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Abstract. This paper is devoted to the numerical analysis of a general elliptic variational-hemivariational
inequality. After a review of a solution existence and uniqueness result, we introduce a family of Galerkin
methods to solve the problem. We prove the convergence of the numerical method under the minimal
solution regularity condition available from the existence result and derive a Céa’s inequality for er-
ror estimation of the numerical solutions. Then, we apply the results for the numerical analysis of a
variational-hemivariational inequality in the study of a static problem which models the contact of an
elastic body with a reactive foundation. In particular, under appropriate solution regularity conditions,
we derive an optimal order error estimate for the linear finite element solution.

Keywords. Contact problem; Error estimation; Galerkin method; Variational-hemivariational inequal-
ity.

1. INTRODUCTION

In the recent years, there has been extensive research on the studies of hemivariational and
variational-hemivariational inequalities. Such inequalities are proper mathematical formula-
tions of physical and engineering problems where non-smooth, non-monotone, and/or set-
valued relations are used among different physical quantities. While variational inequalities
are featured by the presence of non-smooth convex functions in their formulations, variational-
hemivariational inequalities include both nonsmooth convex functions and locally Lipschitz
functions that are allowed to be nonconvex. The notion of the hemivariational inequality was
first introduced by Panagiotopoulous in early 1980s [1]. Comprehensive references in this area
include the books [2, 3] and, more recently, [4, 5]. The variational-hemivariational inequality
we study in this paper is of the following form or its variant.

Problem 1.1. Find an element u ∈ K such that

〈Au,v−u〉+Φ(u,v)−Φ(u,u)+Ψ
0(u,u;v−u)≥ 〈 f ,v−u〉, ∀v ∈ K, (1.1)
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where K is a subset of a normed space V , A is an operator mapping V to its dual V ∗, Φ : V ×
V → R, Ψ : V ×V → R is a locally Lipschitz continuous function with respect to the second
argument, and f ∈V ∗.

In (1.1) and below, Ψ0 denotes the generalized directional derivative of Ψ with respect to
its second argument. Properties of Ψ0 and the closely related generalized gradient ∂Ψ can be
found in various references; see, e.g., [4, 6].

The well-posedness of Problem 1.1 was studied in [7] under the assumptions on the data
which will be specified in Section 2. In this paper, we focus on the numerical analysis of
Problem 1.1. Numerical analysis of elliptic hemivariational inequalities has been the subject
of several papers in the recent years; see, e.g., [8, 9, 10, 11]. Nevertheless, we underline that
Problem 1.1 is more general than the hemivariational inequalities studied in these references.
We note in passing that numerical analysis of other types of hemivariational inequalities can be
found in numerous papers, for instance, [12, 13, 14] for evolutionary hemivariational inequali-
ties, [15, 16] for history-dependent hemivariational inequalities, and [17, 18] for hemivariational
inequalities arising in fluid mechanics. In addition to the finite element method, other numeri-
cal methods were also developed to solve hemivariational inequalities; see, e.g., [19, 20, 21] on
virtual element methods. We also mention the survey paper [22], which provides a summary
account of numerical analysis of hemivariational inequalities.

To approximate Problem 1.1, we use a family of Galerkin methods. We prove the conver-
gence of the numerical solutions under the minimal solution regularity available through the
well-posedness result and derive a Céa’s inequality that is the starting point for error estima-
tion. Then we illustrate the applications of the results in the study of the finite element method
for solving a contact problem. Processes of contact between deformable bodies or between
a deformable body and a rigid foundation are commonly seen in industry and everyday life.
Their modeling, analysis, and numerical simulation are the topics of a large number of refer-
ences that continues to grow steadily. An early comprehensive reference in the area is [23].
More recent references include [4, 5, 24]. In these references, various contact problems were
studied for different types of materials, such as elastic, viscoelastic and viscoplastic materials,
associated with different contact and friction boundary conditions. The problems are formu-
lated as variational, hemivariational and variational-hemivariational inequalities, which allow
well-posedness analysis with techniques from functional analysis and nonsmooth analysis.

The rest of the paper is organized as follows. In Section 2, we review an existence and
uniqueness result from [7] on Problem 1.1 and introduce a family of Galerkin methods. In Sec-
tion 3, we prove the convergence of the Galerkin method under the minimal solution regularity
condition available from the existence result. In Section 4, we derive a Céa’s inequality that is
the starting point for error estimation of the numerical solutions. In Section 5, we introduce a
contact problem. In Section 6, we apply the theoretical results from Sections 3 and 4 on the
numerical analysis of the contact problem.

2. PRELIMINARIES

For the analysis of Problem 1.1, we consider the following hypotheses on the data.

H(K) V is a real Hilbert space, and K is a non-empty, closed, and convex set in V .

H(A) A : V →V ∗ is Lipschitz continuous and strongly monotone.
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H(Φ)2 Φ : V ×V → R, for any u ∈V , Φ(u, ·) : V → R is convex and bounded above on a
non-empty open set, and there exists a constant αΦ ≥ 0 such that

Φ(u1,v2)−Φ(u1,v1)+Φ(u2,v1)−Φ(u2,v2)≤ αΦ‖u1−u2‖V‖v1− v2‖V ,
∀u1,u2,v1,v2 ∈V. (2.1)

H(Ψ)2 Ψ : V ×V → R is locally Lipschitz continuous with respect to its second argument,
and the following inequalities hold, for some constants αΨ,1,αΨ,2 ≥ 0, c≥ 0:

Ψ
0(w1,v1;v2− v1)+Ψ

0(w2,v2;v1− v2)≤ αΨ,1‖w1−w2‖V‖v1− v2‖V +αΨ,2‖v1− v2‖2
V ,

∀w1,w2,v1,v2 ∈V, (2.2)∣∣Ψ0(w,u;v)
∣∣≤ c(1+‖w‖V +‖u‖V )‖v‖V , ∀w,u,v ∈V. (2.3)

H( f ) f ∈V ∗.
We denote by mA > 0 the constant in the strong monotonicity inequality of A, i.e.,

〈Av1−Av2,v1− v2〉 ≥ mA‖v1− v2‖2
V , ∀v1,v2 ∈V. (2.4)

Moreover, we denote by LA > 0 the Lipschitz constant constant of A, that is,

‖Av1−Av2‖V ∗ ≤ LA‖v1− v2‖V , ∀v1,v2 ∈V. (2.5)

The subscript 2 in H(Φ)2 reminds the reader that this is a condition for the case where Φ has
two independent variables. Similarly, the subscript 2 in H(Ψ)2 reminds the reader that this is a
condition for the case where Ψ has two independent variables. It is known that, for a real-valued
convex function on a normed space, it is locally Lipschitz continuous on the space if and only if
it is bounded above on a non-empty open set in the space (see, e.g., [25, Corollary 2.4, p. 12]).
Therefore, H(Φ)2 ensures that, for any u ∈V , Φ(u, ·) is locally Lipschitz continuous on V .

