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1. Introduction

The Navier-Stokes (NS) equations describe the motion of a viscous fluid and are widely applied in physics and
engineering, such as modeling of ocean currents, design of hydroelectric power stations, analysis of pollutions, and so on.
For a complete description of a problem in fluid dynamics, the NS equations are supplemented by appropriate boundary
conditions, which is one of the most important factors determining the behavior of the fluid. In most research papers and
textbooks on classical hydrodynamics, only the no-slip boundary condition is considered, i.e., there is no relative motion
on the fluid-solid interface. The validity of the no-slip boundary condition has been widely debated since the 19th century,
and there has been no universal agreement on the nature of the boundary condition in hydrodynamics [1]. In the past
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several decades, through more experiments done with advanced measurement techniques, the assumption of no-slip
boundary condition has been challenged [1,2]. Slip phenomena have been observed in many applications, for examples,
blood flow [3], polymer-polymer welding and sliding phenomena [4], fluid slipping on super-hydrophobic surface [2],
gaseous slip flow in a long micro-channels [5].

To describe the slip phenomena, some physical models have been proposed and studied, such as slip length model [6]
(the tangent component of the fluid velocity is proportional to the shear rate on the surface), stagnant layer model [7],
contact line motion [8], and so on. For a historical account of the development of the slip and no-slip boundary conditions,
we refer the reader to [1,2] and the references therein. Recently, some investigations with modern techniques [9-12]
show more evidence of the slip phenomena. In particular, some experiments [11-13] indicate that the slip occurs when
the shear stress reaches a threshold determined by properties of the fluid and the materials of solid surface. In the
lectures [14] delivered at College de France in 1993, Fujita introduced a slip boundary condition of frictional type for
applications in blood flow and polymer-polymer sliding phenomena. This type of slip boundary condition can model the
slip and no-slip phenomena simultaneously. The boundary conditions of these problems are subdifferentiable, leading
to variational inequalities (VIs). The variational inequality problem governed by the NS (or Stokes) equations is difficult
to solve numerically due to the slip boundary condition in inequality form, nonlinearity of the convection term, and the
mixed form of the velocity and the pressure variables. The well-posedness of these problems has been studied in [15-22].
In [23-29], numerical methods for solving these NS (or Stokes) VI problems are investigated.

In the past four decades, discontinuous Galerkin (DG) methods have been developed for solving various differential
equations in virtue of the flexibility in constructing feasible local shape function spaces as well as the capability to capture
non-smooth or oscillatory solutions effectively. The DG methods discretize equations element by element, and exchange
information between neighboring elements through numerical traces, so that the methods are locally conservative, which
is a very important feature for good numerical methods. Because inter-element continuity is not required in the function
spaces, DG methods can easily handle general meshes with hanging nodes and elements of different shapes, so they are
suitable for adaptive mesh refinement. Moreover, locality of the discretization makes the DG methods ideally suited for
parallel computing (see [30-32] and the references therein). The discontinuous Galerkin methods have been developed
and studied for solving the Navier-Stokes equations, e.g. [33-37] and the reference therein. Due to many advantages,
recently, DG methods have been applied for solving variational inequalities [38-46]. One major weakness of the DG
methods is that more degree of freedom is needed. To reduce the computational cost, it is natural to develop adaptive
DG algorithms based on a posteriori error estimates of DG methods for VIs [47-51].

In this paper, we study discontinuous Galerkin (DG) methods for numerically solving variational inequalities controlled
by Stokes equations with the slip boundary condition of frictional type. To solve the Stokes (or NS) equations, compared
with the standard finite element method, DG methods can be more stable and accurate. DG methods are locally
conservative by design, and can capture discontinuous physical quantities. We study a posteriori error estimates to derive
reliable and efficient residual type error estimators for implementing adaptive DG algorithm, so that we can solve the
problems with higher precision under existing hardware conditions.

The paper is organized as follows. In Section 2, we introduce the Stokes flow with slip boundary condition and its
variational inequality formulation. Then we present four DG formulations for solving the variational inequality and show
the consistency of the schemes in Section 3. We provide a posteriori error analysis for the scheme in Section 4. To prove
the reliability of the error estimators, we construct a conforming divergence free solution from the DG solution, and show
the efficiency of the local error estimator as well. In the last section, we present some numerical examples to compare
the DG solutions from adaptive meshes and those from uniformly refined meshes.

