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convergence of numerical solutions of hemivariational inequalities without assuming

Keywords:

Variational-hemivariational additional solution regularity. In this paper, we present a general convergence result
inequality enhancing existing results in the literature.
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The notion of hemivariational inequalities was introduced by Panagiotopoulos in early 1980s [1] for the
study of engineering problems involving non-smooth, non-monotone and possibly multi-valued relations for
deformable bodies. Substantial advances have been achieved on modeling, analysis, numerical approximation
and computer simulations of hemivariational inequalities. Comprehensive references in the area include [2—4]
in earlier years and [5-7] more recently. Recently, optimal order error estimates are derived for numerical
solutions of hemivariational inequalities under certain solution regularity conditions (cf. [8-12]). Since the
required solution regularity properties have not been proved, it is important to investigate the convergence
issue for numerical solutions of hemivariational inequalities under the available minimal solution regularity.
In [13], such a convergence analysis is carried out for numerical methods of both internal and external ones
of general variational-hemivariational inequalities; see also [14]. In this paper, we present an alternative
proof of a more general convergence result under weaker assumptions.
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For a normed space X, we denote X* its dual space and by (-,-) the duality pairing between X* and
X. Strong convergence is indicated by the symbol —, whereas weak convergence is indicated by the symbol
—. The general variational-hemivariational inequality to be studied is of the following type, the same as
in [13,14].

Problem 1. Find an element uv € K such that
(Au,v = u) + @(Ypu, Ypv) — @(vpu, vou) + 10 (vju; 70 — yju) = (f,v —u) Vv e K. (1)

We begin with a list of the hypotheses on the data of Problem 1.

(Hk) X is a reflexive Banach space, K is a non-empty, closed and convex subset of X.
(Ha) A: X — X* is bounded, continuous and strongly monotone.

We will denote the monotonicity constant of A by m > 0, i.e.

(Avy — Avg,v1 — v2) > mallvy —v2|% Vo, v € X, (2)

(H,) X, is a Banach space, v, € L(X,X,), ¢: X, x X, = R is convex and continuous w.r.t. to its
second argument, and there exists a constant o, > 0 such that

P(z1,24) — p(21, 23) + (22, 23) — P(22, 24) < Qpllz1 — 22l x,ll23 — 2allx, V21,22,23,24 € X, (3)

where £(X, X,,) stands for the space of linear and continuous operators from X to X,.
(Hj) X; is a Banach space with its dual X7, v; € £(X, Xj), j: X; — R is locally Lipschitz and there
exist constants cp,c; > 0 and «; > 0 such that
197(2)llxx < co+eallzllx; VzeX;, (4)
§%(z1; 22 — 21) + %225 21 — 22) < |21 — z2||§(j V21,20 € X (5)

(Hy) feX™.
We will denote by c,,c; > 0 upper bounds of the operator norms of v, and «;:

Ievlix, <collvlix,  lvvlix; <e¢llvllx VoeX. (6)

In the formulation of Problem 1 and in (H;), we use the notions of the generalized directional derivative
and generalized subdifferential in the sense of Clarke (cf. [15,16]). Assume : X — R is locally Lipschitz
continuous. The generalized directional derivative of ¥ at x € X in the direction v € X is

Y0 (x;v) == limsup Dy + ) —¥(y) _
’ y—raz, A0 A

The generalized subdifferential of ¢ at x is a subset of the dual space X* given by
() = {C € X* | 90(;0) > (,0)yerx YV E X }.

We will make use of the following properties:

PO(z;01 4+ v2) < YO(m301) + Y0 (500)  Va,vi,v0 € X, (7)
¢°(z;v) = max {(¢,v) x+xx | ( € ()}, (8)
t, »rand v, »vin X = limsupvy®(z,;v,) < ¢°(z;0). (9)

n—oo
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The following unique solvability is adapted from a corresponding result from [17], cf. [13,14].

Theorem 2. Assume (Hg), (Ha), (Hy), (Hj), (Hy), and ayc? + ajc? < ma. Then, Problem 1 has a
unique solution u € K.

Henceforth, we will assume the conditions stated in Theorem 2 hold. Turning to numerical approximation,
we let X" C X be a finite dimensional subspace characterized by a discretization parameter h > 0, with the
expectation of convergence when h — 0. Let K" be a non-empty, closed and convex subset of X" such that
{K"}}, approximates K in the following sense (cf. [18]):

v € K" and v" — v in X imply v € K; (10)
Vo e K, 3v" € K" such that v" — vin X as h — 0. (11)

Then a Galerkin approximation of Problem 1 is the following.

Problem 3. Find an element w" € K" such that
(Aul ;0" — ") + p(yu”, 7,0") — e(vpu®, ypu) + 50 (vl 0" — yut) = (f 0" =) Vot e KT (12)

Problem 3 has a unique solution u" and it can be proved (cf. [13,14]) that the numerical solutions defined
by Problem 3 are uniformly bounded with respect to the parameter h, i.e., there exists a constant M > 0
such that ||u"||x < M for all h > 0.

Theorem 4. Keep the assumptions in Theorem 2. Assume further that (10)—(11) hold. Then, we have the
convergence of the numerical method: u" — u in X as h — 0.

Proof. The proof consists of three steps. The first two steps are on the weak and strong convergence of
the numerical solutions. In the third step, we show that the limit is the solution w.