The following well-posedness result was proved in [7].

Theorem 2.1. Assume H(K), H(A), H(Φ)2, H(Ψ)2, H( f ), and the smallness condition

αΦ +αΨ,1 +αΨ,2 < mA. (2.6)

Then, Problem 1.1 has a unique solution u ∈ K. Moreover, the operator f 7→ u = u( f ), which
maps the element f ∈V ∗ to the solution u ∈ K of Problem 1.1 is Lipschitz continuous.

Turning to numerical approximation, we let V h ⊂ V be a finite dimensional subspace char-
acterized by a discretization parameter h > 0 with the expectation of convergence when h→ 0.
We use the notation “→” and “ ⇀” for the strong and weak convergence in various spaces
that will be specified later. Let Kh be a non-empty, closed, and convex subset of V h. Then, a
Galerkin approximation of Problem 1.1 is the following.

Problem 2.1. Find an element uh ∈ Kh such that

〈Auh,vh−uh〉+Φ(uh,vh)−Φ(uh,uh)+Ψ
0(uh,uh;vh−uh)≥ 〈 f ,vh−uh〉, ∀vh ∈ Kh. (2.7)

Under the assumptions stated in Theorem 2.1, Problem 2.1 has a unique solution uh. We will
assume that {Kh}h approximates K in the following sense of Mosco (see [26]):

vh ∈ Kh and vh ⇀ v in V imply v ∈ K; (2.8)

∀v ∈ K, ∃vh ∈ Kh such that vh→ v in V as h→ 0. (2.9)
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In the following sections, we use the modified Cauchy–Schwarz inequality on various occa-
sions:

ab≤ ε a2 + cb2, ∀a,b ∈ R, ε > 0, c = 1/(4ε). (2.10)
The parameter ε > 0 will be chosen suitably small. Throughout the paper, we use c to denote
a generic positive constant that is independent of quantities of concern, for instant, in error
analysis of numerical solutions, the constant c is independent of the discretization parameter h.

3. CONVERGENCE

As an intermediate result, which is needed in convergence analysis, we first demonstrate that
the numerical solutions defined by Problem 2.1 are bounded with respect to the parameter h.

Lemma 3.1. Keep the assumptions in Theorem 2.1 and assume that (2.9) holds. Then there
exists a constant M > 0 such that ‖uh‖V ≤M for all h > 0.

Proof. Since K is non-empty, there exists an element u0 ∈ K. By (2.9), we can find uh
0 ∈ Kh

such that uh
0→ u0 in V as h→ 0. By (2.4),

mA‖uh−uh
0‖2

V ≤ 〈Auh−Auh
0,u

h−uh
0〉= 〈Auh,uh−uh

0〉−〈Auh
0,u

h−uh
0〉.

Take vh = uh
0 in (2.7) to obtain

〈Auh,uh−uh
0〉 ≤Φ(uh,uh

0)−Φ(uh,uh)+Ψ
0(uh,uh;uh

0−uh)+ 〈 f ,uh−uh
0〉.

Thus

mA‖uh−uh
0‖2

V ≤Φ(uh,uh
0)−Φ(uh,uh)+Ψ

0(uh,uh;uh
0−uh)+ 〈 f −Auh

0,u
h−uh

0〉. (3.1)

By (2.1),

Φ(uh,uh
0)−Φ(uh,uh)≤Φ(u0,uh

0)−Φ(u0,uh)+αΦ‖uh−u0‖V‖uh−uh
0‖V .

Since ‖uh−u0‖V ≤ ‖uh−uh
0‖V +‖uh

0−u0‖V , we have

Φ(uh,uh
0)−Φ(uh,uh)≤Φ(u0,uh

0)−Φ(u0,uh)+αΦ

(
‖uh−uh

0‖2
V +‖uh

0−u0‖V‖uh−uh
0‖V
)
.

We now apply inequality (2.10) on the term αΦ‖uh
0−u0‖V‖uh−uh

0‖V to get

Φ(uh,uh
0)−Φ(uh,uh)≤Φ(u0,uh

0)−Φ(u0,uh)+(αΦ + ε)‖uh−uh
0‖2

V + c‖uh
0−u0‖2

V .

Moreover, since Φ(u0, ·) is convex and continuous, it is bounded below by a continuous affine
functional on V (see, e.g., [27, p. 433]). Thus there exist two constants c1 and c2, depending on
Φ and u0 and not being necessarily non-negative, such that

Φ(u0,v)≥ c1 + c2‖v‖V , ∀v ∈V.

Then, −Φ(u0,uh)≤−c1− c2‖uh‖V . By (2.2),

Ψ
0(uh,uh;uh

0−uh)≤−Ψ
0(uh

0,u
h
0;uh−uh

0)+
(
αΨ,1 +αΨ,2

)
‖uh−uh

0‖2
V

and, by (2.3),

−Ψ
0(uh

0,u
h
0;uh−uh

0)≤ c
(

1+‖uh
0‖V
)
‖uh−uh

0‖V ≤ ε ‖uh−uh
0‖2

V + c
(

1+‖uh
0‖2

V

)
.

Moreover,

〈 f −Auh
0,u

h−uh
0〉 ≤ ‖ f −Auh

0‖V ∗‖uh−uh
0‖V ≤ ε ‖uh−uh

0‖2
V + c‖ f −Auh

0‖2
V ∗.
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Hence, from (3.1), we derive the following inequality(
mA−αΦ−αΨ,1−αΨ,2−4ε

)
‖uh−uh

0‖2
V

≤Φ(u0,uh
0)+ c

(
1+‖uh

0‖2
V +‖uh

0−u0‖2
V +‖ f −Auh

0‖2
V ∗

)
.

