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Abstract

This paper is devoted to the development and analysis of a pressure projection stabilized
mixed finite element method, with continuous piecewise linear approximations of velocities
and pressures, for solving a hemivariational inequality of the stationary Stokes equations
with a nonlinear non-monotone slip boundary condition. We present an existence result for
an abstract mixed hemivariational inequality and apply it for a unique solvability analysis of
the numerical method for the Stokes hemivariational inequality. An optimal order error esti-
mate is derived for the numerical solution under appropriate solution regularity assumptions.
Numerical results are presented to illustrate the theoretical prediction of the convergence
order.

Keywords Stokes hemivariational inequality - Stabilized mixed finite element method -
Error estimates

1 Introduction

Hemivariational inequalities (HVIs) provide a useful framework to both theoretically and
numerically treat many application problems in physical sciences and engineering that
involve non-monotone, non-smooth and multi-valued constitutive laws among different phys-
ical quantities. Comprehensive references on modeling and mathematical analysis of HVIs
include [10, 30, 31, 33, 36]. Several numerical methods have been applied to solve HVIs.
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An early comprehensive reference on the finite element method for HVIs is [23], where
convergence of the numerical solutions is shown, but no error estimate is derived. Recently,
optimal order error estimates are derived for the linear finite element solutions of a variety
of HVIs, e.g., [16, 18, 20, 21] for elliptic HVIs, [2, 22] for hyperbolic and parabolic HVIs,
[40] for history-dependent HVIs, [13, 17] for Stokes and Navier-Stokes HVIs, cf. [19] for a
summary account. In [14], the lowest order virtual element method is analyzed for an elliptic
hemivariational inequality (HVI) in contact mechanics without constraint, and an optimal
order error estimate is derived. The virtual element method of arbitrary order for elliptic HVIs
in contact mechanics with or without constraint is studied later in [39], where an optimal
order error estimate is shown with the linear virtual element solutions. The nonconforming
virtual element method of an arbitrary order is constructed in [29] for solving a stationary
Stokes HVI with a nonlinear slip boundary condition, and an optimal order error estimate
is derived for the lowest-order element solutions. In [38], the interior penalty discontinuous
Galerkin method is studied for an elliptic HVI arising in semipermeable media, and optimal
convergence order is proved for the linear element solutions.

The key to the success of mixed finite element methods is the validity of the discrete inf-
sup condition of the pair of finite element spaces that ensures the existence and the stability
of the solution. It is not straightforward to construct such pairs of spaces. For example, for
the Stokes equations and the Navier-Stokes equations, the seemingly natural choices of the
P - P; element pair with continuous discrete pressures and the P - Py element pair with dis-
continuous discrete pressures are not stable. In the literature, several stabilization techniques
have been introduced in order to comply with or circumvent the discrete inf-sup condition.
For instance, local and global stabilized methods [24], which are based on the macroelement
condition for constructing the locally stabilized formulation. Consistent stabilized methods
[4, 8], which use the residual of the momentum equation in the added terms. Projection based
stabilization methods including the local pressure projection stabilized method for the lowest
equal order elements [7, 25-28], and local pressure gradient projection stabilized method for
the quadratic equal order elements [5, 6].

Low order velocity-pressure pairs are attractive for mixed finite element simulations of
incompressible flow problems [35]. This paper is on a pressure projection stabilized mixed
method of the lowest equal order pair to solve a hemivariational inequality of the stationary
Stokes equations with a nonlinear non-monotone slip boundary condition. In general, opti-
mal order error estimate cannot be derived for high-order methods due to the presence of an
approximation error bound term on the slip boundary. In [13], the mini element and the P;- P;
element are both analyzed for a stationary Stokes HVI with a nonlinear slip boundary condi-
tion, and an optimal order error estimate is derived for the mini finite element solution. The
nonconforming virtual element method of an arbitrary order for the same problem is analyzed
later in [29], where an optimal order error estimate is derived for the lowest-order element
solution. Compared with the P1-Py element pair with discontinuous discrete pressure, the
P - Py element pair with continuous discrete pressure admits fewer degrees of freedom and
higher numerical convergence order for the pressure. Moreover, P - P; element pair is easy
to implement as the velocity and the pressure share the same function spaces. Inspired by [7],
in this paper, we present the local pressure projection stabilized mixed method using con-
tinuous piecewise linear approximations of the velocity and the pressure for the stationary
Stokes HVI. The method is featured by the use of an abstract operator projecting the Pj finite
element space for the pressure to the Py finite element space. This method is unconditionally
stable and is easy to implement without extensive recoding. Moreover, we present an error
estimate for the velocity and pressure, achieving the optimal order for the lowest equal order
elements.
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The rest of the paper is organized as follows. In Sect. 2, we review the notions of the
generalized directional derivative and the subdifferential in the sense of Clarke, as well as
some of their basic properties. We introduce an abstract mixed hemivariational inequality and
explore its solution existence. In Sect. 3, we analyze the local pressure projection stabilized
mixed finite element method for the Stokes HVI. We show the existence and uniqueness of a
discrete solution and derive a priori error estimate, which is optimal with lowest equal order
element solution. In Sect. 4, we report computer simulation results on numerical examples.

2 An Abstract Mixed HVI

In this section, we present a solution existence result for an abstract mixed hemivariational
inequality.

We first recall the definitions of the generalized directional derivative and generalized
subdifferential in the sense of Clarke for a locally Lipschitz function.

