dependence of the solutionwk on θ
will not be indicated explicitly.

Set
En,θ(w) = θ wn + (1 − θ)wn−1 − wn−1+θ;(3.4)

then the following inequality is the basis for order error estimates (cf. [3]):

max
1≤n≤N

‖wn − wkn‖H

≤ c

(
‖EN,θ(w)‖H +

N−1∑
n=1

‖En,θ(w) − En+1,θ(w)‖H
)

+c

{
k

N∑
n=1

‖δwn − ẇn−1+θ‖H
}1/2

.(3.5)

Nevertheless, we cannot use (3.5) for a convergence analysis under the
basic regularity conditionw ∈ H1(0, T ;H), because then the pointwise
valuesẇn−1+θ occurring in (3.5) are not well-defined. Thus it is necessary
to derive a result similar to (3.5), in which the termsẇn−1+θ are not present.
For this purpose we will need the following density result (for a proof, see,
e.g. [15]).

Theorem 3.1. The spaceC∞([0, T ];H) is dense inH1(0, T ;H); that is,
givenw ∈ H1(0, T ;H), for anyε > 0 there is a functionw ∈ C∞([0, T ];
H) such that

‖w − w‖H1(0,T ;H) ≤ ε.(3.6)

The inequality (3.6) can be equivalently written in the form∫ T

0
‖w(t) − w(t)‖2

Hdt+
∫ T

0
‖ẇ(t) − ẇ(t)‖2

Hdt ≤ ε2.

In addition,

‖w − w‖L∞(0,T ;H) ≡ ess sup0≤t≤T ‖w(t) − w(t)‖H
≤ c ‖w − w‖H1(0,T ;H) ≤ c ε.(3.7)

We will also need the following results, proved in [3].

Lemma 3.2. Under the assumption̈w ∈ L1(0, T ;H),

‖En,θ(w)‖H ≤ 2 θ (1 − θ) k ‖ẅ‖L1(tn−1,tn;H).

If it is assumed further thaẗw ∈ L∞(0, T ;H), then

‖En,θ(w)‖H ≤ θ (1 − θ)
2

k2‖ẅ‖L∞(0,T ;H).
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Lemma 3.3. Under the assumption̈w ∈ L1(0, T ;H),

‖En,θ(w) − En+1,θ(w)‖H ≤ c k ‖ẅ‖L1(tn−1,tn+1;H).

If it is assumed further thatw(3) ∈ L1(0, T ;H), then

‖En,θ(w) − En+1,θ(w)‖H ≤ c k2‖w(3)‖L1(tn−1,tn+1;H).

3.1 A bound onwn − wk
n

Seten = wn − wkn, 0 ≤ n ≤ N , with e0 = 0. From the assumptions on
the bilinear forma(·, ·), we see that the term‖w‖a = a(w,w)1/2 defines a
norm onH, which is equivalent to‖w‖H . Consider the quantity

An = a(θ en + (1 − θ) en−1, δen).

Sinceθ ∈ [12 , 1], we have a lower bound

An ≥ 1
2k
(‖en‖2

a − ‖en−1‖2
a

)
.(3.8)

Next, we derive an upper bound forAn. We have

An = a(θ wn + (1 − θ)wn−1, δwn − δwkn)
−a(θ wkn + (1 − θ)wkn−1, δwn − δwkn).

We use (3.3) withz = δwn for the second term on the right hand side of the
above inequality to obtain

An ≤ a(θ wn + (1 − θ)wn−1, δwn − δwkn)
+j(δwn) − j(δwkn) − 〈�n−1+θ, δwn − δwkn〉.

Combining the lower and upper bound, we have the inequality

1
2k
(‖en‖2

a − ‖en−1‖2
a

)
≤ a(θ wn + (1 − θ)wn−1, δwn − δwkn) + j(δwn)

−j(δwkn) − 〈�n−1+θ, δwn − δwkn〉.(3.9)

Now takez = δwkn in (3.1); then

a(w(t), δwkn − ẇ(t)) + j(δwkn) − j(ẇ(t)) ≥ 〈�(t), δwkn − ẇ(t)〉.
We then integrate the relation overIn to obtain

0 ≤ 1
k

∫
In

a(w(t), δwkn − ẇ(t)) dt+
1
k

∫
In

j(δwkn)dt

−1
k

∫
In

j(ẇ(t)) dt− 1
k

∫
In

〈�(t), δwkn − ẇ(t)〉 dt.(3.10)
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Adding the inequalities (3.9) and (3.10) we find that

1
2k
(‖en‖2

a − ‖en−1‖2
a

) ≤ Q1 +Q2 +Q3,(3.11)

where

Q1 = a(θ wn + (1 − θ)wn−1, δwn − δwkn)

+
1
k

∫
In

a(w(t), δwkn − ẇ(t)) dt,

Q2 =
1
k

∫
In

[j(δwn) − j(ẇ(t))] dt,

Q3 = −〈�n−1+θ, δwn − δwkn〉 − 1
k

∫
In

〈�(t), δwkn − ẇ(t)〉 dt.

We now estimate each of these three terms. Define the local average ofw(t)
by

wan =
1
k

∫
In

w(t) dt ∈ H, n = 1, · · · , N,(3.12)

and by analogy with (3.4) introduce the quantities

Ean,θ(w) = θ wn + (1 − θ)wn−1 − wan.(3.13)

Then

Q1 = a(θ wn + (1 − θ)wn−1 − wan, δwn − δwkn)

+
1
k

∫
In

a(w(t), δwn) dt− 1
k

∫
In

a(w(t), ẇ(t)) dt

= a(Ean,θ(w), δwn − δwkn) + a(wan, δwn)

− 1
2 k

[a(wn, wn) − a(wn−1, wn−1)]

=
1
k
a(Ean,θ(w), en − en−1)

+
1

2 k
[2 a(wan, wn − wn−1) − a(wn, wn) + a(wn−1, wn−1)] .

