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Abstract. This paper is devoted to an analysis of singular perturbations of inequality problems.
For a general variational-hemivariational inequality, it is shown rigorously that under appropriate
conditions, as the singular perturbation parameter approaches zero, the solution of the singularly
perturbed problem converges to the solution of the limiting problem. As corollaries of this general re-
sult, we have similar convergence results for singularly perturbed problems of “pure” hemivariational
inequalities and of variational inequalities. The results are illustrated in the study of an obstacle
plate bending problem.
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1. Introduction. Variational inequalities and hemivariational inequalities are
important nonlinear mathematical models for applications in complicated problems
of science and engineering. Rigorous mathematical analysis of variational inequalities
started in the 1960s. Modeling, mathematical theory, numerical analysis, and applica-
tions of variational inequalities have been well documented in the literature (cf., e.g.,
monographs [6, 8, 7, 27, 16, 19, 13, 12] and the references therein). In comparison, re-
search on hemivariational inequalities is more recent. It was started in the early 1980s
[24] due to the need in engineering applications for problems involving nonsmooth,
nonmonotone, and possibly multivalued relations for deformable bodies. Since then,
hemivariational inequalities have attracted steady attention in the engineering and
applied mathematics communities. Some comprehensive references in the area in-
clude [26, 23, 15, 2, 21, 29]. In addition to mathematical theories of hemivariational
inequalities, recent years have witnessed substantial progress on numerical analysis of
hemivariational inequalities (cf. [14]).

Singular perturbations of variational inequalities were studied as early as the late
1960s and early 1970s (e.g., [17, 18, 20, 27]). A representative result can be found
in Corollary 4.3 as a consequence of the results proved in section 3. The aim of
the paper is to study singular perturbations of more general inequality problems.
Following the relevant references (e.g., [11, 22, 29]), we use the term variational-
hemivariational inequality to mean an inequality problem over a function space or a
closed and convex set of the space such that both nonsmooth convex functionals
and nonsmooth nonconvex functionals are present; for examples of a variational-
hemivariational inequality, see (2.1), (3.16), or (3.17). When the nonsmooth convex
functionals are dropped, the variational-hemivariational inequality is reduced to a
“pure” hemivariational inequality; for examples of a hemivariational inequality, see
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(4.1) or (4.2). When the nonsmooth nonconvex functionals are dropped, or when
both nonsmooth convex and nonsmooth nonconvex functionals are dropped and the
problem is posed over a closed and convex set, we have a variational inequality; for
examples of a variational inequality, see (4.3), (4.4), (4.5), or (4.6).

The rest of the paper is organized as follows. In section 2, we introduce a general
variational-hemivariational inequality and recall a solution existence and uniqueness
result. In addition, we present a Minty lemma for the variational-hemivariational
inequality, which will be needed for the singular perturbation analysis. In section 3, we
study the singular perturbation problem of the variational-hemivariational inequality
and show the convergence of its solution to the solution of the limiting variational-
hemivariational inequality as the perturbation parameter approaches zero. In section
4, we specialize the results proved in section 3 for singular perturbations of “pure”
hemivariational inequalities and of variational inequalities. Finally, in section 5, we
illustrate the theoretical results in the study of a singular perturbation problem for
the plate bending with an obstacle.

2. A general variational-hemivariational inequality. First, we introduce a
general variational-hemivariational inequality. Let V be a normed space, and let K
be a set in V. Denote by V* its dual space and by (-,-) the duality pairing between
V* and V. We use the symbol — for strong convergence (convergence in norm) and
use the symbol — for weak convergence. The variational-hemivariational inequality
of concern is as follows.

PROBLEM 2.1. Find an element u € K such that
(2.1) (Au,v —u) + ®(u,v) — ®(u,u) + J(w;v —u) > (f,v —u) VveK.

Let us list the hypotheses on the data. We note that these hypotheses are com-
monly used in the study of Problem 2.1 (cf. [22, 29, 14]).

(Hk) V is a reflexive Banach space, and K is a nonempty, closed, and convex
subset of V.

(Hy) A: V — V* is bounded, continuous, and strongly monotone with a mono-
tonicity constant m4 > 0,

(2.2) (Avy — Avg,v1 — vg) > malvg — 1)2||%, Youi,vp € V.

(Hg) ®: VXV — Ris convex and continuous with respect to its second argument,
and there exists a constant me¢ > 0 such that

(23) (I)(Ul,v4) — ‘I)(Ul,vg) =+ ‘I)(Uz,vg) — ‘I)(UQ,U4) < m(pHvl — UQH\/H’Ug — ’U4||V
Vvl,vg,vg,v4 eV.

(Hy) J: V. — R is locally Lipschitz and there exist constants cp,c; > 0 and
my > 0 such that

(2.4) |0J(V)||vs < co+erlv]ly Vve,
(2.5) JO(vi;v9 —v1) + J%(vg; 01 — v2) < myllvy — v2||%/ Vui,v9 € V.
(Hf) f e V*.