Definition 2.1 Let V be a Banach space and denote by V* its dual. Let ¢/ : V — R be a
locally Lipschitz functional. The generalized (Clarke) directional derivative of ¢ atu € V
in the direction v € V is defined by

vO(u; v) = limsup YW+ 1) =y w)
w—u, A0 A

The generalized gradient (subdifferential) of i at u is defined by
W =t eV Y usv) = (¢, v) Vo e V).

The following result provides some basic properties of the generalized directional deriva-
tive and the generalized subdifferential ([12,Propositions 2.1.1, 2.1.2]).

Proposition 2.2 Assume that W : V — R is a locally Lipschitz function. Then the following
statements are valid.

(i) Foreveryu € V, the function y°(u; ) : V. — R is positively homogeneous, i.e.
YOou; ) = s v) VA>0,veV, (2.1)
and subadditive, i.e.
YO vi 4 v2) = 0w v) + 90w 1) Yo, me V. (2.2)
(ii) Forany u,v € V, we have
YO v) = max{(§, v) : § € 9P (). (2.3)

(iii) The function ¥° : V x V. — R is upper semi-continuous, i.e., for all u,v € V,
{un}, {v,} C V such that u,, — u and v, — v in'V, we have

lim sup ¥° (un; v,) < ¥O(u; v). (2.4)

n—o0o

In the rest of this section, we consider an abstract mixed hemivariational inequality. Let
V and Q be Hilbert spaces.
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Problem 2.3 Find (u, p) € V x Q such that
a(u,v) —d, p) +¥0u; v) > (f,v) YveV, (2.5)
du,q)+S(p,q) =0 Vg e Q. (2.6)
In the study of Problem 2.3, we impose the following assumptions on the data.
H(a). a: V x V — Ris bilinear, bounded and coercive:
laGu, v)| < callullvlvlly and a(v,v) = malvlly, Yu,veV,

for some constants ¢, m, > 0.
H(d). d: V x Q — Ris bilinear and bounded:

ld(v. g)| < callvliviiglle Y(v.q) eV xQ,

for a constant ¢y > 0.
H(S). S: Q x Q — Ris bilinear and bounded with S(¢,g) > 0 forall ¢ € Q.
H (B). There exists a constant 8 > 0 such that

B((u, p); (v,q))
—=== > B(llully +lpllg) Yu.p)eVxQ, (27

wevxo vy +llglio

where
B((u, p); (v,q)) = a(u,v) —d(v, p) +d(u,q) + S(p, q).

H(W). ¥: V — Rislocally Lipschitz, and there are constants cg, ¢1, my > 0 such that
0¥ @) lv+ < co+cillvlly YveV, (2.8)
WOisvp —v1) + W0vp; v — 1) < myllvr — w2y Vv, v e V. (2.9)

H(). feV*andm, > my.

Remark 2.4 The hypothesis H (S) implies that function Q > ¢ — S(g, q) € R is convex.
Indeed, let p,g € Q and ¢t € (0, 1) be arbitrary and denote g, :=t g + (1 — t) p. Then, we
have

S(qi,q0) =1*S(q,q) +t (1 —1)S(q, p) + (1 = )*S(p, p) +1 (1 —1) S(p, q)
=tS(q,q) —t(1-0S(p—q,p—q)+UA—-1)S(p, p)
<tS(g,q)+ {1 —-1)S(p, p).

Hence, O > ¢ — S(q, q) is convex.
The assumption H(B) is known as the inf-sup condition for the bilinear form B. The
inequality in (2.8) stands for

[nllv= < co+cillvlly YveV,ned¥().
By (2.3), (2.8) implies

[W0; )| < (co+erllul)lvlly Yu,veV. (2.10)
It is known that (2.9) is equivalent to ([30])

(m —m,v1 — ) = —myllvr — v} Vv eV, nedW(y),i=12 (.11
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For the solution existence of Problem 2.3, we will apply a result called the elemen-
tary Knaster-Kuratowski-Mazurkiewicz principle ([15,p. 66]). Let V be a Hilbert space
and U be a nonempty subset of V. We recall that G: U — 2" is a Knaster-Kuratowski-
Mazurkiewicz map (or simply a KKM-map) if for any {vy, vz, ..., v,} C U, its convex hull
cofvi, v2, ..., Up} is contained in | J7_; G (v;).

Lemma2.5 Let V be a Hilbert space, U a nonempty subset of V, and G : U — 2V a
KKM-map with closed convex values such that Gvy is bounded for some vo € U. Then the
intersection (\{Gv | v € U} is not empty.

For M > 0, define subsets V) C V and Q) C Q by
Vu={veV:|vly =M}and Qu ={q € Q:llqllo = M}. (2.12)
Then we introduce an auxiliary problem:
Problem 2.6 Find (u, p) € Vi x Qp such that for all (v, q) € Vi x Qu,

a(u,v—u)—d(v—u,p)+‘110(u;v—u)+d(u,q—p)+S(p,q—p) > (f,v—u).
(2.13)

Theorem 2.7 Assume that H(a), H(d), H(S), H(B), H(V) and H(0) hold. Then Prob-
lem 2.3 has a solution.