Take ε = (mA−αΦ−αΨ,1−αΨ,2)/8 in (3.2) to find that for a constant c > 0,

‖uh−uh
0‖2

V ≤ c
(

1+Φ(u0,uh
0)+‖uh

0‖2
V +‖uh

0−u0‖2
V +‖ f −Auh

0‖2
V ∗

)
. (3.2)

Note that, as h→ 0,

Φ(u0,uh
0)→Φ(u0,u0),

‖uh
0‖2

V →‖u0‖2
V ,

‖uh
0−u0‖2

V → 0,

‖ f −Auh
0‖2

V ∗ →‖ f −Au0‖2
V ∗.

Therefore, we conclude from (3.2) the boundedness of {‖uh−uh
0‖V}, and then the boundedness

of {‖uh‖V}, with respect to h. �

We now state and prove the following convergence result.

Theorem 3.1. Keep the assumptions in Theorem 2.1. Assume further that (2.8)–(2.9) hold and
the function (w,v) 7→Ψ0(w,w;v) is upper semi-continuous, i.e.,

wn→ w and vn→ v in V =⇒ Ψ
0(w,w;v)≥ limsup

n→∞

Ψ
0(wn,wn;vn). (3.3)

Then, we have the convergence of the numerical method, i.e., uh→ u in V as h→ 0.

Proof. We know from Lemma 3.1 that {uh} is bounded in V . Since V is reflexive, there exist a
subsequence {uh′} ⊂ {uh} and an element w ∈V such that

uh′ ⇀ w in V. (3.4)

Note that the weak limit w belongs to K thanks to the assumption (2.8). Let us strengthen the
weak convergence in (3.4) to strong convergence

uh′ → w in V. (3.5)

By (2.9), we have a sequence {wh′} ⊂V with wh′ ∈ Kh′ such that

wh′ → w in V. (3.6)

By the strong monotonicity of A, mA‖w−uh′‖2
V ≤ 〈Aw−Auh′,w−uh′〉, which is rewritten as

mA‖w−uh′‖2
V ≤ 〈Aw,w−uh′〉−〈Auh′,wh′−uh′〉−〈Auh′,w−wh′〉. (3.7)

We take vh′ = wh′ in (2.7) with h = h′ to obtain

−〈Auh′,wh′−uh′〉 ≤Φ(uh′,wh′)−Φ(uh′,uh′)+Ψ
0(uh′ ,uh′;wh′−uh′)−〈 f ,wh′−uh′〉. (3.8)

Apply (2.1) with u1 = v1 = uh′ , u2 = w and v2 = wh′ to find that

Φ(uh′ ,wh′)−Φ(uh′,uh′)≤Φ(w,wh′)−Φ(w,uh′)+αΦ‖uh′−w‖V‖uh′−wh′‖V . (3.9)
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Write ‖uh′ −wh′‖V ≤ ‖uh′ −w‖V + ‖w−wh′‖V and apply the inequality (2.10) to the term
αΦ‖uh′ −w‖V‖w−wh′‖V . Then, for the last term of (3.9) and a constant c depending on ε ,
we have

αΦ‖uh′−w‖V‖uh′−wh′‖V ≤ (αΦ + ε)‖w−uh′‖2
V + c‖w−wh′‖2

V . (3.10)
By the sub-additivity property of the generalized directional derivative ([6, Section 2.3]),

Ψ
0(uh′,uh′;wh′−uh′)≤Ψ

0(uh′,uh′;wh′−w)+Ψ
0(uh′,uh′;w−uh′).

So

Ψ
0(uh′,uh′;wh′−uh′)≤Ψ

0(uh′,uh′;w−uh′)+Ψ
0(w,w;uh′−w)

+Ψ
0(uh′,uh′;wh′−w)−Ψ

0(w,w;uh′−w). (3.11)

By (2.2), one has

Ψ
0(uh′,uh′;w−uh′)+Ψ

0(w,w;uh′−w)≤
(
αΨ,1 +αΨ,2

)
‖w−uh′‖2

V . (3.12)

Use (3.8)–(3.12) in (3.7) to obtain(
mA−αΦ−αΨ,1−αΨ,2− ε

)
‖w−uh′‖2

V ≤ 〈Aw,w−uh′〉−〈Auh′,w−wh′〉−〈 f ,wh′−uh′〉

+Φ(w,wh′)−Φ(w,uh′)+ c‖w−wh′‖2
V

+Ψ
0(uh′,uh′;wh′−w)−Ψ

0(w,w;uh′−w).

Taking ε = (mA−αΦ−αΨ,1−αΨ,2)/2, one has

1
2
(
mA−αΦ−αΨ,1−αΨ,2

)
‖w−uh′‖2

V ≤ 〈Aw,w−uh′〉−〈Auh′,w−wh′〉−〈 f ,wh′−uh′〉

+Φ(w,wh′)−Φ(w,uh′)+ c‖w−wh′‖2
V

+Ψ
0(uh′,uh′;wh′−w)−Ψ

0(w,w;uh′−w). (3.13)

Consider now the limit of each term on the right side of (3.13) as h′→ 0. From the boundedness
of A and the weak convergence (3.4), 〈Aw,w− uh′〉 → 0. From (2.5) with v1 = uh′ and v2 = 0,
we obtain

‖Auh′‖V ∗ ≤ ‖A0‖V ∗+LA‖uh′‖V .
Thus ∣∣∣〈Auh′,w−wh′〉

∣∣∣≤ ‖Auh′‖V ∗‖w−wh′‖V ≤
(
‖A0‖V ∗+LA‖uh′‖V

)
‖w−wh′‖V .

From the boundedness of {uh′} and the strong convergence (3.6), we find that 〈Auh′,w−wh′〉→
0. Moreover, from (3.6) and (3.4), we know that wh′−uh′ ⇀ 0 in V , and so 〈 f ,wh′−uh′〉 → 0.
Finally, the continuity of Φ with respect to its second argument and (3.6) yield Φ(w,wh′)→
Φ(w,w). As a consequence of the well-known Mazur Lemma, the convexity and continuity of
Φ with respect to its second argument imply that Φ is weakly sequentially lower semicontinuous
with respect to its second argument (cf. [27, p. 136]). Hence, by (3.4),

limsup
h′→0

[
−Φ(w,uh′)

]
=− liminf

h′→0

[
Φ(w,uh′)

]
≤−Φ(w,w).

By (2.3),
Ψ

0(uh′,uh′;wh′−w)≤ c
(

1+‖uh′‖V
)
‖wh′−w‖V .
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Since {uh′} is bounded in V , from the convergence (3.6),

limsup
h′→0

Ψ
0(uh′,uh′;wh′−w)≤ 0.