In the formulation of Problem 2.1 and in (H ), we use the notions of the gener-
alized directional derivative and generalized subdifferential in the sense of Clarke (cf.
[4, 5]), which are recalled here. Assume ¥: V — R is locally Lipschitz continuous.
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The generalized directional derivative of ¢ at u € V in the direction v € V' is defined

to be
Y0 (u;v) ;= limsup Y(w+Av) — ¢ (w) .
’ w—u, AL0 A

The generalized subdifferential of 1) at u is a subset of the dual space V* given by

O(u) = { e V* [¢°(u;v) > (£, v) Vo e V}.
We note the following properties:
PO (ustv) = ty°(u;v) Yu,v eV, t >0,
0 (w01 +va) <P (ws01) + 9 (w5 02)  Vu,v1,00 €V,
¥ (u;v) = max {(¢,v) | € I(u)} Yu,veV,
U, »uand v, »vinV = limsupt®(un;v,) < ¢°(u;v).

n—oo

Note that 9J(v) is a set and (2.4) means
[€llv+ < co+erlvllv VoeV, §edl(v).
LEMMA 2.2. Let J: V — R be locally Lipschitz continuous. Then
(2.10) JO(u;v) > —J%u; —v) Yu,veV.
Proof. We start with the identity

0= % L (w + Av) — J(w)] + % () — J(w + A)]

for any A > 0 and w € V. Take the upper limit of both sides,

1 1
0 < limsup — [J(w+ Av) — J(w)] + limsup — [J(w) — J(w + Av)].
w—u, AL0 A w—u, A0 A

With the substitution w’ = w + A v, we rewrite the second term on the right side as
1 1

limsup ~ [J(w) — J(w 4 Av)] = limsup — [J(w' + X (=v)) — J(w')] = J(u; —v).
w—u, A0 A w’—u, AL0 A

So
0 < J%w;v) + J°(u; —v),

i.e., (2.10) holds. |

Regarding the solvability of Problem 2.1, a representative result is the following.
THEOREM 2.3. Assume (Hk), (Ha), (Hs), (Hy), (Hy), and

me +myg < mgy.

Then, Problem 2.1 has a unique solution u € K.

This solution existence and uniqueness result (in a slightly different form) was
first proved in [22]. Its variant is provided in [9, 14]. The form presented in Theo-
rem 2.3 is adapted from [14, Theorem 4.2]. We comment that the assumption on A
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can be replaced by a more general one: A: V — V* is pseudomonotone and strongly
monotone. However, in applications, it is sufficient to assume (H 4), which is more ac-
cessible to researchers from the applied communities. The condition (2.3) is standard
in the study of the corresponding variational inequality:

ue K, (Au,v—u)+ ®(u,v) — ®(u,u) > (fv—u) VveK.

The condition (2.4) limits the allowable growth rate of the generalized subdifferential
of the functional J. The condition (2.5) is known as a relaxed monotonicity condition;
when J is convex, (2.5) holds with m; = 0.

The assumption mg +my < my4 is called a smallness condition. Such a condition
is usually adopted in the literature in the well-posedness analysis of hemivariational
inequalities.

The next result provides a characterization of the solution of Problem 2.1, which
can be called a Minty lemma.

THEOREM 2.4. Assume (Hg), (Ha), (Hy), and assume ®: V xV — R is convex
with respect to its second argument, J: V. — R is locally Lipschitz, and (2.5) holds
with my < ma. Then u € K is a solution of Problem 2.1 if and only if it satisfies

(2.11) (Av,v — u) + ®(u,v) — ®(u,u) + J(v;v —u) > (f,v —u) VoveK.

Proof. Let u € K be the solution of Problem 2.1. Fix an arbitrary v € K. By
(2.10) and (2.5),

JO(vsv —u) — J(uyv —u) > = [JO(v;u —v) + I (w0 — w)] > —myllv —ul}.
Then by (2.2) and the assumption mj; < ma,
(Av — Au,v — u) + J(v;0 —u) — JO(w;0 — u) > mallv —ull3 —myllv — |} >0,

ie.,
(Av,v —u) + JO(v;0 — u) > (Au,v — u) + JO(u;v — u).

Then it is obvious that u satisfies the inequality (2.11).
Conversely, assume u € K satisfies (2.11). Since K is convex, for any v € K and
any t € [0,1], u+t (v —u) € K. We replace v by v+t (v —u) in (2.11),

(2.12) t{(Alu+t(v—u)),v—u)+Pu,ut+tv—u))— P(u,u)
+t 0w+t (v —u);v—u) > t{f,v—u).

Note that ®(u,-) is convex,
S(u,u+t(v—u)) <td(u,v)+ (1 —1t) P(u,u).
We deduce from (2.12) that for ¢ € (0,1),
(Au+tw—u)),v—u)+ ®(u,v) — &u,u) + J(u+t(v—u);v—u) > (f,v—u).
Recall that A: V — V* is continuous, and the generalized directional derivative has

the upper semicontinuity property (2.9). We take the upper limit with ¢ — 0+ in the
left side of the above inequality to recover the inequality (2.1). d
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3. Singular perturbation of a variational-hemivariational inequality. In
this section, we consider singular perturbation for a general variational-hemivariational
inequality. For this purpose, we first list assumptions on the data. We need two
normed spaces V7 and V| and their subsets K7 and Kj.