Proof Let M > M, with

maX{Co+|lf||v*760+||fllv* (Ca +ca+cr +l>}+l.
mg — my B mg — my

My = (2.14)

We introduce a multi-valued mapping G: Vi x Qu — 2Y#*2¥ defined by

G(,q) ={(u,p) € Vu x Oum : av,v—u) —d( —u, p) +§€iarzpf(v)<$, v —u)

+dw,q—p)+S(p,g—p)={(fiv—u)} Y@, q)€Vyx0Ou. (2.15)

Since (v, q) € G(v, q),G(v, q) # Pforall (v, g) € Vi x Qp. We claim that the set G (v, q)
isclosedin V x Q. Let {(u,, p,)} C G(v, q) be a sequence such that (u,, p,) — (u, p) in
V x Q asn — oo, for some (u, p) € Vyr x Qpy. Hence, for an arbitrary £ € aW (v), for
each n € N, we have

a, v —up) —dW —tp, pp)+E, v — up)+dUn, g — pp)+S(Pn, g — P)Z(f, v — un).
Passing to the upper limit n — oo in the above inequality, we have

(fy,v—u)= lim (f,v—uy)

n—oo
< lim [ao, v =) —d(, p) + (€ v — ) +d G, q) + S(pu ) |
n—oo
— liminf S(pu, pu)
n—oo
SG(U,U_M)_d(U,P)‘i‘(g»U_”)+d(”,4)+s(pvq_l7)s

where we have used the fact that the function p — S(p, p) is continuous. Since & € dW (v)
is arbitrary, we conclude from the above inequality that

a(v, v — M)—d(l) —u, p)+§eglllf(v)<g’ U—M>+d(u, q— P) + S(ILq - p) > <f7 v — M)*
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ie., (u, p) € G(v,q) and G(v, g) is closed. Moreover, G (v, ¢) is convex. This is verified
as follows. For (ug, po), (u1, p1) € G(v,q) and ¢t € [0, 1], we have, with (u;, p;) =
1 (uy, p1) + (1 — 1) (uo, po)s

inf , U — >t inf LV — 1—1t) inf LU — ,
Eew(v)(e‘? V=) > EEB\II(U)@ v—up) +( )Eew(v)(é v — uo)

S(pr,q —po) 2t S(p1,q — p1) + (1 —1) S(po, ¢ — po),
where we used the convexity of Q 3 ¢ — S(gq, ¢) € R (see Remark 2.4). Hence, (u;, p;) €
G(v, g),i.e., G(v, q) is convex. Obviously, G (v, g) C Vi x O is bounded for any (v, g) €
Vu x Oum.

Next, we show that G is a KKM mapping. Arguing by contradiction, assume there exist
{(i, g}, C Vi x Qu such that (vo, go) ¢ UN, G(vi, i) where vg = 3N, t;v; and
qo = ZlNzl t;g; for some scalars t; € [0, 1] with ZlNzl t; = 1.Foreach 1 <i < N, since
W (v;) is weakly compact in V*, there exists § € dW (v;) such thatinfecyw ;) (&, vi —vo) =
(fi, Vi — U()). Then

a(vi, v; —vp) — d(v; —vo, qo) + (&, vi — vo) +d(vo, qi — qo)
+8(q0, i — qo0) < (f,vi — vo).
By H(a) and (2.11),
a(v; — vo, vi —vo) + (& — &0, v — o) = (ma —mw) [lv; —volly =0 Y& € 3V (vp).
Hence,
a(vo, vi — vo) — d(vi — vo, qo) + (€0, vi — vo) + d(vo, i — qo)
+8(q0, i —qo) < (f,vi — vo).
We multiply both sides of the above inequality by # and sum over i from 1 to N,
0 =a(vo, vo — vo) — d(vo — vo, q0) + (50, vo — vo) + d(vo, go — go) + S(qo, g0 — o)
< {(f,vo—vg) =0.

This leads to a contradiction. Therefore, we conclude that G is a KKM mapping.
Applying Lemma 2.5, we know that there exists (u, p) € Vi x Qp such that

a(,v—u)—dw—u,p)+ geg}yf@)(é, v—u)+du,q —p)+S(p.qg—p)
= (f,v—u) V(v.q9) € Vu x Qu.
By the definition of the generalized subdifferential, we have
a(,v—u)—d@—u, p) + ¥ ;v —u)+dwu,q—p)+ S(p.q — p)
>(f.v—u) Y(,q) € Vy xQOpu.

Let (w,r) € Viy x Oy and t € (0, 1) be arbitrary. We take v = vy = tw + (1 —Hu
and ¢ = g¢; = tr + (1 — t) p in the above inequality and use the positive homogeneity of
u— WOw; u) to get

a(vg, w — u) —d(w—u,p)—l—\llo(v,;w—u)+d(u,r—p)+S(p,r—p) > (f,w—u).
Passing to the upper limit # — 0 in the above inequality, we have

a(u,w—u)—d(w—u,p)—i—lIJO(u;w—u)+d(u,r—p)+S(p,r—p)z(f,w—u)
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for all (w,r) € Vi x Qu, where we have used the fact that the function W° is upper
semi-continuous. We conclude that (u, p) € Vs x Qyy is a solution to Problem 2.6.
Let us bound [|u||y and || p||o. We take (v, g) = (0,0) € Vi x Qp in (2.13) to obtain

a(u,u) < V0u; —u) — S(p, p) + (f, u). (2.16)
From (2.9) and (2.10),
WOu; —u) < mylully, — w00; ) < myllully + collully.
Since S(gq, q) > Oforall ¢ € Q, we derive from (2.16) that
(ma —me)ully < (co+ IflIlvo)llully.