Since {u”} is bounded in X and X is reflexive, and since v, € £(X, X,,) and v; € £(X, X;), there exist
a subsequence {uh/} C {u"} and an element w € X such that

u" = win X, ’yipuh/ — Yow in X, ’yjuh/ — yw in Xj. (13)

By the assumption (10), we know that w € K.
Let us prove the strong convergence,
!
u" — win X. (14)
By (11), there exists a sequence {w” } C X with w" € K", such that

w" = win X, ’ywwhl — Yow in X, fijhl — yjw in Xj. (15)

By the strong monotonicity of A, we have
mallw — uh,Hg( < (Aw — Aul w— uhl>,
which is rewritten as
mallw — uh/||§( < (Aw,w — uh/> — (Auh/7wh/ - uh/> - <Auh/,w — wh/>. (16)

In (12) with h = K/, take v"" = w"’ to obtain

I ’

!
—(Aul wh

!/

— ") < p(ypu o) — p(ypu you)
+ 70 (g sy = pul) = (fw = U, (17)
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/

Apply (3) with 21 = 23 = y,u", 25 = y,w and 2z4 = 'ywwh, to obtain

’ / / / ’ /
P(rpu" 1w ) = p(ypu™  1pu") < p(rpw, Y™ ) — p(rpw, ypu)
/ ’ /
+aplp(u" —w)llx, (e —w")]x,. (18)
Write ||'y¢(uh, - wh/)||X¢ < Hmp(uhl —w)|lx, + 7o (w— wh/)||Xw and use the inequality ab < e a? + C b? for
any reals a and b, any € > 0, with C' = 1/(4¢). Then for the last term of (18), for a constant C(e) depending
on ¢, we have

gl (u" = w)|lx, 1y (u" —w")llx, < (apch +¢€) Jw—u" % + Ce) Irp(w — ")k, (19)

Using the sub-additivity property (7), we have

. ’ ’ ’ . / / . / ’
7O (yu s ywh — ) < GO sy = yjw) + 50 (s vw — )
!

= j(yu s yw — 'Yj u") + 50 (yyw; i — ’ij)

+j0(’Yjuh srwt —yjw) = (’ij 'VJ — jw). (20)
By (5), it has
FO (5w — ) 4 O (jws ! = yw) < g o —u 1% (21)
Use the relations (17)-(21) in (16):
(mA—awci—ajc? )||w—uh HX (Aw, w—uh> (Auh w— w" > (fyw ,>

+ (1w, Yo" ) — p(yw, ypu") + C(€) [y (w — W) %,
+ 0 (" s " = yw) = 50wy = yw). (22)
Consider the limits of the terms on the right side of (22) as A’ — 0. From the boundedness of A, and the

convergence relation (13),

(Aw,w —u" > — 0.
From the boundedness of {uhl} and A, (15) ensures us to find
h’>

(Auh/,w —w") = 0.

From (13) and (15), one has

(ot —uy = (f 0" —w) + (f,w—u"") =0,

By the continuity of ¢ with respect to its second argument and (15),

I

(Ypw, Yo" ) = P(Yw, o).

As a consequence of the well-known Mazur Lemma, the convexity and continuity of ¢ with respect to
its second argument imply that ¢ is weakly sequentially lower semicontinuous with respect to its second
argument (cf. [19, p. 136]). Hence, by (13),

’ I

lim sup [—(p(fyww,'yg,uh )| = — liminf P(Yow, You™ )| < —p(Yow, ypw).
h!—0 h!—0

17 (w = w")lx, = 0.
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By (4), the boundedness of 'yjuh/ in X;, and (15),

lim supjo('yjuh/; 'ijh/ —vyjw) < 0.
h!—0

For any &, € 9j(vw), by (8),
—jo(%‘wé%‘uh - ’Yjw) < —<fw,7juh — ’ij> —0 ash' —0.

Thus,

lim sup —jo('ij;vjuh/ —yjw)| <O0.
h!—0
Now in (22), we choose € = (ma — a,c, — a;c})/2 and then take the upper limit of both sides as h’ — 0 to
conclude that
lim sup ||w — uhl||§( <0,
h!—0

i.e., strong convergence (14) holds.

Finally, let us show that the strong limit w is the unique solution of Problem 1. For any v € K, we have
a sequence {v"'} € X with v" € K" such that v"" — v in X. Then, y,0" — v,v in X, 70" — 70 in
X;. By (12) with h = K/,

’

—u") + (1" Yo" ) — (YU YU ) + 50 (i s = ) = (f 0" — ). (23)

’ !/
(Aul "

Obviously,

/

(Auh/,vh —uh/> — (Aw,v — w), (f,vh/ —uh/> = (fiv—w) ash —0. (24)

An analogue of (18) is

/ ! ! ! ! !
P(reu” 1™ ) — e(reu”  You” ) < p(vpw, Yo" ) — p(vpow, ypu™ )
! / /
+ ||y (W — W)l x, Iye(u = v™)lx,, (25)
in which,
! ! !
[y (" = w) [ x,llvp(u” — 0" )| x, =0 (26)

h

since ||%,(uh/ —w)||x, — 0 and ||%,(uh/ - vh/)||Xw is bounded. Note that v;u "o v;w and ’ijh/ — ;v in

X;. So by the property (9),

. . . ! ! !
7O (vjwsviv — yw) > lim sup j° (y;u" ;y0" — yu). (27)
-0

We now take the upper limit A’ — 0 in (23) and make use of the relations (24)—(27) to obtain

(Aw,v — w) + @(Ypw, Ypv) — P(Ypw, Yow) + 5O (vw; 0 — vjw) > (f,v — u),

which holds for any v € K. Thus, w is a solution of Problem 1. Since a solution of Problem 1 is unique, so,
w = u. Moreover, since the limit © does not depend on the subsequence, the entire family of the numerical
solutions converge: ||u —u”||x - 0ash—0. N

We remark that in [13] and [14], convergence of the numerical method is proved under additional
assumptions that v, € £L(X, X,) and v; € L(X, X;) are compact.
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