Since

2 a(wan, wn − wn−1) − a(wn, wn) + a(wn−1, wn−1)
= a(2wan − wn − wn−1, wn − wn−1)

we see that

Q1 =
1
k
a(Ean,θ(w), en − en−1)

+
1
k
a(wan − 1

2 (wn + wn−1), wn − wn−1).(3.14)
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For the second termQ2, we use the Lipschitz continuity ofj(·) onK to
obtain

|Q2| ≤ c

k

∫
In

‖δwn − ẇ(t)‖Hdt

=
c

k

∫
In

∥∥∥∥∥1
k

∫
In

(ẇ(s) − ẇ(t)) ds

∥∥∥∥∥
H

dt

≤ c

k2

∫
In

∫
In

‖ẇ(s) − ẇ(t)‖Hds dt

≤ c

k2

∫
In

∫
In

[‖ẇ(s) − ẇ(s)‖H + ‖ẇ(t) − ẇ(t)‖H
+‖ẇ(s) − ẇ(t)‖H

]
ds dt

=
c

k

∫
In

‖ẇ(t) − ẇ(t)‖H dt+
c

k2

∫
In

∫
In

∥∥∥∫ t

s
ẅ(τ) dτ

∥∥∥
H
ds dt

≤ c

k

∫
In

‖ẇ(t) − ẇ(t)‖H dt+ c

∫
In

‖ẅ(t)‖H dt.(3.15)

Analogously to (3.12), we define the local average of� by

�an =
1
k

∫
In

�(t) dt ∈ H∗, n = 1, · · · , N.

Then

Q3 = 〈�an − �n−1+θ, δwn − δwkn〉 +
1
k

∫
In

〈�(t), ẇ(t) − δwn〉 dt.

Now∫
In

〈�(t), δwn〉 dt = 〈1
k

∫
In

�(t) dt,
∫
In

ẇ(s) ds〉 =
∫
In

〈�an, ẇ(t)〉 dt,

so that

Q3 =
1
k

〈�an − �n−1+θ, en − en−1〉 +
1
k

∫
In

〈�(t) − �an, ẇ(t)〉 dt.
(3.16)

Combining (3.11), (3.14), (3.15) and (3.16) we obtain

‖en‖2
a − ‖en−1‖2

a ≤ 2 a(Ean,θ(w), en − en−1)

+ 2 a(wan − 1
2 (wn + wn−1), wn − wn−1)

+ c

∫
In

‖ẇ(t) − ẇ(t)‖Hdt+ c k

∫
In

‖ẅ(t)‖Hdt

+ 2 〈�an − �n−1+θ, en − en−1〉 + 2
∫
In

〈�(t) − �an, ẇ(t)〉 dt.
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Adding the above inequalities fromn = 1 to n, and observing thate0 = 0,
we have

‖en‖2
a ≤ 2

n∑
j=1

a(Eaj,θ(w), ej − ej−1)

+2
n∑
j=1

a(waj − 1
2 (wj + wj−1), wj − wj−1)

+ c

∫ tn

0
‖ẇ(t) − ẇ(t)‖Hdt+ c k

∫ tn

0
‖ẅ(t)‖Hdt

+ 2
n∑
j=1

〈�aj − �j−1+θ, ej − ej−1〉 + 2
n∑
j=1

∫
Ij

〈�(t) − �aj , ẇ(t)〉 dt

= 2 a(Ean,θ(w), en) + 2
n−1∑
j=1

a(Eaj,θ(w) − Eaj+1,θ(w), ej)

+ 2
n∑
j=1

a(waj − 1
2 (wj + wj−1), wj − wj−1)

+ 2 〈�an − �n−1+θ, en〉 + 2
n−1∑
j=1

〈(�aj − �j−1+θ) − (�aj+1 − �j+θ), ej〉

+ 2
n∑
j=1

∫
Ij

〈�(t) − �aj , ẇ(t)〉 dt

+ c

∫ tn

0
‖ẇ(t) − ẇ(t)‖Hdt+ c k

∫ tn

0
‖ẅ(t)‖Hdt.

SetM = max1≤n≤N ‖en‖a. Then from the above inequality we get

M2 ≤ cM

{
‖EaN,θ(w)‖H +

N−1∑
n=1

‖Ean,θ(w) − Ean+1,θ(w)‖H

+ ‖�aN − �N−1+θ‖H∗ +
N−1∑
n=1

‖(�an − �n−1+θ)

− (�an+1 − �n+θ)‖H∗

}

+ c

N∑
n=1

‖wan − 1
2 (wn + wn−1)‖H‖wn − wn−1‖H
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+ c

N∑
n=1

∫
In

‖�(t) − �an‖H∗‖ẇ(t)‖Hdt

+ c

∫ T

0
‖ẇ(t) − ẇ(t)‖Hdt+ c k

∫ T

0
‖ẅ(t)‖Hdt.

Applying the result (3.2), we then have

max
1≤n≤N

‖en‖a

≤ c

{
‖EaN,θ(w)‖H +

N−1∑
n=1

‖Ean,θ(w) − Ean+1,θ(w)‖H

+‖�aN − �N−1+θ‖H∗ +
N−1∑
n=1

‖(�an − �n−1+θ) − (�an+1 − �n+θ)‖H∗

}

+c

{
N∑
n=1

‖wan − 1
2 (wn + wn−1)‖H‖wn − wn−1‖H

+
∫ T

0
‖ẇ(t) − ẇ(t)‖Hdt

+k
∫ T

0
‖ẅ(t)‖Hdt+

N∑
n=1

∫
In

‖�(t) − �an‖H∗‖ẇ(t)‖Hdt
}1/2

.

(3.17)

We now analyze each term on the right hand side of (3.17). First, for the
terms involvingEan,θ(w), we have

‖Ean,θ(w) − Ean+1,θ(w)‖H ≤ ‖Ean,θ(w) − Ean+1,θ(w)‖H
+‖Ean,θ(w − w)‖H + ‖Ean+1,θ(w − w)‖H .(3.18)

Sincew(t) − w(t) is continuous int, it follows that

wan−wan =
1
k

∫
In

[w(t) −w(t)] dt = w(τn) −w(τn), for some τn ∈ In.

Hence

Ean,θ(w − w) = θ (wn − wn) + (1 − θ) (wn−1 − wn−1)
−(w(τn) − w(τn))

= θ

∫ tn

τn

[ẇ(t) − ẇ(t)] dt+ (1 − θ)
∫ tn

τn

[ẇ(t) − ẇ(t)] dt,
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and so

‖Ean,θ(w − w)‖H ≤ c

∫ tn

tn−1

‖ẇ(t) − ẇ(t)‖Hdt.