(Hg,) V1 is a reflexive Banach space, and K7 is a nonempty, closed, and convex
subset of V.

(Hg,) Vo is a reflexive Banach space, and K is a nonempty, closed, and convex
subset of V.

These spaces and subsets are related as follows.

(Hk, k,) V1 is continuously and densely embedded in Vp, and Kj is the closure
of K1 in Vo.

Note that (Hg, ) and (Hk, k,) together imply that K is a nonempty, closed, and
convex subset of Vj.

For ¢ = 0,1, we denote by || - ||; the norm of the space V;, by V;* the dual space
of Vi, by || - |lix the norm of the space V;*, and by (-, -); the duality pairing between
V* and V;. Denote by a > 0 an embedding constant from V; to Vj:

(3.1) [ollo < effolly Yo e Vi,

Corresponding to the two spaces, we introduce two operators A; and Ag.
(Ha,) A1: Vi — Vi*, and for some constants Ly > 0, m; > 0 and mgy > 0,

(3.2) [A1u — Ayo||1. < Liflu — |y Yu,v € V4,

(3.3) (Ayu— Ayv,u —v)y > mylu — |7 —mallu —v|2 Yu,v e V.
(Ha,) Ao: Vo — V4, and for some constants Ly > 0 and mg > 0,

(3.4) [lAou — Agvllox < Lollu —vl|lo Yu,v € Vo,

(3.5) (Agu — Agv,u —v)o > mollu —v||3 Yu,v e Vp.

The assumption on @ is similar to (Hg) except that it is a condition over Vj.
(Hov,) ®: Vo x Vo — R is convex and continuous with respect to its second
argument, and for some constant mg > 0,

(3.6) D(vy,v4) — D(v1,v3) + P(v2,v3) — P(v2,v4) < Mma|v1 — v2llo|lvs — vallo
VU1,U2,U3,’U4 e .

Similarly, the conditions on J and f are over Vj.
(Hyv,) J: Vo — R is locally Lipschitz and there exist constants cp,c; > 0, and
my > 0 such that

(3.7) [0 (v)[lox < co+erlfvflo Vv e Vo,

(3.8) JO(vi;v9 —v1) + J(vgs 01 — va) <myllvy — v2||§ Vi, ve € V).

(Hyyv,) feV5-
Finally, the smallness assumption takes the following form:
(Hs)

(39) me +myg < mg.

In the study of the singular perturbation problem, we will use J to stand for
either J: Vo — R or its restriction J|y, : Vi — R. Note that J|y, is locally Lipschitz

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/22/20 to 128.255.62.40. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1554 WEIMIN HAN

continuous on V4. The symbol JO can mean the generalized directional derivative of
J either in V; or Vj:
= J(w+ ) — J(w)

(3.10) J%(u;v) = limsup 3
w—win Vi, A0

for J = Jly,, u,v € Vi

or

- J ) —J
(3.11) J%(u;v) = limsup (w+ ) = J(w)
w—uin Vi, ALO A

for J = J, u,v e Vp.

Note that in the case J = J,
JO(u;v) = JO(usv) Yu,v € Vi;
and in the case J = J|y,,
JO(u;v) < J%usv) Yu,v € V.
So in both cases,
(3.12) J(u;v) < J%uzv) Vu,v e V.
In terms of the generalized subdifferential, (3.12) is equivalent to
(3.13) dJ(u) C dJ(u) YueVi.
Consider the case where .J = J|y,. The assumption (3.7) implies
(3.14) 10J(0)]|1 < o+ aer|v]lo Yo e V.

This is proved as follows. Let £ € 8.J(v). By definition,

[€ll1 = sup (&, w)1.

\w 1:1
By (2.8) and then by (3.12),

[€][14 < sup jO(U§w)§ sup Jo(v;w).

llwfla=1 lwfli=1
From (2.8) and (3.7), for w € V; with ||Jw]|]; =1,
T (vsw) < (co + el|v]lo) [[wllo < (co + erlvllo) e flwlly = a(eo + eilollo) -
Thus, (3.14) holds. Corresponding to (3.8), thanks to (3.12), we have
(3.15) JO(v1;v9 —v1) + J2(va; 01 — v2) < mgllvr — vall2 Vor,v0 € V4.

Let € > 0 be a small singular perturbation parameter. We consider the singularly
perturbed variational-hemivariational inequality

(3.16) ue € K1, e{Ajuc,v —ue)1 + (Aote, v — ue)o + P(ue, v) — ®(ue, ue)
+ jo(ug;v —ue) > (f,v—u)y YveK;
and the limiting problem

(3.17) u € Ko, (Agu,v —u)o + ®(u,v) — ®(u,u) + JO(u;v — u)
Z<f,’U*’U,>0 V’UGK@.