By [6, Proposition 2.1.2], Ψ0(w,w;v) = max{〈ξ ,v〉 | ξ ∈ ∂Ψ(w,w)} . Hence, for any ξw ∈
∂Ψ(w,w), we have

−Ψ
0(w,w;uh′−w)≤−〈ξw,uh′−w〉 → 0 as h′→ 0.

Thus

limsup
h′→0

[
−Ψ

0(w,w;uh′−w)
]
≤ 0.

With the above preparations, we take the upper limit of both sides of (3.13) as h′→ 0 to conclude
that

limsup
h′→0

‖w−uh′‖2
V ≤ 0,

i.e., the strong convergence (3.5) holds.
Finally, let us show that the strong limit w is the unique solution of Problem 1.1. By (2.9),

for any v ∈ K, we have a sequence {vh′} ⊂ V with vh′ ∈ Kh′ such that vh′ → v in V . Using this
vh′ in (2.7) with h = h′, we have

〈Auh′,vh′−uh′〉+Φ(uh′,vh′)−Φ(uh′,uh′)+Ψ
0(uh′,uh′;vh′−uh′)≥ 〈 f ,vh′−uh′〉. (3.14)

Since vh′ → v and uh′ → w in V , and A : V →V ∗ is Lipschitz continuous, we have

〈Auh′,vh′−uh′〉 → 〈Aw,v−w〉, 〈 f ,vh′−uh′〉 → 〈 f ,v−w〉 as h′→ 0. (3.15)

An analogue of (3.9) is

Φ(uh′,vh′)−Φ(uh′,uh′)≤Φ(w,vh′)−Φ(w,uh′)+αΦ‖uh′−w‖V‖uh′− vh′‖V . (3.16)

Since ‖uh′−w‖V → 0 and ‖uh′− vh′‖V is bounded,

‖uh′−w‖V‖uh′− vh′‖V → 0. (3.17)

By the assumption (3.3),

Ψ
0(w,w;v−w)≥ limsup

h′→0
Ψ

0(uh′,uh′;vh′−uh′). (3.18)

We now take the upper limit as h′→ 0 in (3.14) and make use of the relations (3.15)–(3.18) to
obtain

〈Aw,v−w〉+Φ(w,v)−Φ(w,w)+Ψ
0(w,w;v−w)≥ 〈 f ,v−u〉,

which holds for any v ∈ K. Thus w is a solution of Problem 1.1. Since a solution of Problem
1.1 is unique, we have w = u. Moreover, since the limit u does not depend on the subsequence,
the entire family of the numerical solutions converge, that is, ‖u−uh‖V → 0 as h→ 0. �
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4. ERROR ESTIMATION

To accommodate a more precise error estimation, we need information for a finer structure
on the functional Ψ. For this purpose and with the applications of hemivariational inequalities
in mind, we will replace the term Ψ0(w,u;v) by

I∆(ψ
0(γ1w,γ2u;γ2v)),

where I∆ stands for the integration operator over a measurable set ∆ with ∆⊂Ω or ∆⊂ ∂Ω, and
Ω is the spatial domain of the problem under consideration. For i = 1,2, let mi be a positive
integer, and let γi ∈ L(V,L2(∆;Rmi)). We modify the condition H(Ψ)2 to H(ψ)′2:

H(ψ)′2 m1 and m2 are positive integers, ψ : ∆×Rm1×Rm2 ,
for any y ∈ Rm1 and any z ∈ Rm2 , ψ(·,y,z) is measurable on ∆,
for any y ∈ L2(∆;Rm1) and any z ∈ L2(∆;Rm2), ψ(·,y(·),z(·)) ∈ L1(∆),
for any x ∈ ∆ and any y ∈ Rm1 , ψ(x,y,z) is locally Lipschitz continuous

with respect to z ∈ Rm2 ,
for two constants α ′

ψ,1,α
′
ψ,2 ≥ 0,

ψ
0(y1,z1;z2− z1)+ψ

0(y2,z2;z1− z2)≤ α
′
ψ,1|y1− y2|Rm1 |z1− z2|Rm2 +α

′
ψ,2|z1− z2|2Rm2

∀y1,y2 ∈ Rm1, ∀z1,z2 ∈ Rm2, (4.1)

and for a constant c > 0,∣∣ψ0(y,z1;z2)
∣∣≤ c(1+ |y|Rm1 + |z1|Rm2 ) |z2|Rm2 , ∀y ∈ Rm1, ∀z1,z2 ∈ Rm2. (4.2)

The smallness condition (2.6) is modified to

αΦ +α
′
ψ,1‖γ1‖‖γ2‖+α

′
ψ,2‖γ2‖2 < mA, (4.3)

where ‖γi‖ stands for the operator norm of γi ∈ L(V,L2(∆;Rmi)), i = 1,2.

Then, the form of Problem 1.1 and that of its approximations, Problem 2.1, are modified to
the following.

Problem 4.1. Find an element u ∈ K such that

〈Au,v−u〉+Φ(u,v)−Φ(u,u)+ I∆(ψ
0(γ1u,γ2u;γ2v− γ2u))≥ 〈 f ,v−u〉, ∀v ∈ K. (4.4)

Problem 4.2. Find an element uh ∈ Kh such that

〈Auh,vh−uh〉+Φ(uh,vh)−Φ(uh,uh)+ I∆(ψ
0(γ1uh,γ2uh;γ2vh− γ2uh))

≥ 〈 f ,vh−uh〉, ∀vh ∈ Kh. (4.5)

Similar to [28, Theorem 4.10], we can prove the following analogue of Theorem 2.1 for
Problem 4.1 based on the result stated in Theorem 2.1.

Theorem 4.1. Assume H(K), H(A), H(Φ)2, H(ψ)′2, H( f ), and the smallness condition (4.3).
Then, Problem 4.1 has a unique solution u ∈ K. Moreover, the operator f 7→ u = u( f ) which
maps the element f ∈V ∗ to the solution u ∈ K of Problem 4.1 is Lipschitz continuous.

Counterparts of Lemma 3.1 and Theorem 3.1 for the numerical solutions defined by Problem
4.2 are as follows.
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Lemma 4.1. Keep the assumptions in Theorem 4.1. Assume further that (2.9) holds. Then there
exists a constant M > 0 such that ‖uh‖V ≤M for all h > 0.

Theorem 4.2. Keep the assumptions in Theorem 4.1. Assume further that (2.8)–(2.9) hold and

wn→ w and vn→ v in V =⇒ ψ
0(γ1w,γ2w;γ2v)≥ limsup

n→∞

ψ
0(γ1wn,γ2wn;γ2vn) a.e. on ∆.