2. Variational inequality controlled by incompressible Stokes equations
2.1. Stokes flow with slip boundary condition
Let 2 C RY, d = 2, 3, be a simply connected polygonal/polyhedral domain with a Lipschitz boundary I” that is divided

into two parts I'p and Is such that I'p and I are relatively open and mutually disjoint with meas (I'p) > 0. Denote by
u: 2 — R? a velocity field. The linearized strain rate tensor

o(u) = ~ (Vau+ (Var)T)

2
and the Cauchy stress
T =2ve(u)—pl (2.1)

are second order symmetric tensors, which take values in S¢, the space of second order symmetric tensors on R¢ with
the inner product T : U = Zid,'=1 T;U; and norm ||U|| = (U : U)%. Here, I is the identity tensor, p is the pressure, and
v is the viscosity of the fluid. Let n be the unit outward normal to I". For a vector v, denote its normal component and
tangential component by v, = v-n and v, = v— v,n on the boundary. Similarly for a tensor-valued function T, we define

its normal component T, = (Tn) - n and tangential component T, = Tn — T,n. We have the decomposition formula

(Tn) - v=(T,n+T;) - (vpan+v;) =T, +T; - v;.
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In this paper, we consider the Stokes problem for a viscous incompressible fluid with a slip boundary condition of
frictional type. The Stokes equations are

{—div(Zve(u)) + Yp =f iTl 2, (22)
divu= 0 in £2.

On the boundary I'p, we impose the homogeneous Dirichlet boundary condition

u=0 onp. (2.3)
On the boundary Iy, we impose no-leak boundary condition

u, =0 on s, (2.4)
and slip boundary condition

IT.|<g, T, -u,+glu|=0 onls. (2.5)
Note that the slip boundary condition is equivalent to the following relation:

T.|<g, IT;|<g=>u,=0, u, #0=T,=—gu,/|u;| onIls. (2.6)
For the source term, assume

fel(2)", (2.7)
and for the friction bound function, assume

gel™s), g>0ae. onlIs. (2.8)
2.2. The variational inequality formulation

We introduce a Hilbert space
V={ve[H'(R):v=0ae. on Ip, v, =0ae.on s} (2.9)

with the inner product and norm defined by
o)y =20 [ elw): eto)dx. oty = Vv wl,
2

Since meas(Ip) > 0, we know that || - ||y is equivalent to the standard [H'(£2)]¢ norm on V by Korn’s inequality [52]. Let

Q=1IL3(R)= {q el¥(2): f q(x)dx = o} .
2

To provide a variational formulation of the problem (2.2)-(2.5), we multiply the two equations in (2.2) by w € V and
g € Q, respectively, integrate on £2, and apply the following integration by parts formula over a Lipschitz domain D:

/divT-wdx:/ Tn-wds—/T:e(w)dx (2.10)
D aD D
to get

2v/ e(u):e(w)dx—/pdivwdx—/Tn~wds=(f,w) YwelV,
2 2 r (2.11)

—/ gdivudx =0 VqeqQ.
2

Let w = v — u in the first equation. By applying the boundary condition (2.3)-(2.5), we have
—f Tn(v—u)ds = / T.(u — v, )ds < / (Teu, + 1T | |v:Dds < | (glvc| — glu.]) ds.
r Is Iy Is

Therefore, the variational formulation of the Stokes problem with the slip boundary condition of frictional type reads as
follows: Find (u, p) € V x Q such that

{a(u, v—u)+b(v—up)+jv)—ju)=f,v—u) VveV,

b(u, q) = 0 VgeQ. (2-12)

where

a(u, v) = 2v/ e(u) : e(v)dx, b(v, q) := —/ q div vdx,
2 2
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o) i= [ glvrias. o= [ 1o
Iy 2

Remark 2.1. In most papers on the NS (or Stokes) flow with slip boundary condition of frictional type, the classical Stokes
operator is used, i.e., (2.2) takes the form

—vAu+Vp = f in 2,
divu= 0 in £.

This form of the Stokes equations is theoretically important, and is equivalent to (2.2) when the pure homogeneous
Dirichlet boundary condition (no-slip boundary condition) is used. However, for the Stokes problem with the slip boundary
condition, the original Stokes formulation (2.2) should be used.