Similarly, it can be shown that

‖Ean+1,θ(w − w)‖H ≤ c

∫ tn+1

tn

‖ẇ(t) − ẇ(t)‖Hdt.

Now observing that

Ean,θ(w) = En,θ(w) + wn−1+θ − 1
k

∫
In

w(t) dt,

we have

Ean,θ(w) − Ean+1,θ(w) = (En,θ(w) − En+1,θ(w))

+
(
wn−1+θ − 1

k

∫
In

w(t) dt
)

−
(
wn+θ − 1

k

∫
In+1

w(t) dt
)
.

By Lemma 3.3,

‖En,θ(w) − En+1,θ(w)‖H ≤ c k ‖ẅ‖L1(tn−1,tn+1;H).

We use the Taylor expansion

w(t) = wn−1+θ + ẇn−1+θ(t− tn−1+θ) +
∫ t

tn−1+θ

(t− s) ẅ(s) ds

to get

wn−1+θ − 1
k

∫
In

w(t) dt = −1 − 2 θ
2

k ẇn−1+θ

−1
k

∫
In

∫ t

tn−1+θ

(t− s) ẅ(s) ds dt.(3.19)

So(
wn−1+θ − 1

k

∫
In

w(t) dt
)

−
(
wn+θ − 1

k

∫
In+1

w(t) dt
)

=
1 − 2 θ

2
k
[
ẇn+θ − ẇn−1+θ

]
−1
k

∫
In

∫ t

tn−1+θ

(t− s) ẅ(s) ds dt+
1
k

∫
In+1

∫ t

tn+θ

(t− s) ẅ(s) ds dt

=
1 − 2 θ

2
k

∫ tn+θ

tn−1+θ

ẅ(t) dt

−1
k

∫
In

∫ t

tn−1+θ

(t− s) ẅ(s) ds dt+
1
k

∫
In+1

∫ t

tn+θ

(t− s) ẅ(s) ds dt,
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and hence

‖Ean,θ(w) − Ean+1,θ(w)‖H ≤ ‖En,θ(w) − En+1,θ(w)‖H

+

∥∥∥∥∥
(
wn−1+θ − 1

k

∫
In

w(t) dt
)

−
(
wn+θ − 1

k

∫
In+1

w(t) dt
)∥∥∥∥∥
H

,

which implies that

‖Ean,θ(w) − Ean+1,θ(w)‖H ≤ c k ‖ẅ‖L1(tn−1,tn+1;H).

Therefore from (3.18),

‖Ean,θ(w) − Ean+1,θ(w)‖H ≤ c k ‖ẅ‖L1(tn−1,tn+1;H)

+c
∫ tn+1

tn−1

‖ẇ(t) − ẇ(t)‖Hdt,

and thus

N−1∑
n=1

‖Ean,θ(w) − Ean+1,θ(w)‖H ≤ c k ‖ẅ‖L1(0,T ;H)

+c ‖ẇ − ẇ‖L1(0,T ;H) ≤ c k ‖ẅ‖L1(0,T ;H) + c ε.(3.20)

The formula (3.19) withn = N implies that∥∥∥wN−1+θ − 1
k

∫
IN

w(t) dt
∥∥∥
H

≤ c k
[‖ẇ‖L∞(tN−1,tN ;H) + ‖ẅ‖L1(tN−1,tN ;H)

]
.

By Lemma 3.2,

‖EN,θ(w)‖H ≤ c k ‖ẅ‖L1(tN−1,tN ;H).

It is not difficult to see that

‖EaN,θ(w) − EaN,θ(w)‖H ≤ c sup
tN−1≤t≤tN

‖w(t) − w(t)‖H .

Applying (3.7), we then have

‖EaN,θ(w) − EaN,θ(w)‖H ≤ c ε.

Using the last several bounds in the inequality

‖EaN,θ(w)‖H ≤ ‖EaN,θ(w) − EaN,θ(w)‖H
+‖EN,θ(w)‖H +

∥∥∥wN−1+θ − 1
k

∫
IN

w(t) dt
∥∥∥
H
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we obtain

‖EaN,θ(w)‖H ≤ c ε+ c k
[‖ẇ‖L∞(tN−1,tN ;H) + ‖ẅ‖L1(tN−1,tN ;H)

]
.

(3.21)

We will carry out similar manipulations on the terms involving approx-
imations of�. First another application of Theorem 3.1 yields the existence
of an� ∈ C∞([0, T ];H∗) such that

‖�− �‖H1(0,T ;H∗) ≤ ε.(3.22)

We also have

‖�− �‖L∞(0,T ;H∗) ≤ c ‖�− �‖H1(0,T ;H∗) ≤ c ε.(3.23)

Thus

‖�aN − �N−1+θ‖H∗ ≤ ‖�aN − �N−1+θ‖H∗

+‖�aN − �
a
N‖H∗ + ‖�N−1+θ − �N−1+θ‖H∗

≤ ‖�aN − �N−1+θ‖H∗ + c ‖�− �‖L∞(0,T ;H∗)

≤ ‖�aN − �N−1+θ‖H∗ + c ε.

Now applying the formula (3.19) to� we see that

‖�aN − �N−1+θ‖H∗ ≤ c k
[
‖�̇‖L∞(tN−1,tN ;H∗) + ‖�̈‖L1(tN−1,tN ;H∗)

]
.

Hence

‖�aN − �N−1+θ‖H∗ ≤ c ε+ c k
[
‖�̇‖L∞(0,T ;H∗) + ‖�̈‖L1(0,T ;H∗)

]
.

(3.24)

Similarly,

‖(�an − �n−1+θ) − (�an+1 − �n+θ)‖H∗

≤ ‖(�an − �n−1+θ) − (�an+1 − �n+θ)‖H∗

+‖(�an − �an+1) − (�an − �
a
n+1)‖H∗

+‖(�n−1+θ − �n+θ) − (�n−1+θ − �n+θ)‖H∗

≤ ‖(�an − �n−1+θ) − (�an+1 − �n+θ)‖H∗ + c ‖�̇− �̇‖L1(tn−1,tn+1;H∗).

Applying (3.19) to� once more, we have

‖(�an − �n−1+θ) − (�an+1 − �n+θ)‖H∗ ≤ c k ‖�̈‖L1(tn−1,tn+1;H∗),
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and therefore
N−1∑
n=1

‖(�an − �n−1+θ) − (�an+1 − �n+θ)‖H∗

≤ c k ‖�̈‖L1(0,T ;H∗) + c ‖�̇− �̇‖L1(0,T ;H∗).