(4.6)
Then, we have the convergence of the numerical method, i.e., uh→ u in V as h→ 0.

Let us derive a Cea’s type inequality that is the basis to bound the error u−uh. Let v ∈ K and
vh ∈ Kh be arbitrary. From (2.4), mA‖u−uh‖2

V ≤ 〈Au−Auh,u−uh〉, which is rewritten as

mA‖u−uh‖2
V ≤ 〈Au−Auh,u− vh〉+ 〈Au,vh−u〉+ 〈Au,v−uh〉

+ 〈Au,u− v〉+ 〈Auh,uh− vh〉. (4.7)

From the defining inequality (4.4) for the solution u,

〈Au,u− v〉 ≤Φ(u,v)−Φ(u,u)+ I∆(ψ
0(γ1u,γ2u;γ2v− γ2u))−〈 f ,v−u〉.

From the defining inequality (4.5) for the numerical solution u,

〈Auh,uh− vh〉 ≤Φ(uh,vh)−Φ(uh,uh)+ I∆(ψ
0(γ1uh,γ2uh;γ2vh− γ2uh))−〈 f ,vh−uh〉.

Using these upper bounds in (4.7), after some rearrangement of the terms, we have

mA‖u−uh‖2
V ≤ 〈Au−Auh,u− vh〉+Ru(vh,u)+Ru(v,uh)+ IΦ(uh,vh)+ Iψ(v,vh), (4.8)

where

Ru(v,w) := 〈Au,v−w〉+Φ(u,v)−Φ(u,w)

+ I∆(ψ
0(γ1u,γ2u;γ2v− γ2w))−〈 f ,v−w〉, (4.9)

IΦ(uh,vh) := Φ(u,uh)+Φ(uh,vh)−Φ(u,vh)−Φ(uh,uh),

Iψ(v,vh) := I∆(ψ
0(γ1u,γ2u;γ2v− γ2u)+ψ

0(γ1uh,γ2uh;γ2vh− γ2uh)

−ψ
0(γ1u,γ2u;γ2vh− γ2u)−ψ

0(γ1u,γ2u;γ2v− γ2uh)).

Let us bound the first and the last two terms on the right hand side of (4.8). First, by (2.5),

〈Au−Auh,u− vh〉 ≤ LA‖u−uh‖V‖u− vh‖V .

Apply (2.10) to see, for an arbitrary ε > 0 and a constant c depending on ε ,

〈Au−Auh,u− vh〉 ≤ ε ‖u−uh‖2
V + c‖u− vh‖2

V . (4.10)

By (2.1), we have

IΦ(uh,vh)≤ αΦ‖u−uh‖V‖uh− vh‖V

≤ αΦ

(
‖u−uh‖2

V +‖u−uh‖V‖u− vh‖V
)
.

Then, apply the inequality (2.10) on the term αΦ‖u−uh‖V‖u− vh‖V to obtain

IΦ(uh,vh)≤ (αΦ + ε)‖u−uh‖2
V + c‖u− vh‖2

V (4.11)
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for another constant c depending on ε > 0. By the subadditivity of the generalized directional
derivative, we have

ψ
0(γ1u,γ2u;γ2v− γ2u)≤ ψ

0(γ1u,γ2u;γ2v− γ2uh)+ψ
0(γ1u,γ2u;γ2uh− γ2u),

ψ
0(γ1uh,γ2uh;γ2vh− γ2uh)≤ ψ

0(γ1uh,γ2uh;γ2vh− γ2u)+ψ
0(γ1uh,γ2uh;γ2u− γ2uh).

Thus

Iψ(v,vh)≤ I∆(ψ
0(γ1uh,γ2uh;γ2vh− γ2u))− I∆(ψ

0(γ1u,γ2u;γ2vh− γ2u))

+ I∆(ψ
0(γ1u,γ2u;γ2uh− γ2u)+ψ

0(γ1uh,γ2uh;γ2u− γ2uh)).

By (4.1),

ψ
0(γ1u,γ2u;γ2uh− γ2u)+ψ

0(γ1uh,γ2uh;γ2u− γ2uh)≤ α
′
ψ,1|γ1(u−uh)|Rm1 |γ2(u−uh)|Rm2

+α
′
ψ,2|γ2(u−uh)|2Rm2 .

Then,

I∆(ψ
0(γ1u,γ2u;γ2uh− γ2u)+ψ

0(γ1uh,γ2uh;γ2u− γ2uh))

≤ α
′
ψ,1‖γ1(u−uh)‖L2(∆;Rm1)‖γ2(u−uh)‖L2(∆;Rm2)+α

′
ψ,2‖γ2(u−uh)‖2

L2(∆;Rm2).

By (4.2), ∣∣∣ψ0(γ1uh,γ2uh;γ2vh− γ2u)
∣∣∣≤ c

(
1+ |γ1uh|Rm1 + |γ2uh|Rm2

)
|γ2(vh−u)|Rm2 ,∣∣∣ψ0(γ1u,γ2u;γ2vh− γ2u)

∣∣∣≤ c(1+ |γ1u|Rm1 + |γ2u|Rm2 ) |γ2(vh−u)|Rm2 .

Then, ∣∣∣I∆(ψ
0(γ1uh,γ2uh;γ2vh− γ2u))

∣∣∣
≤ c
(

1+‖γ1uh‖L2(∆;Rm1)+‖γ2uh‖L2(∆;Rm2)

)
‖γ2(vh−u)‖L2(∆;Rm2)

≤ c
(

1+‖uh‖V
)
‖γ2(vh−u)‖L2(∆;Rm2).

Similarly, ∣∣∣I∆(ψ
0(γ1u,γ2u;γ2vh− γ2u))

∣∣∣≤ c(1+‖u‖V )‖γ2(vh−u)‖L2(∆;Rm2).

Combining the above four inequalities and using the fact that ‖uh‖V is bounded, we find that

Iψ(v,vh)≤
(

α
′
ψ,1‖γ1‖‖γ2‖+α

′
ψ,2‖γ2‖2

)
‖u−uh‖2

V + c‖γ2(u− vh)‖L2(∆;Rm2) (4.12)

for some constant c > 0 independent of h. Using (4.10), (4.11), and (4.12) in (4.8), we have(
mA−αΦ−α

′
ψ,1‖γ1‖‖γ2‖−α

′
ψ,2‖γ2‖2−2ε

)
‖u−uh‖2

V

≤ c‖u− vh‖2
V + c‖γ2(u− vh)‖L2(∆;Rm2)+Ru(vh,u)+Ru(v,uh).