Hence,

co + I fllv=
Mg — My '

lully <

We then bound ||p|lo. Let » € Q be arbitrary. Then for ¢+ € (0, 1) sufficiently small,
gr=tr+ (1 —1t)p e Qpy.Takingg = p and (v, g) = (u, g;) in turn in (2.13), we obtain

dv—u,p) <a,v—u)+Vu;v—u)— (f,v—u) Yve Vy, (2.17)
d(u,q)+ S(p,q) =0 Vg e Q. (2.13)
Denote by By (u, 1) the unit closed ball in V' with center u, and by By (0, 1) the unit closed

ball in Q with center 0. Note that By (u, 1) C V). Use the inf-sup condition (2.7) withu = 0
to find

B((0, p); (v, q))

Blipllo < sup sup B((0, p); (v, q))

waevxe vlv+lale  juiv+iglest
= s BO.pri@—v.g)= swp (dw—up)+5p.q)-
veBy (u,l), veBy (u,l),
q€Bp(0,1) g€Bp(0,1)

From (2.17) and (2.18),

Blplg = sup (laG,v—w]+ %@ v —wl+(f,v—w)l)+ sup |d(w, )
veBy (u,l1) q€Bp(0,1)

< (ca +ca+cDlully +co+ 11 fllve

In conclusion, we see that for M defined in (2.14), a solution (u*, p*) to Problem 2.6 with
M > M, satisfies the inequalities

lu*llv < Mo and |[p*llo < Mo.

We now prove that (u*, p*) is also a solution to Problem 2.3. Let (w,r) € V x Q be
arbitrary. For ¢ € (0, 1) sufficiently small, let

(o g) = w4+ A —=0u*tr+ (1 —1)p*) € Vi, x Oump-
Inserting (v, ¢) = (vr, g¢) into (2.13) with (u, p) = (u*, p*) gives
a*, w—u*) —d(w —u*, p*)

FUO0W*; w —u*) +d W, r — p*)+ S(p*.r — p*) = (f, w—u¥).

@ Springer
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Take r = p* and w = u™ in turn in the above inequality, we obtain

aw*, w—u*) —dw —u*, p*) + V0w —u") > (f,w—u*) YweV,
dw*,r—p* )+ S(p*,r—p*) =0 VreQ.

Hence,
a@w*,v) —d, p*) + ¥ v) = (f,v) YveV,
du*,q)+S(p*.q) =0 VYqe Q.

We see that (u*, p*) € V x Q is a solution to Problem 2.3. |

3 A Stabilized Mixed FEM for Stokes HVI

We recall the Stokes HVI studied in [13]. Let @ ¢ RY (d < 3 in applications) be an open
bounded connected set with a Lipschitz boundary I' = 9€2. The boundary is split into two
parts: ' = I'p UT'g with meas(I'p) > 0, meas(I's) > 0,and I'p NT's = @. We will impose
a Dirichlet boundary condition on I'p and a slip boundary condition of friction type on I's.
Denote by n the unit outward normal to I". For a vector-valued function u on the boundary,
letu, = u -n and u; = u — u,n be the normal component and the tangential component,
respectively. With the flow velocity field u# and the pressure p, we define the strain tensor
e(u) = %(Vu + (Vu)T) and the stress tensor o = —pI + 2ve(u), where I is the identity
matrix, v > 0 is the viscosity coefficient. Let o, = n-on and 6, = on — o,n be the normal
component and the tangential component of o.
We consider the Stokes problem

—divQeQve(u))+Vp=f in €, 3.1

diva =0 in , (3.2)
with the following boundary conditions

u=>0 onI'p, 3.3)

u, =0, —o;€dy(us) ong. 3.4

Here, f € L?(Q) is a given function, and ¢ : I's x R? — R is locally Lipschitz continuous
with respect to its second argument. To simplify the notation, we write ¥ (u) for ¥ (x, u.),
and 01 is the subdifferential of ¥ in the sense of Clarke with respect to its second argument.
The condition (3.4) is known as a slip boundary condition. The first part u,, = 0 means that
the fluid can not pass through I's outside the domain. The second part represents a friction
condition, relating the frictional force o, with the tangential velocity u..

Introduce function spaces

V={weH(Q):v=00nTp, v, =0o0n Ty},
0=L3Q) = {q e LX(Q): / q(x)dx :o}
Q

for the velocity and pressure variables. As a consequence of Korn’s inequality ([32,p. 79]),
%
Vourseloq:= </Q IIe(u)Ilzdx)
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defines a norm and is equivalent to the standard H'(Q)-normon V. Weuse |||y = [le(-) llo.
for the norm on V and use || - ||p,q for the norm on Q.
The mixed formulation of the Stokes HVI is as follows.

Problem 3.1 Find (u, p) € V x Q such that

aw,v) = b, p)+ | v'ur;v)ds > (f,v) YveV, (3.5)
s

bu,q) =0 Vqe 0, (3.6)

where

a(u,v):Zv/e(u):s(v)dx Yu,veV,
Q
b(v,q):/qdivvdx YveV,qe,
Q
(f,v):/f-vdx VvelV.
Q

We note that the bilinear form a(-, -) is coercive on V due to
a(,v) =2v|v||} YveV, (3.7)

Concerning the superpotential ¥, we assume the following properties:
H@). ¥ : Ty x RY — R is such that

(i) ¥ (-, &) is measurable on I's for all £ € R and ¥ (-, 0) € L' (I's);
(ii) ¥ (x, -) is locally Lipschitz on R9 fora.e.x € I's;
(iii) 9] <co+cil€] VEeRY, pedy(x, &) ae x € ['gwithcg, ¢ > 0;

(V) YOx, 6136, —ED+ v (x. 62581 — &) <m.|§ — & V&, & eRlaex el
with m; > 0.