Hence
N−1∑
n=1

‖(�an − �n−1+θ) − (�an+1 − �n+θ)‖H∗ ≤ c k ‖�̈‖L1(0,T ;H∗) + c ε.

(3.25)

For the last sum in (3.17), we first use the Cauchy-Schwarz inequality in the
form

N∑
n=1

∫
In

‖�(t) − �an‖H∗‖ẇ(t)‖Hdt

≤ ‖ẇ‖L2(0,T ;H)

[
N∑
n=1

∫
In

‖�(t) − �an‖2
H∗dt

]1/2

,

then use the inequality

‖�(t) − �an‖2
H∗ ≤ c

[
‖�(t) − �

a
n‖2
H∗ + ‖�an − �

a
n‖2
H∗ + ‖�(t) − �(t)‖2

H∗
]
,

to find that
N∑
n=1

∫
In

‖�(t) − �an‖2
H∗dt ≤ c

N∑
n=1

∫
In

‖�(t) − �
a
n‖2
H∗ dt

+c k
N∑
n=1

‖�an − �
a
n‖2
H∗ + c ‖�− �‖2

L2(0,T ;H∗).

Now
N∑
n=1

∫
In

‖�(t) − �
a
n‖2
H∗ dt =

N∑
n=1

∫
In

∥∥∥1
k

∫
In

[�(t) − �(s)] ds
∥∥∥2

H∗
dt

=
N∑
n=1

∫
In

1
k2

∥∥∥∫
In

∫ t

s
�̇(τ) dτ ds‖2

H∗dt

≤ c k2
N∑
n=1

∫
In

‖�̇(t)‖2
H∗dt

= c k2‖�̇‖2
L2(0,T ;H∗),
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and

N∑
n=1

‖�an − �
a
n‖2
H∗ =

N∑
n=1

∥∥∥1
k

∫
In

[�(t) − �(t)] dt
∥∥∥2

H∗

≤ 1
k

N∑
n=1

∫
In

‖�(t) − �(t)‖2
H∗ dt

≤ 1
k

‖�− �‖2
L2(0,T ;H∗).

Therefore,

N∑
n=1

∫
In

‖�(t) − �an‖2
H∗dt ≤ c k2‖�̇‖2

L2(0,T ;H∗) + c ‖�− �‖2
L2(0,T ;H∗),

and so

N∑
n=1

∫
In

‖�(t) − �an‖H∗‖ẇ(t)‖Hdt

≤ c ‖ẇ‖L2(0,T ;H)

[
k ‖�̇‖L2(0,T ;H∗) + ε

]
.(3.26)

Finally, we estimate the terms‖wan − 1
2 (wn + wn−1)‖H and‖wn −

wn−1‖H . We have

wan − 1
2 (wn + wn−1) =

1
k

∫
In

[
w(t) − 1

2 (wn + wn−1)
]
dt

= − 1
2 k

∫
In

[∫ tn

t
ẇ(s) ds+

∫ tn−1

t
ẇ(s) ds

]
dt,

and so

‖wan − 1
2 (wn + wn−1)‖H ≤ c

∫
In

‖ẇ(t)‖Hdt.

Also,

‖wn − wn−1‖H =
∥∥∥∫

In

ẇ(t) dt
∥∥∥
H

≤
∫
In

‖ẇ(t)‖H dt.

Thus

N∑
n=1

‖wan − 1
2 (wn + wn−1)‖H‖wn − wn−1‖H

≤ c

N∑
n=1

(∫
In

‖ẇ(t)‖H dt
)2

≤ c k ‖ẇ‖L2(0,T ;H).(3.27)
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Summarizing then, by using (3.17), (3.20), (3.21), (3.24)—(3.27) and
the inequality

‖ẇ − ẇ‖L1(0,T ;H) ≤ c ‖ẇ − ẇ‖L2(0,T ;H) ≤ c ε,

we obtain the error estimate

max
1≤n≤N

‖wkn − wn‖H ≤ c
{
ε+ k

(‖ẇ‖L∞(0,T ;H) + ‖ẅ‖L1(0,T ;H)

+‖�̇‖
L∞(0,T ;H∗)

+ ‖�̈‖L1(0,T ;H∗)

)}
+c
{
ε+ k

(
‖ẇ‖L2(0,T ;H) + ‖ẅ‖L1(0,T ;H)

)
+‖ẇ‖L2(0,T ;H)

(
ε+ k ‖�̇‖L2(0,T ;H∗)

)}1/2
.(3.28)

The following result is therefore valid.

Theorem 3.4. For the abstract problemAbs, assume thatH is a Hilbert
space,K ⊂ H a non-empty, closed, convex cone,a : H × H → IR a
symmetric, bounded andH-elliptic bilinear form onH, � ∈ H1(0, T ;H∗),
�(0) = 0 and j : K → IR non-negative, convex, positively homogeneous
and Lipschitz continuous. Then the time-discrete solutionwk converges to
w in the sense that

max
1≤n≤N

‖wkn − wn‖H → 0 as k → 0.(3.29)

4 Spatially and fully discrete approximations of the abstract problem

In this section, we prove the convergence of spatially and fully discrete
solutions for the abstract ProblemAbs.

In both the spatially and fully discrete approximations, the spaceH is
replacedbya family of finite-dimensional subspaces{Hh}, and correspond-
ingly, the setK is replaced by a family of finite-dimensional subsets{Kh},
defined byKh = Hh∩K. The subspaces{Hh} are intended to be finite ele-
ment spaces, thoughmuch of the analysis applies tomore general situations.
We useh ∈ (0, 1] for the mesh parameter of a triangulation of the domain
Ω, and make the following additional assumptions about the function space
and the finite element space.

Assumption(H1). There exists a subspaceH0 ⊂ H with the property
thatH1(0, T ;H0) ∩ H1(0, T ;K) is dense inH1(0, T ;K) in the norm of
H1(0, T ;H).
Assumption(H2). For some constantsc andα > 0, the estimate

inf
zh∈Kh

‖z − zh‖H ≤ c ‖z‖H0 h
α ∀ z ∈ H0 ∩K(4.1)
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holds.
These two hypotheses will be verified later for the particular case of the

primal problem in elastoplasticity.