Recall the smallness condition (4.3), we can take

ε =
(

mA−αΦ−α
′
ψ,1‖γ1‖‖γ2‖−α

′
ψ,2‖γ2‖2

)
/4 > 0
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and obtain the inequality

‖u−uh‖2
V ≤ c inf

vh∈Kh

[
‖u− vh‖2

V +‖γ2(u− vh)‖L2(∆;Rm2)+Ru(vh,u)
]
+ c inf

v∈K
Ru(v,uh). (4.13)

We summarize the result in the form of a theorem.

Theorem 4.3. Assume H(K), H(A), H(Φ)2, H(ψ)′2, H( f ), and (4.3). Then for the solution u
of Problem 4.1 and the solution uh of Problem 4.2, we have the Céa-type inequality (4.13).

To proceed further, we need to bound the residual term (4.9) and this depends on the problem
to be solved. We illustrate this point in Sections 6 in the context of a contact problem.

5. A CONTACT PROBLEM

The contact problem we consider in this section describes the deformation of an elastic body
that is fixed on a part of its boundary, is acted upon by body forces and surface tractions and is
or may arrive in contact with a foundation.

Denote by Ω⊂ Rd (d = 2,3) the reference configuration of the body. We assume that Ω is a
bounded domain with a Lipschitz continuous boundary ∂Ω that is split as follows:

∂Ω = ΓD∪ΓN ∪ΓC,

where ΓD, ΓN , and ΓC are mutually disjoint relatively open subsets. We assume meas(ΓD)> 0
and meas(ΓC)> 0, yet allow ΓN to be empty. We use ν for the unit outward normal vector on
∂Ω. The displacement variable is an Rd-valued function u : Ω→ Rd with the components ui,
1 ≤ i ≤ d. We adopt the summation convention over a repeated index. Over Rd , we use the
canonical inner product

u · v = uivi, u,v ∈ Rd.

The stress tensor σ is a Sd-valued function in Ω, where Sd represents the space of second order
symmetric tensors on Rd . The canonical inner product over Sd is

σ : τ = σi jτi j, σ = (σi j),τ = (τi j) ∈ Sd.

The linearized strain tensor associated to a differentiable (in the classical sense or the weak
sense) displacement field u is the Sd-valued function given by ε(u)= (∇u+(∇u)T )/2. Here and
below, to simplify the notation, we usually do not indicate explicitly the dependence of various
functions on the spatial variable x ∈ Ω∪ ∂Ω. For a vector field v, its normal and tangential
components on the boundary ∂Ω are defined as vν = v ·ν and vτ = v−vνν . For a tensor field σ ,
its normal and tangential components on ∂Ω are defined by σν = (σν) ·ν and σ τ = σν−σνν .

The pointwise formulation of the contact problem we consider is the following

Problem 5.1. Find a displacement field u : Ω→ Rd and a stress field σ : Ω→ Sd such that

σ = F ε(u) in Ω, (5.1)

Divσ + f 0 = 0 in Ω, (5.2)

u = 0 on ΓD, (5.3)

σν = f N on ΓN , (5.4)

−σν = pν(uν −g0) on ΓC, (5.5)

−σ τ ∈ pτ(uν −g0)∂ψτ(uτ) on ΓC. (5.6)
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Let us briefly comment on the equations and boundary conditions in Problem 5.1. Equation
(5.1) represents the constitutive law of an elastic material, in which F : Ω× Sd → Sd is the
elasticity operator, assumed to satisfy the condition

(a) there exists a constant LF > 0 such that
‖F (x,ε1)−F (x,ε2)‖ ≤ LF‖ε1− ε2‖

for all ε1,ε2 ∈ Sd, a.e. x ∈Ω;
(b) there exists a constant mF > 0 such that

(F (x,ε1)−F (x,ε2)) : (ε1− ε2)≥ mF ‖ε1− ε2‖2

for all ε1,ε2 ∈ Sd, a.e. x ∈Ω;
(c) F (·,ε) is measurable on Ω for all ε ∈ Sd;
(d) F (x,0) = 0 for a.e. x ∈Ω.

(5.7)

Equation (5.2) is the equation of equilibrium in which f 0 represents a given density of the
external body force, while conditions (5.3) and (5.4) represent the displacement and the traction
boundary conditions, respectively. Condition (5.3) reflects the fact that the body is clamped on
ΓD, and condition (5.4) describes the force boundary condition on ΓN , f N being a given density
of the surface traction.

On the contact boundary ΓC, along the normal direction, the contact condition is (5.5), in
which pν is a given normal compliance function, and g0 denotes the initial gap between the
body and a foundation. Such contact conditions were introduced in [29] and then used in a
large number of papers, including [30, 31]. Along the tangential direction, the friction law is
(5.6), in which pτ and ψτ are given functions and ∂ψτ represents the generalized gradient (or the
Clarke subdifferential) of the function ψτ . Conditions (5.5) and (5.6) are of general forms, and
they include many particular contact conditions and friction laws as special cases, as explained
in [4, Section 6.3]. Note that the functions pν and pτ in these conditions are supposed to vanish
for a negative argument. This restriction is imposed from physical reasons since it reflects the
fact that when there is separation between the body and the foundation then the reaction of the
foundation vanishes.

For the normal compliance function pν : ΓC×R→ R, we assume that

(a) there exists a constant Lpν
≥ 0 such that

|pν(x,r1)− pν(x,r2)| ≤ Lpν
|r1− r2|

for all r1, r2 ∈ R, a.e. x ∈ ΓC;
(b) pν(·,r) is measurable on ΓC for all r ∈ R;
(c) pν(x,r) = 0 for a.e. x ∈ ΓC, all r ≤ 0.