By (2.3), H(y) (iii) implies
[WO& 1 &) < (co+c1l€]) 1E2] VE,. & e RE (3.8)

Define a functional ¥ : L>(T's) — R by
V() = g v(v)ds Vv e L*(s). (3.9)
S
From the proof of Theorem 4.20 in [30], we have the following result.
Lemma 3.2 Assume that ¥ : T's x RY — R has the properties H(yr). Then the functional
W defined by (3.9) satisfies

H(W). (i) W(-) is locally Lipschitz on L>(T's);
(i) WO (u; v) < fl“s YOw; v)ds Yu,ve L*Ts);

(iii) llzllo,rs < /3Tsl co + /3 cilvllors Yv e L3(Ts), z € dW(v);
(iv) WO(v1; 02 — 1) + WO(va; 01 — v2) < mellog —0a2llf . Vi, 02 € LA(Ts).

By the Sobolev trace theorem, we have the inequality

—1/2
loellors <2 llvlly YoeV, (3.10)

@ Springer
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where Ag > 0 is the smallest eigenvalue of the eigenvalue problem

ueVv, /e(u):e(v)dx:k/ u,-v;ds YveV. (3.11)
Q Is

It is shown in [13] that if f € V*, H(y) and m; < 2vAq hold, then Problem 3.1 has a
unique solution (u, p) € V x Q.

We now turn to consider a finite element method for solving Problem 3.1. For simplicity,
we assume €2 is a polygonal/polyhedral domain in this section. We express I's as the union
of closed flat components with disjoint interior: I's = Ufsz s Let {T"} be a regular
family of triangular partitions of € into triangles. For a generic element K € 7", denote by
hx = diam(K) the diameter of K . The mesh-size of 7" ish = max{hg : K € Th}. Let P; be
the space of the polynomials of degree < 1, and P = (Py)? for the corresponding vector-
valued polynomial space. Corresponding to the partition 7", we introduce finite element
spaces

Vi={" eV gk e PIK)VK € T"}, (3.12)
0" =" e 0nNC’Q):q"|x € PLK)VK € T"}. (3.13)

For K € T",let 1X : L2(K) — Py(K) be the L2-projection operator defined by

K 1 2
[MMtg=— 1 gdx Vq e L (K),
K| Jk
with the global operator defined as
n'x=0f vk e7".
By [7,Lemma 2.3], it holds
lg" = 1"q" o0 = ch IVg" o0 V4" € O". (3.14)
From the standard finite element approximation theory ([9]), we have
lp = pllog <chliplie VpeH (). (3.15)

Following [7, 28], we introduce a stabilized mixed finite element method for Problem 3.1.
Problem 3.3 Find (u", p") € V" x Q" such that
a@", oMy —be", pty + A YOl vhyds = (f,v") Vol e VP, (3.16)
s
b, q") +S"(p".q") =0 V4" e Q" (3.17)
where the stabilized term S" (p, q) is defined by

S"(p.q) = /Q(p ' p)g - M'g)dx ¥p.q e Q.

Define a bilinear form

B"((u, p); (v, q)) = a(u, v) — b(v, p) + b(u, q) + S"(p. 9). (3.18)

Let us show the inf-sup condition for the bilinear form (3.18).
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Lemma 3.4 There exists a positive constant ¢ independent of h such that

B (", p"); ", g"))
Sup 7 7
whghevixgr Vv +llg"llo.g

= c(lulv + 1" log) V@, ph e Vi x O".
(3.19)

Proof For any (u", ph) e V" x Q" let us construct a pair ", qh) € V" x 0" such that
B (@", p"); 0", ¢")
v v + llg"llo.2

for a constant ¢ > 0 independent of 4. It is known that the continuous inf-sup condition is
valid ([37]): there exists a positive constant 8 such that

b(v, q)

ng(l)(Q) ”v”V

> ¢ (Ia"Ilv + 19" l0.2) (3.20)

> Bllglloe Yq e Q.

Then, for any p”* € Q" there exists a function v € H (1)(9) satisfying

b(v. p")
oy Z P17 log and lvlly = 1P lo.o. (3.21)

Let v/ be the first order Scott-Zhang interpolant of v ([34,Definition 2.13]). Then vl €
vhn H(I)(Q) and for some constants Cg, ¢ > 0 ([34,Theorem 4.1]),

Iv"lv < Collvlly and [lv—v'llo.o < chllv]y. (3.22)
Write
b, p"y = b, p") + b0 — v, p").
By (3.21),
b, p") = C1l1p"I13 o
where C; = B > 0. Since ph € Q" is continuous, then it holds
b —v, p") = -0 —v. Vp") = — v = v]0.llVP" 0.0
By (3.21), (3.22) and (3.14),
b —v, p") = —Collp" — 11" p" 0.2l p"ll0.2
for some constant C» > 0. Thus,
b, p"y = CilIp" 5.0 — C2llp" = T p" ll0.2llp" 0.0 (3.23)
From (3.21) and (3.22), we have
v llv < Collp" llo.0-

h — v’ and g" = p” for a positive constant e, we obtain

Choosing v = u
B (@", p"y; @" — !, p")) = a@", u") — aa@”, vy + ab’, p") + S"(p", p")
> 2vllu" |1}, — 2vaCollu” v IIp" lo.2 + aCillp" 15 o