2.3. Lagrangian multiplier associated with the frictional term

There exists a Lagrange multiplier A, € [L*®(/%)]¢ such that [25,53]

a(u,v)+b(v,p)+/glr-vzds:(f,v) YveV,
" oo vqea. 213)
Al <1, A;-u; = |u| a.e.on [5.

For any v € V, set

K(v):/f—vdx—f gA; - v ds.

o) Iy

Then the first equation of (2.13) can be rewritten as

a(u, v) + b(v,p) = €(v) YvelV. (2.14)
From (2.14), we can derive that

T,=—-g\; on[s. (2.15)

For a decomposition 7, of §£2 and a Lipschitz subdomain w C §2, define
10lloy = /(0 0)py with (,v),y =2v Y / e(u) : &(v)dx,
KeT Y @NK
and
fy gy vy ds
Aelyyo:= sup —————
A VR LTI

where y C dw N I's is a measurable subset and

[Hg()) = (v € ()] : vlkno€ [H'(K N w)]).
If o = £2, we use ||v||,y instead of ||v|| v, and the subscript @ is omitted. We claim that

Al < (lwlay + IyID, (2.16)

where (w, y) is the solution of the auxiliary problem

a(w,v)—l—b(v,y):/ gA; v ds YvelV,
Is

b(w, q) =0 VgeQ.

Here, the abbreviation a < b stands for the inequality a < Ch, where C > 0 denotes a constant, which may take different
values at different occurrences. By the boundedness of the bilinear form, it is easy to check that

/ gAr - veds S (lwlly + lyIDIvliay.
I

which implies the inequality (2.16).
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3. DG methods for the Stokes VI problem
3.1. Notation

For brevity, let us focus on the study of the problem for the 2 dimensional case, although the discussion can be extended
to the 3-d problem similarly. For a bounded domain D C R? and an integer m > 0, H™(D) is the Sobolev space with the
usual norm || - || p and semi-norm ||, . When m = 0 and D = £2, the subscript 0 and £ are omitted, i.e., || - ||
denote the L?(£2) norm. Let u = (uy,u;)" € [H™(D)]* and define its norm and semi-norm by [[u]|?, , = >";_;, luill,
and |uf?, ,=>";_, ,|uil} o, respectively. The space [L*(D)]Z** consists of matrix-valued functions U with each component
U,‘j (S LZ(D) and Uip = Uss.

Let £2 be a polygonal domain and denote a family of decompositions of £2 by {7}, that is compatible with the boundary
splitting: I" = I'pUT5, i.e., if an element edge has a non-empty intersection with one of the sets I, and I's, then the edge
lies entirely in the corresponding closed set I, or Is. For any element K € 7y, let hy = diam(K), h = max{hx : K € T3},
and h, = length(e). For any edge e shared by two elements K+ and K, define w, := KT UK ™, and for any element K € 7y,
define the patch set wy := U{T € 7, T N K # @}. Following the ideas in [54,55], we assume that, for each h and every
K € Ty, there exist positive constants y; and y, such that

A1 K is star-shaped with respect to a ball of radius y;hg.
A2 The distance between any two vertices of K is greater to y,hg.

With the above two assumptions, the usual polynomial approximation properties, the trace and inverse inequalities hold
true [54,56,57]. Note that A1-A2 also imply that there exists a constant y3 > 0 such that the following property is valid.

A3 Each K € 7y can be divided by a uniformly shape regular and quasi-uniform triangulation 7;,K such that the mesh size
of T, is greater to yshx and each edge of K is a side of a triangle in 7,X.

Let &, stand for the union of the boundaries of all the elements in 73, 5,", is the set of all interior edges, the set of all the
edges on I is denoted by S,f , and 8,? =& \8,5 .Let K™ and K~ be two neighboring elements with a common edge e, and
n® = n|;xe be the unit outward normal vector on 0K with o = =+. For a scalar function q, set ¢ = q|sxe« and similarly,
for a vector-valued function v and a matrix-valued function U, let v* = v|yke, U = U|yk«. Then define the averages {-}
and the jumps [-], [-], [-] on e € & by

1 _ o

{q}=§(q++q ), [q=g"'n* +qn",
1

{v} = i(v+ +v7),  =v-at+v o0, |w=v" -0,
1

[[v]]=E(v+®n++n+®v++v7®n7+n7®1ﬁ),

1
(U} = 3 (Ut+uUT), [Ul=U'n"+Un".
Here, u ® v is a matrix with u;v; as its (i, j)th element. On an element edge e C I", we set
g} =g, [q] = gn,

{v} =, [vl=v-n, lv] = v, W=-(v®n+nv),

1
2
(U} =U, [U]=Un.