(5.8)

Moreover, for the functions ψτ : ΓC×Rd → R and pτ : ΓC×R→ R, we assume that

(a) ψτ(·,ξ ) is measurable on ΓC for all ξ ∈ Rd and there
exists ēτ ∈ L2(ΓC)

d such that ψτ(·, ēτ(·)) ∈ L1(ΓC);
(b) ψτ(x, ·) is locally Lipschitz on Rd for a.e. x ∈ ΓC;
(c) |∂ψτ(x,ξ )| ≤ c̄0τ for a.e. x ∈ ΓC, for ξ ∈ Rd with c̄0τ ≥ 0;
(d) ψ0

τ (x,ξ 1;ξ 2−ξ 1)+ψ0
τ (x,ξ 2;ξ 1−ξ 2)≤ αψτ

‖ξ 1−ξ 2‖2

for a.e. x ∈ ΓC, all ξ 1, ξ 2 ∈ Rd with αψτ
≥ 0;

(5.9)
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(a) there exists a constant cpτ
≥ 0 such that

|pτ(x,r1)− pτ(x,r2)| ≤ cpτ
|r1− r2|

for all r1, r2 ∈ R, a.e. x ∈ ΓC;
(b) pτ(·,r) is measurable on ΓC for all r ∈ R;
(c) 0≤ pτ(x,r)≤ pτ for all r ∈ R, a.e. x ∈ ΓC with pτ ≥ 0;
(d) pτ(x,r) = 0 for a.e. x ∈ ΓC, all r ≤ 0.

(5.10)

We note that (5.9) (b) and (c) are equivalent to the property that ψτ(x, ·) is Lipschitz continu-
ous on Rd for a.e. x ∈ ΓC with a Lipschitz constant c̄0τ .

Finally, we assume that the rest of the data are such that

f 0 ∈ L2(Ω;Rd), f N ∈ L2(ΓN ;Rd), (5.11)

g0 ∈ L2(ΓC), g0(x)≥ 0 a.e. x ∈ ΓC. (5.12)

In the variational analysis of Problem 5.1, we use the function space

V =
{

v ∈ H1(Ω;Rd) | v = 0 on ΓD

}
,

which is a Hilbert space with the inner product

(u,v)V =
∫

Ω

ε(u) : ε(v)dx.

Assume that (u,σ) are sufficiently regular functions which satisfy (5.1)–(5.6), and let v ∈
V . Then, using standard arguments based on integration by parts and the definition of the
generalized gradient, it follows that u ∈V and∫

Ω

F (ε(u)) · ε(v)dx+
∫

ΓC

[
pν(uν −g0)vν + pτ(uν −g0)ψ

0
τ (uτ ;vτ)

]
da

≥
∫

Ω

f 0 · vdx+
∫

ΓN

f N · vda.

Define the operator A : V →V ∗, the function Φ : V ×V →R and the element f ∈V ∗ as follows:

〈Au,v〉=
∫

Ω

F ε(u) · ε(v)dx, ∀u,v ∈V, (5.13)

Φ(u,v) =
∫

ΓC

pν(uν −g0)vν da, ∀u,v ∈V, (5.14)

〈 f ,v〉=
∫

Ω

f 0 · vdx+
∫

ΓN

f N · vda, ∀v ∈V. (5.15)

Then, using notation (5.13)–(5.15), we deduce the following variational formulation of the con-
tact problem (5.1)–(5.6).

Problem 5.2. Find a displacement field u ∈V such that

〈Au,v〉+Φ(u,v)+
∫

ΓC

pτ(uν −g0)ψ
0
τ (uτ ;vτ)da≥ 〈 f ,v〉, ∀v ∈V.

For the part of error estimation in numerical analysis later, we let m1 = 1, m2 = d, and let
γ1 : V → L2(ΓC) and γ2 : V → L2(ΓC;Rd) be the normal component and tangential component
trace operators on V , that is,

γ1v = vν , γ2v = vτ , ∀v ∈V.
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We have ‖γ1‖= λ
−1/2
ν and ‖γ2‖= λ

−1/2
τ , where λν > 0 is the smallest eigenvalue of the eigen-

value problem

u ∈V,
∫

Ω

ε(u) : ε(v)dx = λ

∫
ΓC

uνvν da, ∀v ∈V,

and λτ > 0 is the smallest eigenvalue of the eigenvalue problem

u ∈V,
∫

Ω

ε(u) : ε(v)dx = λ

∫
ΓC

uτ · vτ da, ∀v ∈V.

6. ANALYSIS AND APPROXIMATION

In this section we apply the abstract results proved in Sections 3 and 4 in the study of in-
equality 5.2. We start with the following well-posedness result.

Theorem 6.1. Assume (5.7)–(5.12) and

Lpν
λ
−1
ν + pτmτλ

−1
τ + cpτ

cψτ
(λνλτ)

−1/2 < mF . (6.1)

Then, Problem 5.2 has a unique solution u ∈ V . Moreover, the operator ( f 0, f N) 7→ u =
u( f 0, f N) which maps any element ( f 0, f N) ∈ L2(Ω,Rd)× L2(ΓN ,Rd) to the solution u ∈ V
of Problem 5.2 is Lipschitz continuous.

Proof. We apply Theorem 4.1. To this end, let K =V , ∆ = ΓC, and define the function

ψ(y,z) = pτ(y−g0)ψτ(z), y ∈ R, z ∈ Rd.

It is easy to see that H(K), H(A), and H( f ) hold, and the strong monotonicity constant of the
operator A is mA = mF . The rest of the conditions can be verified by using arguments similar
to those used in [7]. However, for completeness, since the notation is different, we provide the
details in proof.

Let us check the validity of the condition H(Φ)2. It is easy to see that Φ(u, ·) : V → R is a
convex continuous function. For u1,u2, v1,v2 ∈V , we have

pν(u1,ν −g0)(v2,ν − v1,ν)+ pν(u2,ν −g0)(v1,ν − v2,ν)≤ Lpν
|u1,ν −u2,ν ||v1,ν − v2,ν |

a.e. on ΓC. Thus∫
ΓC

[pν(u1,ν −g0)(v2,ν − v1,ν)+ pν(v2,ν −g0)(v1,ν − v2,ν)]da

≤ Lpν
‖u1,ν −u2,ν‖L2(ΓC)

‖v1,ν − v2,ν‖L2(ΓC)
≤ Lpν

λ
−1
ν ‖u1−u2‖2

V .

Hence, the function Φ satisfies condition H(Φ)2 with

αΦ = Lpν
λ
−1
ν . (6.2)

Then we turn to condition H(ψ)′2. Obviously, ψ is locally Lipschitz continuous with respect to
its second argument and

ψ
0(y,z1;z2) = pτ(y−g0)ψ

0
τ (z1;z2), ∀y ∈ R, z1,z2 ∈ Rd.
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Regarding the condition (4.1), for y1,y2 ∈ R and z1,z2 ∈ Rd , we write

pτ(y1−g0)ψ
0
τ (z1;z2− z1)+ pτ(y2−g0)ψ

0
τ (z2;z1− z2)

= [pτ(y2−g0)− pτ(y1−g0)]ψ
0
τ (z2;z1− z2)

+ pτ(y1−g0)
[
ψ

0
τ (z1;z2− z1)+ψ

0
τ (z2;z1− z2)

]
.