—aGallp" = 1" pMlo.al P llo.e + 10" — T P13 4.
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Obviously, for « > 0 sufficiently small, we have a positive constant ¢ that depends on « such
that

B (!, p: @ — e’ p") = e (Il + 1" loa)
Note that
1" lv + llg" llo.c = Ilu" — v’ Iy + 1p"llo.2 < clu"llv + 1p"l0.2).
Thus, we finish the proof of (3.19). O
Remark 3.5 Particularly, when u" = 0, then we have

B"((0, p"); 0", g"))
10" v + llg"llo.e

=clp'log ¥p"e Q" (3.24)
@gheV" x "

where V' = Vi 0 H)(Q).
We are ready to present an existence and uniqueness result for Problem 3.3.

Theorem 3.6 Assume f € V*, H(¥) and m; < 2vig. Then Problem 3.3 has a unique
solution.

Proof By Lemma 3.2, under the assumption H (1), the functional ¥ defined by (3.9) has the
properties H (¥). Then, we can apply Theorem 2.7 to conclude that there exists (u”, p") €
V" x Q" such that

a@”, vy —be", p"y + WO vy = (f, ") Vol e VI, (3.25)
b@", ¢") + S"(p", ¢") =0 vq" e Q" (3.26)
Since
wo@”; v") < A YOl vl ds,
s

we see that the solution (z", ph) € V' x Q" of (3.25)—(3.26) is also a solution of Problem 3.3.
For solution uniqueness, let (uﬁ’, pi‘), (ug, pé’) c Vh x Qh be two solutions of Prob-
lem 3.3. Then

a(ul, v") —b(vh,p’f)+fr YOl sofyds = (f.0") Vol eV, (3.27)
S
bl q") +S"(pl.g") =0 ¥q" € 0", (3.28)
and
a(uh, "y — b, ph) + A YOl s vlyds = (f.0") Vo' eV, (3.29)
N
bh.q") + S"(ph.q") =0 V4" e Q. (3.30)

We take v = ulz’ — ull’ in (3.27), v" = u’l’ — ug’ in (3.29), and add the two inequalities to
obtain

h h . h h h h _h h
a(u| —us,uj —uy) < b —u,, p{ —p3)

o N (LR A B B ) P
s
(3.31)
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Then take ¢" = pf' — pl in (3.28), ¢" = p4 — p" in (3.30), and add the two equalities to
obtain

b —ul, i — plhy = —S"(pt — ph. pl — pY). (3.32)
Thus, from (3.31) and (3.32), we have
a(uj —us,uj —ul) < =S"(p| — p3, pi — PY)
+/F (WOl s, —ul )+ 00wl ol —uh )] ds,
N

from which, by applying H (y) (iv), (3.10) and noting that sh (p’f — pé’, p’l’ - pg) >0,
20 uf — w15 < moagul —ub 5.

Hence, ||uff — ug ly =0,i.e., u'l’ = ug, due to the smallness condition m; < 2viq. Back to
(3.32), we then have

St (ph = ph. pt = ph) =o0.

Tlhlis eq;llality implies that p? — pé‘ = I1’( p{‘ — pé‘) is a piecewise constant function. Sihnce
Pl —P; € Q' is continuous with a vanishing integral over €2, we conclude that p | =p,.0

We turn to an error analysis. As a preparation, we show that the numerical solution is
uniformly bounded independent of 7.

Proposition 3.7 Assume f € V*, H() and my < 2vig. Then the solution component
u' e vh depends Lipschitz continuously on f. In particular, ||u" ||y is bounded independent
of h.

Proof Fori = 1,2, let f; € V* and (uf’, pih) e Vh x Qh be the unique solution to
Problem 3.3 corresponding to f;. Then,

a(uﬁ‘ - ug, "y — b, p{‘ — pé’) +/ [1//0(u]11’f; vf) + wo(ug,r; —vﬁ)]ds
Is
= (f1 = f2.0") Vo' eV,

bi —ul,q") + S"(p{ = ph.g") =0 Vq" € Q"

Take v" = ué’ — u’l’ in the first inequality and q" = p{’ - pg in the second one, we obtain
atul — bt~ < [ o0l a0l )]s
Is
+ b} —u3. pl = pp) + (f1— fo.u] —uj), (3.33)
and
b(u} —uy, p} — ph) =—=S"(p} — p}. p{ — P} <0.

Apply H () (iv) and (3.10) in (3.33), it yileds

h hn2 h h 2 h h
2l — b3 5mf/ . —ul Pds+ 1y — Fallyelu? —ullly
Is

—1 h hy2 h h
< mTAO ||u1 —u2||v +1f1— f2||V*||u1 —u2||V-
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We derive the Lipschitz continuity inequality

1
h h
luy —uzllv < — I1Lf1 = Fallve
vV —mehg

In particular, this inequality implies [|z” ||y < || £l V*/(Zv—mrkal ),i.e., |u" |y is uniformly
bounded independent of 4. O

We now establish a Céa’s inequality for the numerical solution.