We have the following unique solvability result on the problem (3.16).
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THEOREM 3.1. Assume (HK1)7 (HK0)7 (HKl,Ko)7 (HA1)) (HAU); (H@,Vo)7 (HJ,V0)7
(Hyfvy), and (Hg). If e > 0 is so small that e mo < mo —my, then the problem (3.16)
has a unique solution.

Proof. First consider the case J = Jly,. Define A: Vi — V* by A =¢ Ay + Ao,
ie.,
(Au,v)1 = e (Aju,v)1 + (Agu, v)o, u,v € Vi,

and view ®, J, and f as being defined over V;. Obviously, A: V3 — V;* is bounded
and continuous. We can then follow the proof of Theorem 2.3 in [22]; here, we only
point out how to verify the strong monotonicity of the operator T} : V; — 2¥1 defined
by Tyv = Av + aj(v), since the rest of the proof is identical. For any u,v € Vi,

(Thu —Tho,u—v) =e(A1u— Av,u —v)1 + (Agu — Agv,u — v)g
+ (8 (u) — dJ(v),u — v)1.
From (3.15), } 5
(0J(u) —dJ(v),u —v)1 > —my|lu—v|2.
Use this inequality and (3.3), (3.5) to obtain

(Tru—Thv,u—v)1 > emafu— vl + (mo — ema) [lu—v[|§ — myllu— v

= emulu— [T+ (mo —my —ema) lu— vl
Thus, if € > 0 is so small that e ms < mg — my, then
(Tyu — Tyv,u —v); > emyllu—o||3, u,veV,

and so Ty: Vi — 2V7 is strongly monotone.
Next, consider the case J = J. By (3.12), the solution u. € K of the problem
(3.16) with J = J|y, satisfies the relation

e (Ajue, v — ug)r + (Aoue, v — ue)o + Pue,v) — P(ue, ue) + Jo(us; vV — Ug)
> {(f,v—u)y VYveEK;.

So the problem (3.16) with J = .J has a solution. The uniqueness of the solution of
the problem (3.16) follows from a standard argument. d

Note that if ms = 0 for the assumption (3.3), then there is no restriction on ¢ in
the statement of Theorem 3.1.

THEOREM 3.2. Under the assumptions (Hg,), (Ha,), (Hovy), (Hivy), (Hyvy),
and (Hy), the problem (3.17) has a unique solution.

Proof. We apply Theorem 2.3 by letting V =V, K = Ky, A = Ag. Then it is
straightforward to conclude that the problem (3.17) has a unique solution. O

The main result of the section is to show the convergence u. — u. In the conver-
gence proof, we will use the next result.

PROPOSITION 3.3. Let Vi C Vi be two normed spaces with the norms || - |1 and
I - 1o, let K1 be a nonempty set in Vi, and let Ky be the closure of Ky in V. Assume
a; > ag > - >an > -+ 1S a sequence of decreasing positive numbers with a, — 0.
Then for any v € Ky, there exist a constant M > 0 and a sequence {v,} C K1 such
that v, — v in Vo and ap||va||s < M for any n.
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Proof. Since K is dense in Ky, for v € Ky, there is a sequence {0, } C K; such
that 0, — v in Vy. If {||0,]|1} is bounded, the result is true by taking v, = 0, and
M = ay sup,, ||Un]]1-

Suppose {||U]|1} is not bounded. Without loss of generality and by resorting to a
subsequence if necessary, we may assume 0; # 0, {||0,||1} is a nondecreasing sequence,
and [|U,|l1 — oo. Take M = a1||01]]1 and let v1 = ©;. For n > 1, let m(n) be the
largest integer such that a, [Ty, )1 < M and let v, = ¥ (n). Obviously, m(n) — oo
as n — oco. Then the result holds with the sequence {v,, }. |

THEOREM 3.4. Keep the assumptions stated in Theorem 3.1. As e — 0, we have

(3.18) |lue — ullo = 0,
(3.19) Ve |Juellr — 0.

Proof. First we show that {u.} is bounded in Vy and {\/€u.} is bounded in V;.
From the conditions (3.5) and (3.3) on A; and Ay, we have for any v € K,

(3.20) emi|juc — v||3 + (mo — ema) |lue —v||3 < e (Ajue — Ajv,ue —v)y
+ (Aoue — Agv, ue — v)o.