From the definition of the averages and jumps, by a direct manipulation, we have

> | wWng)-vds= | [U]-{v}ds+ | {U}:[v]ds. (3.1)
KeTh oK S;l Enp

Z[ (v-nz<)qu:/_[v]{q}d5+ {v} - [ql ds. (3.2)
ke Y K &, En

Let k > 0 be a non-negative integer. We introduce the following DG spaces:
~ h
V' =" e [IX(2)P: v]lk€ Pesi(K) VK € Tp, i =1,2},
~ h
Vi=phev : v,’l:OonI’s},
W' = (" e ()77 : t)lke PK) YK € Ty, i,j=1,2},
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Q"=1{q" € 13(2): q"lxe PuK) YK € Th).

Here, P,(K) is the set of all polynomials in K with the total degree no more than k.
We will need the lifting operators r : (LZ(E,?))2X2 — Wy, 1o (Lz(e))fX2 — W), defined by

S

/ ro(@):Udc=— | ¢:{Ulds YU eW,, ¢ (1), (3.3)

o) g

/ re(¢): Udx = — /¢ S {U)ds YU € Wy, ¢ e (I3(e) . (3.4)
2 e

3.2. DG formulations

We now derive some DG formulations for the Stokes problem with slip boundary condition of frictional type (2.2)-(2.5).
For this purpose, we rewrite the first equation in (2.2) with the help of Cauchy stress (2.1)
T+pl= 2ve(u in £2,
P W (35)
—divl = f in 2.
First, multiply the above equations by (2v)~'U and v, respectively, integrate on an arbitrary element K, and apply the
integration by parts formula (2.10),

/(2v)‘1(T U +ptr(U))dx = — / u - divU dx —i—/ u- (Ung)ds, (3.6)
K K aK
f-vdx:/T:e(v)dx—/ (Tng) - vds. (3.7)
K K aK

Then, we append superscript h on T, U, u, v, p, div and ¢ in (3.6)-(3.7), add over all the elements, and use numerical
traces u" and T" to approximate u and T over element edges to obtain

/(2u)*1(rh ‘U4 pt tr(Uh))dx=—/ u' - diviu" dx + Z/ uh . (U'ng)ds, (3.8)
o) 2 Ker, 0K
/f-vhdx:/ " : h(v")dx — Z/ (T'ny) - " ds, (3.9)
2 2 KeTy K

for all (U", v") € W" x V". Here, "(v) and div"t are defined by the relation &"(v) = e(v) and div*z = divz on any element
K € Tp.
To derive a formulation which does not rely on T explicitly, using (2.10) and (3.1), we have from (3.8) and (3.9) that

/(21})7](Th Ut pt tr(U“))dx:/ eh(uh):Uhdx+/ (" — u"y . (UM ds
2

2 &l
+ | [t —u'y: Uty ds, (3.10)
En
ff-vhdx:f T eh(ohyax — [ (T%]- {o")ds
Q2 Q &
— | iy ds. (3.11)
En

Note that, by the definition of the lifting operator ry, we have from (3.10) that
T" = 2vel ") — "1 + 2vro([u]).