Theorem 3.8 Assume f € V*, H(Y) and m; < 2vAq. Let (u, p) € V x Q and (u”, ph) €
V" x Q" be the solutions of the Problems 3.1 and 3.3, respectively. Then there exists a
positive constant ¢ independent of h such that for all v € V" and q" e oh,

e —u" v + Ip — P"llo.2
=c(lu=v"Iv +1p—q"log+Ip = " plog + lu: — 2157, ). (3.34)
Proof Denote
B((u, p); (v, q)) = a(u,v) —b(v, p) + b(u, q).
Note that Problem 3.1 is equivalent to
(w,p)eVxQ, B((u, p)@®-—uq)+ g YOe; ve —ur)ds > (f, v —u)
s

V(v,.q) €V xQ, (3.35)

whereas Problem 3.3 is equivalent to

', peVx Q" B (", p": 0 —u" g+ | YOy —uryds = (0" —ul)
s
v (", ¢") e VI x 0" (3.36)
Let (vh, qh) eVl x Qh be arbitrary. Then, we have
2vllu" — "5 < B"(@" =", p" ="y @ =", pt —g")
= B"(@", p"): @" =", p" = g") — $"(¢". p" = q")
— B((u. p): @" =", p" —g"))
+ B(w— ", p—q"): @" =", p" — g")).
From (3.36),

B (", p"y; @ =" ph — g™y < | w0l ot —ulyds — (f, 0" —uh).
Is

From (3.35) with v = u”" —v" + wand ¢ = p" — ¢",
—B((u, p); @" =" p" —g") < | YOuriul —vlyds — (f ut —o").
Ig
Hence,

2vlut =" <+ b+ B, (3.37)
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where
I =-5"@", p" —g¢M,
L=B(u—v",p—qg"; @ —v" p"—qg"y,

I = / [0 @z vp —ul) + 0 (e u — )] ds.
Is

By the definition of the stabilized term S”, we have
L=5"p—q" p"—q" - S"p.p" —q"
<lp=d"loalp" —4q"loa+l1p—1"ploclr" —q"loa.  (3.38)
By the modified Cauchy inequality with an arbitrarily small ¢ > 0, one has
L=aw—v",u"—v") —b@" — ", p —qh) + b —v", ph —qh)
< ¢ (llu=o"llylla" = "Iy + Ja" = 0"y llp = g"lo.0 + lu = 0" v 10" = g"ll0.0)

< ellu" = "I} +c (lu— "I + 1p = " .o + lu = V"I 1p" — " log)
(3.39)

By the subadditivity of ¥ (see (2.2)), we obtain
YO ul — o) < 90wl —u) + 90w, — o),
YOl o —uly <y @liue —ul) + v @l ok —uy).
By H(y) (iv),
VO —ug) + 9Ol ue — ) < melur —ul .

By (3.8),

0 . h h
w (u‘fv ur — v-[;) =< (CO +C1|u1’|)|uf - v-[l’

0yl yh h h
V(g vy —ug) < (co+ crluz)ur — vzl

Note that [luy, ||o,rg is bounded by a constant independent of /. Thus,

I < / melur — ug| ds +/ (2co +c1lue| + c1|uflur — vyl ds
I's Ig
< modg lu = w3 + e ue = villors
< moagt +olluh ="+ e (lu— "I + e = vllorg) . (40)
Combine (3.37)—(3.40) to get
Qv —meag ' = 2e)|lu" — "I},
<c(lu=v"lly +1p = q"log +Ip = " plog) 19" = ¢"log

+c(lu= "1} +1p = " Ba + e = o2lors)
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Since mrka] < 2v, we can choose ¢ = 2v — m,kgl)/4 > 0 to get
" =" < e (= o"Iv +11p = a"lo.c + 1P = 1" plog) 1p" = 4" lo.c
¢ (lu=v"I} +1p = ¢"IF o + lur = v¥llors ) -
By the triangle inequality, we have
e w1 < e (lu = "Iy +1p = a"lo.c + 1P = T plloe) 17" = a"lo.c
¢ (lu = "I} +1p = 4" o + lur = v¥llors ) - (3.41)

We next bound the error for the pressure. From the discrete inf-sup condition (3.24), we
have

—b", pt — g™y + St (p" — g", ")
oy + lI7]lo, @

clp" —q"loa <  sup (3.42)

(h rMeV" x oh
Take v € ‘N/h as a test function in (3.5) and (3.16) to obtain
a(u, vy — b@", p) = (f, ") Vo' e V",
a@", oMy — p@", phy = (f,v") Vol e V"
Thus,
b, p— p") = a(u —u, v Vo' e V"
By (3.6) and (3.17),
stph "y = bu —u", "y Vi e Q"
Then we obtain
b, q" — p"y+ S"(p" — " ")
=b0", p—p")+b0" " —p)+S" P =" (p. "+ 5" (p—g" ")
=a(—u" v") +b0", ¢" — p)+ b —ut " = S"(p, ")+ " (p— "M
=c(lu—u"ly +1p = a"loa+lp = ploc) (19" IV + 1" log)
which implies
17" =4"log = c(lu—uly +1p=q"loa+Ip—'plog). (43
By the triangle inequality,
1P = P"lloe < ¢ (lu—u"ly +1p = g"log + Ip — " plog) - (3.44)
Inserting (3.43) into (3.41) and using the modified Cauchy inequality, we can derive that

1/2
= ully < (lu=o"Ily +llp = g"lo. + llp = 1" pllog + lue = o157, )
(3.45)

Finally, (3.34) follows from (3.45) and (3.44). m]
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As a corollary of Theorem 3.8, we have an optimal order error estimate.