By (3.16),
e (Arue, ue — V)1 + (Aote, ue — V) < P(ue,v) — P(ue, ue)
+ J(ue; v — ue) — (f, v — us)o.
Then,

(3.21)  emylluc —v||? + (mo — ema) [Jue — v||E < e (A1v,v — u)1 + (Agv, v — uc)o
+ O(ue,v) — Due, ue)
+ T (ug; v — ue) — (f, v — uedo.
Use (3.6) with v1 = ue, va = u, v3 = ue, and v4 = v,
D(ue,v) — Pue, us) + D(u, us) — ®(u, v) < mollue — ullollue — vlo,
to obtain
(3.22) D(ue,v) — P(ue, ue) < mollue — ullollue — vljo + P(u,v) — (u, ue).
Since ®(u,-) is convex, we have the lower bound
P(u, ue) > 2+ czllucllo

for some constants ¢z and ¢35 depending on u (cf. [1, p. 433]). This implies

(3.23) — P(u,ue) < c(1+|lue —vllo)-

By (3.12),

(3.24) JO(ue;v —ue) < JO(ue; v — ue),

and by (3.8),

(3.25) T (uz;v — ) <myllue — |2 — J°(v;ue — ).
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We have, by making use of (3.7),

(3.26) — J°(vyue —v) < (co+ c1lv]lo) [|ue — v]o-

Use (3.22)—(3.26) in (3.21) to obtain

(3.27) emy||uec —v||3 + (mo — ema) |lue — v||3 < e (Av,v —u)1 + (Agv,v — u)o
+ mollue — uljolluc —vllo + P(u,v)
+ e+ [lue = vllo) + mullue — 3
+ (co +erflvllo) flue = vllo

—{(f,v — ug)o.

In the rest of the proof, we will use repeatedly the modified Cauchy—Schwarz
inequality

1
ab§&f+zw2vmbeK5>Q

We bound each term of the right side of the inequality (3.27)

gma

13
e (A, v —uc) < —— |lue —v[|T + 2y | 410]3,,

2
and for any § > 0,
(Agv, 0 = ucho < b lue — vlld + 35 [ 4ovR.,
ma e —ulloflue —vllo < malluc = v[|§ + mallu —vllo[uc —vlo

L 2
< (me +6) [Jue —vl|g + — [lu —vl[g,

13
CW%*MMS§W%7M%+£;
(o0 el e = ol < 5, — o + ool
—(f,v —uc)o < 8 lluc —v||§ + %.

Thus,

1
ismlHuE —v||f + (mo—ema —me —my —596) ||lue —v||g <e

for a constant ¢ depending on 4, ||v||; and other problem data, but independent of e.
Let € < (mg — me — my) /(2 max{ma, 1}). Choose ¢ > 0 sufficiently small to get

(3.28) e llue = wllf + llus —v[lg < ¢

for a constant ¢ > 0 independent of e. Then with a particular v € K; chosen and
fixed, we have

(3.29) Velluelli < e luello < e

Since V} is reflexive, there exists an element w € Vj such that for a subsequence of
the solutions, still denoted as {u.}, we have the weak convergence

(3.30) u. = w in V.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/22/20 to 128.255.62.40. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1558 WEIMIN HAN

Moreover, since convexity and closedness imply weak closedness, the weak limit w €
Ky.
Next, let us prove the strong convergence

(3.31) u. —w in V.

According to Proposition 3.3, we can find w. € K; such that 51/4||wE l1 < ¢ for some
constant ¢g and

(3.32) |lwe —wl|lo =0 ase—0.

Thus, (3.31) will follow if we can prove

(3.33) |lwe — ucllo = 0 ase — 0.
Use (3.21) with v = we,

(3:34) e luc —wellf + (mo —ema) ue —weg
< e (Ajwe, we — ue)1 + (Aowe, we — U)o + P(ue, we) — P(ue, ue)
+ IO (us we —ue) = (f, we = ue)o.
Let us bound each term on the right side of (3.34). First, by (3.2),
[Arwel1s < [[Arwe — A10l1s + [|A10]|1s < Lnflwel[s + [[A10[] 1.
So

1
£ (Arwe, we — u€>1 <e ||A1w5||1*Hw€ - UEHI < §€m1||u€ - ws”? +ce (HWEH% + 1) .

Write
<A0U1€, We — us>0 = <A0ws - AOW, We — us>0 + <A0U), We — u6>0

and note that due to (3.4), for any 6 > 0, there is a constant ¢ > 0 depending on §
such that

(Apwe — Agw, we — us)o < Lol|lwe — wllol|we — uclo

<6 flwe — UEH(% +c|lwe — w||(2)
By (3.22) with v = w. and with u replaced by w,
D(ue, we) = P(ue, ue) < mollue — wllollue — wello + S(w, we) — V(w, ue).
Moreover, for any ¢ > 0,

ma |lue — wllollue — wello < ma (Jue — wello + [we —w|lo) [[ue — wello

< (mg +6) [Jue — wellg + ¢ [we — wl[
with a constant ¢ > 0 depending on ¢. Note that using (3.12) and (2.7),
jo(us; we —us) < J(ue;we —ue) < J(ug;w —ug) + J(ug; we — w).
By (3.7) and (3.29),

I (ueswe —w) < (co + calluelo) Jwe — wllo < ¢lwe —wllo.
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By (3.25) with v = w,
T (ug;w —ue) < myllue — w2 — T (w;ue —w).