Spatially discrete approximations

The spatially discrete approximation of ProblemAbs is the following.
Problem ABSh. Findwh : [0, T ] → Hh, wh(0) = 0, such that for almost
all t ∈ (0, T ), ẇh(t) ∈ Kh and

a(wh(t), zh − ẇh(t)) + j(zh) − j(ẇh(t))
≥ 〈�(t), zh − ẇh(t)〉 ∀ zh ∈ Kh.(4.2)

We note that for any givenh, Kh is a non-empty, closed, convex cone
in Hh, and the problem has a unique solutionwh ∈ H1(0, T ;H). In [3], it
is proved that

‖w − wh‖L∞(0,T ;H) ≤ c inf
zh∈L2(0,T ;Kh)

‖ẇ − zh‖1/2
L2(0,T ;H).(4.3)

The inequality (4.3) is the basis for various asymptotic error estimates.
Here we will use the inequality to prove the convergence of the approximate
solution under the basic regularity conditionw ∈ H1(0, T ;H).

By Assumption (H1), for anyε > 0 there existsw̃ ∈ H1(0, T ;H0) ∩
H1(0, T ;K) such that

‖w − w̃‖H1(0,T ;H) ≤ ε.(4.4)

Sincew̃ ∈ H1(0, T ;H0) ∩ H1(0, T ;K), by using Assumption (H2) we
have

inf
zh∈L2(0,T ;Kh)

‖ ˙̃w − zh‖L2(0,T ;H) ≤ c hα‖ ˙̃w‖L2(0,T ;H0).

Therefore

inf
zh∈L2(0,T ;Kh)

‖ẇ − zh‖L2(0,T ;H) ≤ ‖ẇ − ˙̃w‖L2(0,T ;H)

+ inf
zh∈L2(0,T ;Kh)

‖ ˙̃w − zh‖L2(0,T ;H) ≤ ε+ c hα‖ ˙̃w‖L2(0,T ;H0).

Now the inequality (4.3) yields

‖w − wh‖L∞(0,T ;H) ≤ c
√
ε+ c hα/2‖ ˙̃w‖1/2

L2(0,T ;H0),

and so we have the following result.
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Theorem 4.1. Letw ∈ H1(0, T ;H) be the solution to ProblemAbs, and
wh ∈ H1(0, T ;Hh) the solution to the spatially discrete ProblemAbsh.
Then under the set of assumptions following(3.1), together with those on
Hh, and AssumptionsH1 andH2, wh converges tow in the sense that

‖w − wh‖L∞(0,T ;H) → 0 as h → 0.(4.5)

Fully discrete approximations

We partition the time intervalI = [0, T ] as in Sect. 3,and consider the
following family of fully discrete schemes.

Problem ABShk. Findwhk = {whkn }Nn=0 wherew
hk
n ∈ Hh, 0 ≤ n ≤ N ,

with whk0 = 0, such that forn = 1, 2, . . . , N , δwhkn ∈ Kh and

a
(
θ whkn + (1 − θ)whkn−1, z

h − δwhkn

)
+ j(zh)

−j
(
δwhkn

)
≥
〈
�n−1+θ, z

h − δwhkn

〉
∀ zh ∈ Kh.(4.6)

It has been shown in [3] that ProblemAbshk has a unique solution, and
that the estimate

max
n

‖wn − whkn ‖H ≤ c


‖EN,θ(w)‖H +

N−1∑
j=1

‖Ej,θ(w)

−Ej+1,θ(w)‖H + k

N∑
j=1

‖δwj − zhj ‖H



+c


k max

n
‖En,θ(w)‖H

N∑
j=1

‖δwj − zhj ‖H




1/2

+c


k

N∑
j=1

‖ẇj−1+θ − zhj ‖H




1/2

(4.7)

holds. This estimate in turn leads to optimal order error estimates under
suitable assumptions about the regularity of the solution. Here, as before, we
are interested in proving the convergence of the numerical solution under the
basic regularity conditionw ∈ H1(0, T ;H). For this purpose, the inequality
(4.7) is no longer useful since it involves the pointwise valuesẇj−1+θ which
are not defined. We will derive an estimate similar to (4.7) without the
occurrence of pointwise values ofẇ.

First note that, by Assumption (H1), (4.4) still holds.
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We seten = wn − whkn , 0 ≤ n ≤ N , with e0 = 0, and consider the
quantities

An = a(θ en + (1 − θ) en−1, δen), n = 1, . . . , N.

Sinceθ ∈ [12 , 1], a lower bound ofAn is

An ≥ 1
2k
(‖en‖2

a − ‖en−1‖2
a

)
.(4.8)

To obtain an upper bound we begin with

An = a(θ wn + (1 − θ)wn−1, δwn − δwhkn )
−a(θ whkn + (1 − θ)whkn−1, δwn − δwhkn )

= a(θ wn + (1 − θ)wn−1, δwn − δwhkn )
−a(θ whkn + (1 − θ)whkn−1, δwn − zhn)

−a(θ whkn + (1 − θ)whkn−1, z
h
n − δwhkn ),

wherezhn ∈ Kh is arbitrary. Using (4.6) in the last term, we obtain

An ≤ a(θ wn + (1 − θ)wn−1, δwn − δwhkn )
−a(θ whkn + (1 − θ)whkn−1, δwn − zhn)

+j(zhn) − j(δwhkn ) − 〈�n−1+θ, z
h
n − δwhkn 〉.(4.9)

Now integrate (3.1) withz = δwhkn ∈ K from t = tn−1 to t = tn, to obtain

0 ≤ 1
k

∫
In

a(w(t), δwhkn − ẇ(t)) dt+
1
k

∫
In

j(δwhkn )dt

−1
k

∫
In

j(ẇ(t)) dt− 1
k

∫
In

〈�(t), δwhkn − ẇ(t)〉 dt.(4.10)

We then add (4.10) to (4.9) to obtain

An ≤ R1 +R2 +R3,(4.11)

where

R1 = a(θ wn + (1 − θ)wn−1, δen)

− a
(
θ whkn + (1 − θ)whkn−1, δwn − zhn

)
+

1
k

∫
In

a
(
w(t), δwhkn − ẇ(t)