Theorem 3.9 Assume f € V*, H(Y) and my < 2vig. Let (u, p) € V x Q and (", p") €
V" x Q" be the solutions of the Problems 3.1 and 3.3, respectively. Assume u € H?>(S2),
ulrg, € H*(Tgy), 1 <1 <ls, and p € H'(Q). Then

lu —u"lly +lp— pllo.q < ch. (3.46)

Proof Letu' e V" be the finite element interpolant of u, and let p’ be the L? projection of
p to O". Then from the finite element approximation theory ([1, 9, 11]), we have

I
lu—u’lly < chllulzq,
1

2

ls
1 2 2
lu—ulors <ch E lulzrg, | -
=1

and

lp—p'llo.e < chlpliq-

Take v" = u! and qh = p! in (3.34), we deduce the optimal order error estimate (3.46).
m}

4 Numerical Examples

In this section, we report numerical results obtained using the local pressure projection stabi-
lized mixed method. The main goal of the experiment is to verify the numerical convergence
orders of (3.46) for the lowest equal order elements in two dimensions.

For the numerical examples, welet 2 = (0, 1) x (0, 1),I's = (0, 1) x{O}andI'p = '\,
and use uniform triangulations. Here, the unit interval [0, 1] is divided into 1 /A equal parts,
and we use & as the mesh-size. We choose v = 1. For positive parameters ¢ > b and o, we
let

|ue]
W) = (@ —b)e +b, Y(u) = / (o) d.
0

Then the slip boundary condition —o; € Y (u,) from (3.4) is equivalent to

Ur

loc| =pu(0) ifur =0, or=—u(ucl) ifu; #0, onTy. 4.1)

]
It can be verified that for this choice of v, H (v) (iv) is satisfied with m; = a(a — b).
Example 1 The source function is chosen as

Fly) = 472 (sin(2mx) + sin(2ry) — 2 sin(27 y) cos(27x))
V= 4 n2 (sin(2rx) + sin(2mwy) — 2sin(2wx) cos2my)) |
We take a = 9.01, b = 9.0, and @ = 10 for the function v in the numerical tests.

Example 2 In this example, let

_ [—20(6x% — 6x + 1)(2y* —3y? + y) — 60x%(x — 1?2y — 1) +2(2y — 1)
FEY =1 500043 Z 352 4 06y — 6y + 1) + 602 — Dy2(y — D2 +22x — 1) |

We take a = 0.255, b = 0.25, and o = 10 for the function v in the numerical tests.
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Table 1 Numerical errors of the lowest equal order elements for Example 1

h lw* — w0 Order lu* —ul|y Order Ilp* = p"lo.o Order
22 4.8714e-01 - 5.2789 - 3.6049 -

23 1.4299¢-01 1.7684 2.7362 0.9481 1.1434 1.6566
24 4.0183¢-02 1.8313 1.3899 0.9771 4.3835¢-01 1.3832
275 1.0407¢-02 1.9490 6.8917¢-01 1.0121 1.5918e-01 14615

Table 2 Numerical errors of the lowest equal order elements for Example 2

h lu* —u" .0 Order lu* —ul|y Order Ilp* = p"llo. Order
272 1.9256e-02 - 1.8702e-01 - 1.6517e-01 -

23 7.0943¢-03 1.4406 1.0589¢-01 0.8206 8.0673e-02 1.0338
24 1.7384¢-03 2.0289 5.1189¢-02 1.0486 2.4786¢-02 1.7026
25 4.6116e-04 1.9144 2.5812¢-02 0.9878 8.7783¢-03 1.4975

The discrete problem 3.3 is solved by an algorithm based on a sequence of convex pro-
gramming problems, cf. [3]. The main idea of the iterative algorithm is to update the value of
the function p at each iteration with the numerical solution found in the previous iteration.

For initialization, choose a small value ¢ used in a stopping criterion of the iteration and
choose an initial guess (ug, pg) e Vh x Qh. Then for £ = 0,1, ..., find (ufZ'_H, p?+1) €
V! x Q" as the solution of the following problem

a(uZ’_H, vh) — b(vh, p?_H) +/ XZ’_H . vi‘ ds ={f, vh) v e v,
Is
bl . q" +S"(pl.4" =0 Yq" e 0",
with
Agpr € m(lug Ddlug, | onTs

until

h I h h h h
lug —uglloe < eluglloe. lIpiy — pilloe <ellpilloq, and
h h h
IAer1 —Agllors = €llXgllo,rs-
The sequence {XZ‘} can be viewed as a sequence approximating a Lagrange multiplier A”.

In the numerical experiment, we let ¢ = 10~7 and determine the initial guess (ug, p(’J’) IS
V' x Q" as the solution of the problem

a(ug, v") —b", pg) = (f, ") V' eV,
b(ug, ¢") + 5" (pg. ") =0 Vq" e O".
Since the true solution is unknown, we use the numerical solution with # = 278 as the
reference solution (u*, p*) to compute the numerical solution errors. In Table 1-2, we report

the errors |u* — uh||0,9, lu* — u"||y, and ||p* — ph”(),Q forh =27",2<n <5 We
observe that the numerical convergence orders of the velocity in the V -norm are around 1 with
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Fig. 1 Numerical solution (uh, ph) in Example 1
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Fig.2 Numerical solution (", ph) in Example 2

respect to the mesh-size &, which matches the theoretical result in Theorem 3.9. However,
the numerical convergence orders for the pressure in the L?-norm appear to be higher than
the predicted order of one. The numerical solutions (uh, ph) are also shown in Figs. 1, 2.
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