On the first term on the right side, for any ¢ > 0, there is a constant ¢ depending on
0 such that

mllue = w|§ < my (|lue = wello + [lwe = wl[lo)*

< (mg+ 6) llue — UJSH(% + CHwe - w||(2)

So from (3.34), we derive the inequality

1
(3.35) §sm1\|u5 —we||? + (mo — me —my —emag — 30) |Juc — w3
<ce (stH% + 1) + (Aow,ws - u5>0 + (I)(W,ws) - (I)(wv Ue)

+cllwe = wllo + ¢llwe —wl[§ — I (w; ve — w) = (f,we — uc)o.

Ase — 0, e |lw.||? — 0 since '/*|jw,||; is uniformly bounded. The term (Agw,w. —
Ue)o — 0 since we, — ue — 0 in Vy. Moreover, from the assumption (Hg v, ), we know
that ®(w, -) is continuous and weakly l.s.c. on Vp; thus,

O (w, we) = (w, w),
lim sup [—®(w, ue)] < —®(w, w).

The term ||w. — wl|jo — 0 by (3.32). For any £ € 9J(w),
—J0(wiue —w) < = (& u. —w) >0,

and so
lim sup [—J°(w;ue —w)] < 0.

The term {f, w. — uc)p — 0 since we — ue — 0 in Vp. In conclusion, from (3.35) with
0 > 0 sufficiently small, we have

lim sup [g e — wellf + [lue — w5||(2)] < 0.
e—0
Thus, (3.33) and therefore the strong convergence (3.31) holds. Moreover, from the
above inequality and v/ w. — 0 in V3, we have (3.19).

Finally, we prove that the limit w is a solution of (3.17). Note that by Theorem
2.4, (3.16) is equivalent to

ue € K1, e(A41v,v —uc)1 + (Agv, v — ueho + P(ue, v) — Pue, ue) + jo(v;v — Uug)
> (f,v—u)o VveKi.

Thanks to (3.12), u. € K; satisfies the relation

(3.36) e (A1v,v — ug)1 + (Aov, v — uc)o + P(ue, v) — Plue, ue) + JO(U; v — Ug)
> (fiv—us) VYove K.

Then we use the strong convergence (3.31) and (3.19), as well as the property (2.9),
to show from (3.36) that w € K satisfies the inequality

(Agv,v — w)o + ®(w,v) — ®(w, w) + J(v;v —w) > (f,v —w)y Vv € Ko,
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where we make use of (3.22) with u replaced by w:
D(ue,v) — P(ue, ue) < ma|lue — wlo|lue — vl|lo + P(w,v) — P(w, u).

Applying Theorem 2.4 again, we conclude that w is a solution of (3.17). By the
uniqueness of a solution of the problem (3.17), we have w = w. Since the limit is
unique, the limiting relations (3.18) and (3.19) hold for any ¢ — 0. 0

We have an improved convergence result under an additional assumption on the
solution regularity of the problem (3.17).

THEOREM 3.5. Keep the assumptions stated in Theorem 3.1. If additionally u €
Ky, then as e — 0,

(3.37) [ue —ullo = O(Ve),
(3.38) e — ully — 0.

Proof. We let v = u in (3.16), v = u, in (3.17), and add the two inequalities to
obtain

e(Ajue — Aju,ue — u) + (Ague — Agu, ue — u)g
<e(Ayu,u—us)y + J(ue, u —ug) + JO(us ue — )
+ D(ue,u) — P(ue, ue) + Pu, ue) — ®(u, u),

where again (3.12) is applied. Thus, applying (3.3), (3.5), (3.6), and (3.8),

emyllue — ul|? + (mo — ema) |Jue —ul|3 < e (Aju,u—u)y

+malue = ull§+mylue - ulf,
and then
(3.39)  emqluc — ullF + (mo —ema —ma —my) ue — ull2 < e (Ayu,u —u);.

By bounding the right side of (3.39) with
em €
e (Aru,u—ug)y < 5 e —ull? + 2y [ Avull?,
we derive from (3.39) that
2 € 2
—emy —ma —my) fus —ul} < - | Al
(mo = ema —ma —my) [lue —ullo < 5 — [l Aruli
1
lue —ull} < p [ Avul,.
Hence, (3.37) holds and {u.} is bounded in V;. Since V; is reflexive, a subsequence
{ues } weakly converges in V;. Since u. — w in Vj, the weak limit of {u. } equals u.
Because the limit u is unique, we conclude that u. — w in V; as ¢ — 0. By (3.39)

again, as € — 0,
maflue —ullf < (Aru,u—ue)1 — 0,

i.e., (3.38) holds. d
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4. Singular perturbations of hemivariational and variational inequali-
ties. We first consider the special case of singular perturbation of “pure” hemivari-
ational inequalities which are obtained when we set ® = 0. Thus, the singularly
perturbed hemivariational inequality is of the form

(4.1) ue € K1, e(Ajue,v —ue)1 + (Aotte, v — uc)o + jo(ug;v — u)
Z<f,'U*’U,E>0 VIUGKM

whereas the limiting problem is
(4.2) u€ Ko, (Aou,v—u)o+J(w;v—u) > (f,v—u)y Yve Ko

By Theorems 3.4 and 3.5, we have the following result.