)
dt,

R2 =
1
k

∫
In

[j(zhn) − j(ẇ(t))] dt,

R3 = −
〈
�n−1+θ, z

h
n − δwhkn

〉
− 1
k

∫
In

〈�(t), δwhkn − ẇ(t)〉 dt.
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We now use the definitions (3.12) and (3.13) to obtain

R1 = a
(
Ean,θ(w), δen

)
+

1
k

∫
In

a(w(t), δwn − ẇ(t)) dt

+a
(
θ en + (1 − θ) en−1, δwn − zhn

)
−a
(
θ wn + (1 − θ) wn−1, δwn − zhn

)
.(4.12)

Since

R2 =
1
k

∫
In

[
j(zhn) − j(ẇ(t))

]
dt,

using the Lipschitz continuity ofj(·) onK, we have

|R2| ≤ c

k

∫
In

‖zhn − ẇ(t)‖Hdt ≤ c

k

∫
In

‖zhn − ẇ(t)‖Hdt.(4.13)

Finally,R3 can be rewritten as

Q3 = 〈�an − �n−1+θ, δen〉
+

1
k

∫
In

〈�(t), ẇ(t) − δwn〉 dt− 〈�n−1+θ, z
h
n − δwn〉.(4.14)

By combining (4.8) with (4.11)–(4.14), we find that

‖en‖2
a − ‖en−1‖2

a ≤ 2 a(Ean,θ(w), en − en−1)

+2
∫
In

a(w(t), δwn − ẇ(t)) dt

+2 k a(θ en + (1 − θ) en−1, δwn − zhn)

−2 k a(θ wn + (1 − θ)wn−1, δwn − zhn)

+c
∫
In

‖zhn − ẇ(t)‖Hdt+ 2 〈�an − �n−1+θ, en − en−1〉

+2
∫
In

〈�(t), ẇ(t) − δwn〉 dt− 2 k 〈�n−1+θ, z
h
n − δwn〉.
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Again we setM = max1≤n≤N ‖en‖a, and carry out a series of manipula-
tions very similar to those leading to (3.17), to obtain eventually

M ≤ c

{
‖EaN,θ(w)‖H +

N−1∑
n=1

‖Ean,θ(w) − Ean+1,θ(w)‖H

+ k

N∑
n=1

‖δwn − zhn‖H

+ ‖�aN − �N−1+θ‖H∗ +
N−1∑
n=1

‖(�an − �n−1+θ)

− (�an+1 − �n+θ)‖H∗

}

+ c

{
k (‖w‖L∞(0,T ;H) + ‖�‖L∞(0,T ;H∗))

N∑
n=1

‖δwn − zhn‖H

+ (‖w‖L∞(0,T ;H) + ‖�‖L∞(0,T ;H∗))
N∑
n=1

∫
In

‖δwn − ẇ(t)‖H dt

+
N∑
n=1

∫
In

‖ẇ(t) − zhn‖H dt
}1/2

.

(4.15)

We now estimate the term

N∑
n=1

∫
In

‖δwn − ẇ(t)‖H dt.

We have∫
In

‖δwn − ẇ(t)‖H dt

=
∫
In

∥∥∥1
k

∫
In

[ẇ(s) − ẇ(t)] ds
∥∥∥
H
dt

≤ 1
k

∫
In

∫
In

[‖ẇ(s) − ẇ(s)‖H + ‖ẇ(t)

−ẇ(t)‖H + ‖ẇ(s) − ẇ(t)‖H
]
ds dt

= c

∫
In

‖ẇ(t) − ẇ(t)‖H dt+
1
k

∫
In

∫
In

∥∥∥∫ s

t
ẅ(τ) dτ

∥∥∥
H
ds dt

≤ c

∫
In

‖ẇ(t) − ẇ(t)‖H dt+ c k

∫
In

‖ẅ(t)‖H dt.

Therefore,
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N∑
n=1

∫
In

‖δwn − ẇ(t)‖H dt ≤ c ‖ẇ − ẇ‖L1(0,T ;H)

+c k ‖ẅ‖L1(0,T ;H) ≤ c ε+ c k ‖ẅ‖L1(0,T ;H).(4.16)

Next, from
‖ẇ(t) − zhn‖H ≤ ‖δwn − ẇ(t)‖H + ‖δwn − zhn‖H

we see that
N∑
n=1

∫
In

‖ẇ(t) − zhn‖H dt ≤
N∑
n=1

∫
In

‖δwn − ẇ(t)‖H dt

+k
N∑
n=1

‖δwn − zhn‖H .(4.17)

It remains to estimate the term

k

N∑
n=1

‖δwn − zhn‖H .

We have

δwn − zhn =
1
k

∫
In

ẇ(t) dt− zhn =
1
k

∫
In

[
ẇ(t) − ˙̃w(t)

]
dt+ δw̃n − zhn,

and so

‖δwn − zhn‖H ≤ 1
k

∫
In

‖ẇ(t) − ˙̃w(t)‖H dt+ ‖δw̃n − zhn‖H ,

k

N∑
n=1

‖δwn − zhn‖H ≤ ‖ẇ − ˙̃w‖L1(0,T ;H)

+k
N∑
n=1

‖δw̃n − zhn‖H ≤ c ε+ k

N∑
n=1

‖δw̃n − zhn‖H .(4.18)

Using the bounds (3.20), (3.21), (3.24), (3.25), and (4.16)–(4.18) in the
inequality (4.15) and observing the arbitrariness ofzhn ∈ Kh, we get the
estimate

max
1≤n≤N

‖whkn − wn‖H ≤ c
{
ε+ k

(‖ẇ‖L∞(0,T ;H) + ‖ẅ‖L1(0,T ;H)

+‖�̇‖L∞(0,T ;H∗) + ‖�̈‖L1(0,T ;H∗)

)
+Dhk(w̃)

}
(4.19)

+c
{

(ε+ k ‖ẅ‖L1(0,T ;H) +Dhk(w̃)) (‖ẇ‖L∞(0,T ;H)

+‖�̇‖L∞(0,T ;H∗) + 1)
}1/2

,(4.20)
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where

Dhk(w̃) = k

N∑
n=1

inf
zh
n∈Kh

‖δw̃n − zhn‖H .(4.21)

By Assumption (H2), we see that

inf
zh
n∈Kh

‖δw̃n − zhn‖H ≤ c hα‖δw̃n‖H0 ≤ c hα

k

∫
In

‖ ˙̃w(t)‖H0dt,

and thus

Dhk(w̃) = k

N∑
n=1

inf
zh
n∈Kh

‖δw̃n − zhn‖H ≤ c hα‖ ˙̃w‖L1(0,T ;H0).