By assumption (5.10),

0≤ pτ(x,r)≤ pτ ,

|pτ(y1−g0)− pτ(y2−g0)| ≤ cpτ
|y1− y2| .

By the Lipschitz continuity of ψτ ,∣∣ψ0
τ (z2;z1− z2)

∣∣≤ cψτ
|z1− z2| .

Thus

pτ(y1−g0)ψ
0
τ (z1;z2− z1)+ pτ(y2−g0)ψ

0
τ (z2;z1− z2)

≤ cpτ
cψτ
|y1− y2| |z1− z2|+ pτmτ |z1− z2|2 .

Hence, (4.1) holds:

ψ
0(y1,z1;z2− z1)+ψ

0(y2,z2;z1− z2)≤ α
′
ψ,1|y1− y2| |z1− z2|Rd +α

′
ψ,2|z1− z2|2Rd .

where
α
′
ψ,1 = cpτ

cψτ
, α

′
ψ,2 = pτmτ . (6.3)

We combine (6.2), (6.3), and (6.1) to see that condition (4.3) is satisfied. Theorem 6.1 is now a
direct consequence of Theorem 4.1. �

We now consider the numerical solution of Problem 5.2 by the finite element method. For
simplicity, we assume that Ω is a polygonal/tetrahedral domain. Let {T h} be a regular family of
partitions of Ω into triangles/tetrahedrons that are compatible with the partition of the boundary
∂Ω into ΓD, ΓN , and ΓC, in the sense that if the intersection of one side/face of an element with
one of the three sets has a positive surface measure, then the side/face lies entirely in that set.
We now construct linear element spaces corresponding to T h:

V h =
{

vh ∈C(Ω)d | vh|T ∈ P1(T )d for T ∈T h, vh = 0 on ΓD

}
, (6.4)

where P1(T ) stands for the space of polynomials of a degree less than or equal to 1 on T . Then,
the finite element method for Problem 5.2 is as follows.

Problem 6.1. Find a displacement field uh ∈V h such that

〈Auh,vh〉+Φ(uh,vh)+
∫

ΓC

pτ(uh
ν −g0)ψ

0
τ (u

h
τ ;vh

τ)da≥ 〈 f ,vh〉, ∀vh ∈V h. (6.5)

By a discrete analogue of Theorem 6.1, under the conditions stated in that theorem, Problem
6.1 has a unique solutions.

The properties (2.8)–(2.9) are obvious for the choice of V h and Kh =V h. By [6, Proposition
2.1.2] and the fact that a convergent sequence in V has a subsequence that converges pointwise
on ΓC, (4.6) is valid. Thus we can apply Theorem 4.2 to conclude the convergence of the
numerical solutions

uh→ u in V as h→ 0.
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For error estimation, we note from (4.13) that, since infv∈K Ru(v,uh) = 0,

‖u−uh‖2
V ≤ c inf

vh∈V h

[
‖u− vh‖2

V +‖uτ − vh
τ‖L2(ΓC;Rd)+Ru(vh,u)

]
, (6.6)

where

Ru(vh,u) = 〈Au,vh−u〉+Φ(u,vh−u)+
∫

ΓC

pτ(uν −g0)ψ
0
τ (uτ ;vh

τ −uτ)da

−〈 f ,vh−u〉. (6.7)

Assume the solution regularity conditions

u ∈ H2(Ω;Rd), σ = F (ε(u)) ∈ H2(Ω;Sd). (6.8)

We comment that in case F depends smoothly on x, the first condition in (6.8) implies the
second condition in (6.8). Moreover, the second condition in (6.8) implies that

σν ∈ L2(∂Ω;Rd).

Under the regularity conditions (6.8), arguments similar to those used in [22, Section 7] indicate
that

Divσ + f 0 = 0 a.e. in Ω,

σν = f N a.e. on ΓN ,

and then, for any vh ∈V h,

〈Au,vh−u〉+Φ(u,vh−u) = 〈 f ,vh−u〉+
∫

ΓC

σ τ ·(vh
τ −uτ)da.

Hence, we have

Ru(vh,u) =
∫

ΓC

pτ(uν −g0)ψ
0
τ (uτ ;vh

τ −uτ)da+
∫

ΓC

σ τ ·(vh
τ −uτ)da.

By the assumptions

|pτ(uν −g0)| ≤ pτ ,∣∣∣ψ0
τ (uτ ;vh

τ −uτ)
∣∣∣≤ c0τ

∣∣∣vh
τ −uτ

∣∣∣ ,
since σ τ ∈ L2(ΓC;Rd), we have∣∣∣Ru(vh,u)

∣∣∣≤ c‖vh
τ −uτ‖L2(ΓC;Rd),

with a constant c depending on ‖σ τ‖L2(ΓC;Rd). Therefore, (6.6) implies that

‖u−uh‖V ≤ c inf
vh∈V h

[
‖u− vh‖V +‖uτ − vh

τ‖
1/2
L2(ΓC;Rd)

]
. (6.9)

We remark that in the literature on error analysis of numerical solutions of variational in-
equalities, it is standard that the Céa-type inequalities involve square root of approximation
error of the solution in certain norms due to the inequality form of the problems. A reference in
the field is [32], for instance.

Express the contact boundary ΓC as unions of closed flat components with disjoint interiors:

ΓC = ∪iC
i=1ΓC,i.
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In addition to the solution regularity conditions (6.8), we assume further that

u|ΓC,i ∈ H2(ΓC,i;Rd), 1≤ i≤ iC. (6.10)

Then, we can apply the standard finite element interpolation error estimates ([33, 34]) to derive
from (6.9) the following optimal order error bound:

‖u−uh‖V ≤ ch. (6.11)

We summarize the above derivation in the form of a theorem.

Theorem 6.2. Assume (5.7)–(5.12) and (6.1). Let V h be the linear finite element space defined
by (6.4) corresponding to T h from a regular family of partitions of Ω into triangles/tetrahedrons
that are compatible with the partition of the boundary ∂Ω into ΓD, ΓN , and ΓC. Then, under
the solution regularity conditions (6.8) and (6.10), for the finite element solution uh ∈ V h of
Problem 6.1, we have the optimal order error estimate (6.11).
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