COROLLARY 4.1. Assume (Hg,), (Hg,), (Hi, x,), (Ha,), (Ha,), (Hiw),
(Hyv,), and my < mg. Then the problem (4.1) has a unique solution u. if emy <
mo —my, and (4.2) has a unique solution u. Moreover, as e — 0,

lue —ullo =0,  Velluels — 0,
and if in addition u € K1, then
Jue —ullo = O(Ve), [lue —uf1 — 0.

We then specialize to the case of singular perturbation of pure variational inequal-
ities by setting J = 0. The singularly perturbed variational inequality is

(4.3) ue € Ky, e{Ajuc,v —ue)1 + (Ague, v — uc)o + P(ue, v) — P (ue, ue)
> (f,v—ue)o VveKj.

The corresponding limiting problem is
(4.4) u€ Ko, (Aou,v—u)o+ @(u,v) — ®(u,u) > (f,v—u)y Yve K.

By Theorems 3.4 and 3.5, we have the following result.

COROLLARY 4.2. Assume (HKl); (HKO); (HK17K0)7 (HAl); (HAU)7 (H¢>7V0),
(Hyvy), and mg < mg. Then the problem (4.3) has a unique solution u. if e mg < mo,
and (4.4) has a unique solution u. Moreover, as € — 0,

[ue —ullo =0, Velluclly =0,
and if in addition u € Ky, then
|ue —ullo = O(Ve), lue —ully — 0.

Finally, consider the special case where J = 0 and ® = 0. The singularly per-
turbed variational inequality is

(45)  we € K1, e(Ajuc,v—uc) + (Aouec,v —ucho > (f,v —ue)o Vv e Ky,
whereas the corresponding limiting problem is
(46) u e K(), <A0’U,, (U U>0 > <f,U — u>0 Vo e K().

We deduce from either Corollaries 4.1 or 4.2 the following known result for singular
perturbation of variational inequalities.
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COROLLARY 4.3. Assume (HKl); (HK0)7 (HK1,K0)7 (HAl); (HAU), and (Hf,Vo)-
Then the problem (4.5) has a unique solution ue if e ma < mg, and (4.6) has a unique
solution u. Moreover, as e — 0,

Jue —ullo =0, Ve uelly =0,
and if in addition u € K1, then
Jue —ullo = O(Ve), [lue —uf1 — 0.

5. An example: Plate bending over an obstacle. We illustrate the appli-
cation of the results from previous sections in the study of a mathematical model in
plate bending. Following [27, section 1:4], we consider the bending of a plate that
occupies a region {(z,z) | x € Q, —h/2 < z < h/2}, where © = (z1,22), Q@ C R? is
a bounded Lipschitz domain, and h > 0 is the thickness of the plate which is small
compared to the size of  in both x1- and xs-directions. The plate is assumed to be
made of an elastic isotropic and homogeneous material, and it is subject to the action
of a vertical load only. The unknown variable is the vertical displacement of the plate
u(x), € Q. In the linearized theory of the plate bending, the total potential energy

is
g(u)zﬂ/ |Au|2dx+z/ |Vu|2dx—/Pudx,
2h Jo 2 Ja Q

where D = h3E/[12 (1 — v?)] is the stiffness coefficient (modulus of flexural rigidity)
of the plate, F > 0 is Young’s modulus, v € (0,0.5) is Poisson’s ratio, T > 0 is the
constant absolute value of stress per unit surface area, and P is the density of external
vertical forces per unit surface area. Denoting f = P/T and ¢ = D/(hT), we consider
the scaled energy functional

1
g(u):g/ﬂ\Au|2dx+§/ﬂ|Vu|2dx—/qudx.

Note that ¢ = O(h?) is small.

With the classical clamped boundary condition or the simply supported boundary
condition on " = 9, minimizing the energy functional £(u) leads to a fourth order
partial differential equation

(5.1) eA*u—Au=f inQ.

For the clamped boundary condition, the function space for the displacement wu is
V = HZ(Q), whereas for the simply supported boundary condition, the function space
for the displacement u is V' = H?(Q)NH{ (£2). We note in passing that the conforming
finite element method is studied in [28] for solving the singular perturbation problem
of the partial differential equation (5.1) (in a slightly more general form) with the
clamped boundary condition.

We now assume the plate lies over an obstacle with the height function z = ¢ (x),
x € ). Then the constraint set is

K={veV]|v>1¢in Q},
where it is assumed that

(5.2) e HY(Q), % <0ae onl.
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We consider the case where the vertical force consists of two parts:

(5-3) f="Ffo+fi. foeL*(Q), —fi € dj(u).

For situations with the force decomposition as in (5.3), see the discussions in [25]; see
also [10] on the numerical analysis of a related hemivariational inequality. We assume
the function j: R — R has the following properties:

(a) j is locally Lipschitz continuous;
(b) there exist constants cg, ¢; € R such that
(5.4) |0§(r)] < ¢+ cilr] VreR;
(c) there exists a constant m; such that
jO(Tl;’I‘Q — ’1"1) —l—jO(TQ;Tl — TQ) < mj|r1 — T‘2|2 Vri,re € R.
For definiteness, in the following we consider the case with the clamped boundary
condition. Then

(5.5) Vi = H2(Q),
(5.7) Ki={veWVi|v>vyinQ},
(58) K():{”UGVQ|’UZ’I/)HIQ}.