Using this inequality in the estimate (4.20), we obtain

max
1≤n≤N

‖whkn − wn‖H ≤ c
{
ε+ k

(‖ẇ‖L∞(0,T ;H) + ‖ẅ‖L1(0,T ;H)

+‖�̇‖L∞(0,T ;H∗) + ‖�̈‖L1(0,T ;H∗)

)
+ hα‖ ˙̃w‖L1(0,T ;H0)

}
(4.22)

+c
{(
ε+ k ‖ẅ‖L1(0,T ;H) + hα‖ ˙̃w‖L1(0,T ;H0)

) (‖ẇ‖L∞(0,T ;H)

+‖�̇‖L∞(0,T ;H∗) + 1
)}1/2

,(4.23)

which in turn gives the following result.

Theorem 4.2. Letw ∈ H1(0, T ;H) be the solution to ProblemAbs, and
whkn ∈ Hh the solution to the fully discrete ProblemAbshk. Then under
the set of assumptions following(3.1), together with those onHh, and
AssumptionsH1 andH2, whk converges tow in the sense that

max
1≤n≤N

‖whkn − wn‖H → 0 as h, k → 0.(4.24)

5 Convergence of approximations of the primal variational problem

5.1 Time-discrete approximations

We apply Theorem 3.4 to time-discrete solutions of ProblemPrim. First
we need to verify the assumptions stated in the theorem. As noted in [3],
in general there is no guarantee that the bilinear form (2.14) will beZ-
elliptic, and thus the convergence result contained in Theorem 3.4 cannot
be applied to the most general primal problem. On the other hand, all the
assumptions of Theorem 3.4 are satisfied in the practically important special
cases of ProblemsKin-Iso andKin, with the von Mises yield function.
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Thus the convergence result is readily applicable to time-discrete solutions
of these two problems, and without any assumptions on the regularity of the
solution other than those implied by the existence result, we have, for the
time-discrete solution{ukn,p

k
n, γ

k
n} of Problem Kin-Iso,

max
1≤n≤N

{
‖ukn − u(tn)‖V + ‖pkn − p(tn)‖Q

+‖γkn − γ(tn)‖L2(Ω)

}
→ 0 as k → 0,

and for the time-discrete solution{ukn,p
k
n} of Problem Kin,

max
1≤n≤N

{
‖ukn − u(tn)‖V + ‖pkn − p(tn)‖Q

}
→ 0 as k → 0.

5.2 Spatially and fully discrete approximations

Here we want to apply Theorems 4.1 and 4.2 to ProblemsKin-Iso and
Kin. The main issue here is verification of the hypotheses (H1) and (H2)
made in Sect. 4.It is easier to verify these hypotheses for ProblemKin than
forKin-Iso, so for brevity we will verify the hypotheses only for the latter
problem.

In the context of ProblemKin-Iso,

H = Z = (H1
0 (Ω))d ×Q0 × L2(Ω),

K = Zp = {z = (v, q, µ) ∈ Z : |q| ≤ µ a.e. in Ω}.
We will show that we can take

H0 = (H1
0 (Ω) ∩ C∞(Ω))d × (Q0 ∩ C∞(Ω))

×(L2(Ω) ∩ C∞(Ω))(5.1)

in (H1) and (H2). For this purpose, we need to make some preparations.
The following result is found in [15] (Proposition 23.2).

Proposition 5.1. Assume thatX is a Banach space,1 ≤ q < ∞. Then the
spaceC([0, T ];X) is dense inLq(0, T ;X).

Using this proposition, we can prove the next result.

Proposition 5.2.Assume thatX is aBanachspace,1 ≤ q < ∞, andl anon-
negative integer. Then the spaceC l([0, T ];X) is dense inW l,q(0, T ;X).

Proof.We prove the result forl = 1. A similar argument applies for other
values ofl.

Letu ∈ W 1,q(0, T ;X). Thenu′ ∈ Lq(0, T ;X). By Proposition 5.1, we
can find a sequence{vn} ⊂ C([0, T ];X) such that

vn → u′ in Lq(0, T ;X).
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Defineun by

un(t) = u(0) +
∫ t

0
vn(t) dt.

Then{un} ⊂ C1([0, T ];X) and converges tou inW 1,q(0, T ;X). ✷

Define

P (0, T ;X) = {p : p(t) =
m∑
i=0

ait
i, ai ∈ X, 0 ≤ i ≤ m, m = 0, 1, · · ·}.

Obviously,P (0, T ;X) ⊂ C∞([0, T ];X). The following result is found in
[15] (page 442).

Proposition 5.3. Assume thatX is a Banach space,X0 ⊂ X is dense in
X, 1 ≤ q < ∞, andl a non-negative integer. ThenP (0, T ;X0) is dense in
C l([0, T ];X).

Combining Proposition 5.2 and Proposition 5.3, we have the following.

Proposition 5.4. Assume thatX is a Banach space,X0 ⊂ X is dense in
X, 1 ≤ q < ∞, andl is a non-negative integer. ThenP (0, T ;X0) is dense
inW l,q(0, T ;X).

Now we recall the following two smooth density results. Letk ≥ 0,
1 ≤ p < ∞; then

C∞
0 (Ω) is dense inW k,p

0 (Ω).(5.2)

If the boundary∂Ω is Lipschitz continuous, then

C∞(Ω) is dense inW k,p(Ω).(5.3)

From Proposition 5.4, (5.2) and (5.3), we see thatH1(0, T ;C∞
0 (Ω)) is

dense inH1(0, T ;H1
0 (Ω)), andH1(0, T ;C∞(Ω)) is dense inH1(0, T ;L2

(Ω)). Thus givenw = (u,p, γ) ∈ H1(0, T ;K), we can find a sequence
wn = (un,pn, γn) ∈ H1(0, T ; (C∞

0 (Ω))d × (C∞(Ω))d×d × C∞(Ω))
converging tow in H1(0, T ;Z). In order for the spaceH0 defined in (5.1)
to have the property

H1(0, T ;H0 ∩K) is dense inH1(0, T ;K),(5.4)

we require that
pn ∈ Q0, |pn| ≤ γn in Ω.(5.5)

To verify (5.5), let us briefly review a typical proof of the density result (5.3)
(cf. [2]).