By Poincaré’s inequality (cf. [1, Example 7.3.16]), [[v]jo = ||Vv||12(q)e defines a norm
on Vp and it is equivalent to the canonical norm |[v|| 1) over Vo. Moreover, |[v||; =
| Av|| 2 () defines a norm over V; and it is equivalent to ||v]| g2 (o) over Vi [3, Theorem
6.8-1]. The operators A;: Vi — V; and Ag: Vy — Vp are defined as follows:

(5.9) (Ayu, v) = /Q AuAvdr, uv eV,
(5.10) (Agu,v)g = /QVu -Vodz, wu,ve V.
Moreover,

(5.11) J(v) = /Qj(v) dr, veV,
(5.12) (f,v)o = /Qfov dx, veV.

It is easy to see that (3.2) holds with L; = 1, (3.3) holds with m; = 1 and my = 0,
(3.4) holds with Ly = 1, and (3.5) holds with mg = 1.
Then the obstacle plate bending problem is

(5.13) ue € Ky, 5<A1u5,v—u5>1—|—(Aoug,v—u5>o+/jo(ug;v—ug)dx
Q
> (f,v—uc)o VveK;

and the limiting problem is

(5.14) u € Ky, (Aou,vfu>o+/j0(u;fufu)dx2<f,v7u>0 Vv e K.
Q
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Recall that j: R — R is regular (in the sense of Clarke) if for any r € R, the
directional derivatives j/ (r) and j (r) exist, and j, (r) = j°(r; 1), 5°(r) = j°(r; —1).
Under the additional assumption that j: R — R is regular, we have (cf. [21, Theorem
3.47))

(5.15) J(u;v) = / 2 (usv)dz,  wu,v € V.
Q

In this case, (5.13) is equivalent to

(5.16) u: € K, €<A1u€,v7us>1+(Aous,v7u5>0+JO(us;v7us)
> (f,v—uc)o Vve K,

whereas (5.14) is equivalent to
(5.17) u € Ko, (Aou,v—u)o+ J(w;v —u) > (f,v—u)y Vv Ko.

Let us apply Corollary 4.1. Tt is easy to verify the conditions (Hy, ), (Hxk,), (Hk, ko )s
(HAl); (HAO), (H(]yvo), and (Hf,Vo)- For v, vy € Vg,

JO(vi;v2 — v1) + IO (va5 01 — v2) = / [jO(Ul;Uz —v1) + j%(vas 01 — U2)} dx
Q

< mj/ lvg — v2|2dac < mj)\al/ |V (v1 — 1}2)|2 dx,
Q Q
where \g > 0 is the smallest eigenvalue of the eigenvalue problem

—Au=Au in €,

u=0 onT.
Thus, mj; = mj)\al and the smallness condition mjy < 1 is
(5.18) m; < Ag.

Under this condition, we know that both problems have a unique solution and as
€ — 0, we have the convergence

(5.19) lue —ullo = 0, Ve ||uells — 0,
and if u € K1,
(5.20) [lue —ullo = O(Ve), |ue —ull1 — 0.

Without assuming j: R — R is regular, we proceed as follows. We still assume
(5.18). Since

JO (u;v) S/jo(u;v)daj, u,v € Vy,
Q

the solution of (5.16) is also a solution of (5.13). Moreover, the uniqueness of a solution
of the problem (5.13) can be proved similarly to that for the solution uniqueness of
the problem (5.16). In the same way, it can be proved that the problem (5.14) has
a unique solution. Moreover, the proofs of Theorems 3.4 and 3.5 can be repeated
with JO(u;v) and JO(u;v) replaced by Jo 7°(u;v) dz. Then we again conclude the
convergence results (5.19) and if u € K7, also (5.20).

We summarize the above discussions in the form of a theorem.
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THEOREM 5.1. Assume fo € L?(Q), (5.2), (5.4), and (5.18). Then for the solu-
tion u. of the problem (5.13) and the solution u of the problem (5.14), we have the
convergence (5.19). Moreover, if u € K1, then (5.20) holds.

For the case of the simply supported boundary condition, the definition (5.5) of
the space V; needs to be changed to Vi = H?(Q) N H}(Q2) and the set K; is defined
by (5.7) with this V;, but the rest of the definitions (5.6)—(5.12) are unchanged. The
hemivariational inequalities under the consideration are still of the forms (5.13) and
(5.14). We claim that in this case, the statement of Theorem 5.1 is still valid if we
assume that €2 is smooth or convex. According to [1, p. 301], if 2 is smooth or convex,
[vllv = |Av||r2(q) defines a norm over Vi = H?(Q) N Hg(2) and it is equivalent to
l|lv]| 2 () over Vi. The rest of the arguments leading to Theorem 5.1 remain the same.
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