We first introduce some notation. Forx0 ∈ IRd andr > 0, we denote by

B(x0, r) = {x ∈ IRd : ‖x − x0‖ < r}
and

B(x0, r) = {x ∈ IRd : ‖x − x0‖ ≤ r}
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the open and closed balls centered atx0 with radiusr. Here and below, the
vector norm inIRd is the Euclidean norm. Define

J(x) =
{
c0e

1/(‖x‖2−1), ‖x‖ < 1,
0, ‖x‖ ≥ 1,

wherec0 > 0 is chosen so that∫
IRd

J(x) dx = 1.

The functionJ(·) is infinitely smooth. Thenwe define the standardmollifier

Jε(x) =
1
εd
J(x/ε)

which has the properties that

Jε ∈ C∞(IRd),
∫
IRd

Jε(x) dx = 1, Jε(x) = 0 for ‖x‖ ≥ ε.

The main steps of the proof of (5.3) are as follows.

Step 1. Localization.Since∂Ω is compact and is Lipschitz continuous,
there exists a finite number of pointsxm ∈ ∂Ω, positive numbersrm > 0,
and Lipschitz continuous functionsγm : IRd−1 → IR, 1 ≤ m ≤ M , such
that

∂Ω ⊂ ∪Mm=1B(xm, rm/2)

and for eachm, after relabelling the coordinate axes if necessary,

Ω ∩B(xm, rm) = {x ∈ B(xm, rm) : xd > γm(x1, · · · , xd−1)}.
Define

Ωm = Ω ∩B(xm, rm/2), 1 ≤ m ≤ M

and choose an open setΩ0 ⊂⊂ Ω with the property
Ω ⊂ ∪Mm=0Ωm.

Let {ζm}Mm=0 be a smooth partition of unity subordinate to{Ωm}Mm=0; i.e.,
for eachm, ζm ∈ C∞, supp (ζm) ⊂ Ωm, and

M∑
m=0

ζm(x) ≡ 1, x ∈ Ω.

Then we have

u = u

M∑
m=0

ζm =
M∑
m=0

um,
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where
um = u ζm.

Step 2. Smooth approximation ofu0. Takeε0 ∈ (0,dist (∂Ω0, ∂Ω)), and
consider only thoseεwith ε ≤ ε0/2. DefineΩ′

0 = {x ∈ Ω : dist (x, ∂Ω) >
ε0/2}, and define the mollification ofu0 with respect to the spatial variable
by

uε0(x) = (Jε ∗ u0)(x) =
∫
B(0,ε)

Jε(y)u0(x − y) dy.

We then have, forε sufficiently small,

uε0 ∈ C∞
0 (Ω′

0)

and
lim
ε→0

‖uε0 − u0‖Wk,p(Ω) = 0.

Step 3. Smooth approximation ofum, 1 ≤ m ≤ M . Fixm = 1, · · · ,M and
consider the smoothapproximationofum. Recall that thereexistrm > 0and
aLipschitz continuous functionγm such that, upon relabelling thecoordinate
axes if necessary,

Ω ∩B(xm, rm) = {x ∈ B(xm, rm) : xd > γm(x1, · · · , xd−1)}.
LetΩm = Ω∩B(xm, rm/2). For anyx ∈ Ωm, we definexε = x+α ε en,
where we chooseα =

√
2 max{Lip (γm), 1}. It can be verified that ifε is

small enough, then

B(xε, ε) ⊂ Ω ∩B(x, rm).

Now we let
vεm(x) = um(xε), x ∈ Ωm

and define

uεm(x) = (Jε ∗ vεm)(x) =
∫
B(0,ε)

Jε(y) vεm(x − y) dy.

We have
uεm ∈ C∞(Ωm)

and
lim
ε→0

‖uεm − um‖Wk,p(Ω) = 0.

Step 4. Global smooth approximation with respect tox. Define

uε =
M∑
m=0

uεm.
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Then
uε ∈ C∞(Ω)

and
uε → u in W k,p(Ω) as ε → 0.

It is evident from the proof that

p ∈ Q0 =⇒ pε ∈ Q0

and
|p| ≤ γ a.e. in Ω =⇒ |pε| ≤ γε in Ω.

Thus (5.4), and therefore (H1), is satisfied.
As for (H2), we assume that the finite element spaceV h approximating

V = (H1
0 (Ω))d contains piecewise linear functions, and the finite element

spacesQh0 ⊂ Q0 andMh ⊂ M contain piecewise constants. Then for any
z = (v, q, µ) ∈ H0 ∩K, we definez = (Πhv, Πhq, Πhµ), whereΠhv
is the piecewise linear interpolant ofv, Πhq andΠhµ are element-wise
averages ofq andµ. It is not difficult to see thatzh ∈ Kh. By the standard
theory of finite element interpolation (see, for example, [1]),

‖z − zh‖Z ≤ c h (‖v‖H2(Ω) + ‖q‖H1(Ω) + ‖µ‖H1(Ω)).

Hence (H2) is satisfied.
We now have the following theorem on convergence.

Theorem 5.5. For the problemKin-Iso, assume that the finite element
spaceV h contains piecewise linear functions, and thatQh0 andMh con-
tain piecewise constants. Then for the spatially discrete solutionwh =
(uh,ph, γh),

ess sup0≤t≤T
{

‖u(t) − uh(t)‖V + ‖p(t) − ph(t)‖Q
+‖γ(t) − γh(t)‖M

}
→ 0 as h → 0,

and for the fully discrete solutionwhk = (uhk,phk, γhk),

max
1≤n≤N

{
‖un − uhkn ‖V + ‖pn − phkn ‖Q

+‖γn − γhn‖M
}

→ 0 as h, k → 0.

For ProblemKin, assume that the finite element spaceV h contains piece-
wise linears, and thatQh0 containspiecewiseconstants.Then for thespatially
discrete solutionwh = (uh,ph),

ess sup0≤t≤T
{

‖u(t) − uh(t)‖V + ‖p(t) − ph(t)‖Q
}

→ 0 as h → 0,
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and for the fully discrete solutionwhk = (uhk,phk),

max
1≤n≤N

{
‖un − uhkn ‖V + ‖pn − phkn ‖Q

}
→ 0 as h, k → 0.
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