Choosing U" = 2ve"(v") in (3.10), we get

/ Th . &) + p! tr(e (")) dx = 2v(/
2

e"(u"): (") dx + / wh — uhy . [e"(v")] ds
2

&
| =ty ey ds).
En
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Table 1
Choices of T" on &p for different DG schemes.
Methods Numerical flux T" on &
IP [58] {2vet(ut) — p"1} — 2vnch; U]
Bassi et al. [33] (2ve"(uh) — p"I} + ne(2vr([u'])}
Brezzi et al. [59] {(2veh (") — p"1} + (2vro([U'])} + ne(2vre([u])}
Local DG [60] {2vet(ut) — p"I} + (2vro([u'])} — 2vneh;  [uf]

Combination of this equation and (3.11) yields

2v (/ ' : ") dx + ,{z?' —u"} . [e"(oM)]ds +
Q &,

[uh —u") : (e"(o") ds)

En

- /phdivhv"dx—f_[ﬂ].{v"}ds— [[vh]]:{lfh}ds:/f-v“dx.
2 E

i
h

(3.12)

The numerical traces Th and uh will be selected to guarantee consistency and stablllty of the scheme. We introduce

four consistent and stable DG methods For all the DG methods in this paper, we let uh and Th satisfy the non-leak and
slip boundary conditions (2.4)-(2.5), i.

u =o'
~ ~ on [5.

T! - ul +glul| =0

In addition, for all the following DG methods, we choose numerical fluxes uh as

uAE: 0,
IT! < g,
ut = {u"}
Let

on &, u"=0 on Ip.

T" = 2ve"(u") — p"1} — 2vneh; T[] on &),

where 7, > 0 is the penalty parameter on e € 5,?. Then we obtain from (3.12) that

Ag”(uh,vh)JrBh(vh,ph):/f-v“dx+f T" . o ds,
Q Iy

where

AV, v)—2v(f ey : e"dx — | '] {e"(WM) ds
2

and

By(v", p") =

&y

neh, '[u"] : [v"] ds).

h

[v"] : {e"(u")} ds + /
&

£o

—/phdivhvhdx—i— [v"){p"} ds.
2

gh

From the divergence free condition divua = 0, we can use a similar argument to derive

Bu(u", q") =

0.

In (3.15), set v" = w" — u" with w" € V". For all (w", ") € V" x Q", using (3.13), we can derive

A;U(uh, wh —u"

) + Bp(w" — ", p") + j(wh) — jt) >(F, w" —u")y,
By(u", ¢") =0,

which is the interior penalty (IP) DG scheme [58].

Choosing different numerical fluxes, we derive four DG schemes, see Table 1 for the choices of Th and Table 2 for the
different bilinear forms Ap.
In Table 2, the short notation is defined as follows.

a ::21)(/ e : ") dx —/ W' : {e"(v")} ds — " : (")} ds),
2 gl g

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
(3.20)
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Table 2

DG formulations for the bilinear form Ap.

Methods Bilinear forms

IP [58] AV =a+ g
Bassi et al. [33] AE,ZJ =i+
Brezzi et al. [59] Af) =d+7+p
Local DG [60] AEI‘U — G+ F4pe

B :=2v/ neh; '[u"] : [v"] ds,
50

h

prian Y [ e v

eeEE
Fo= / ro([v"]) : ro([u"]) dx
2
Let A(u", v") be one of the bilinear forms A”(u", v") with j = 1, ..., 4. Then a DG method for the problem (2.12) is:
Find (u", p") € V" x Q" such that

Ap(u", 0" —u") + By (0" —u", p") + j(o") — jal) >(F, " — u"), (321)
Bu(u", ¢") =0, (3.22)

for all (v", ") € V" x Q™. The well-posedness of the above DG schemes can be proved, and a priori error analysis is given
in [43,45].

3.3. Lagrangian multiplier in the DG formulation

By similar argument for the continuous problem [25,53], there exists a Lagrange multiplier )J; € [L®(I%)]? such that

A", o™y + By (v, p") =(f, vh)—/ g hds vt evh, (3.23)
Iy
h _hy __ h h
By(u',q")=0 Vq' €Q", (3.24)
A <1, AM.uh =ju"| ae onTs. (3.25)
Let
ACOE(# vh)—/ gl -l ds,
Iy
we get

An(u", 0") + By(o", p") = £"(0"). (3.26)
For any u, v € V, we know that [u] =0, [v] =0, [u] =0,and [v]=0onee 8,?. Then we have from (2.14) that

Ap(u, v) + By(v, p) = a(u, v) + b(v, p) = £(v) YveVv, (3.27)
Bn(u, q) = b(u,q) =0 VqeQ. (3.28)

Obviously, u" and p" are also the DG approximation of the solution z € V and y € Q of the problem:

a(z, v) + b(v, y) = £"(v) Yvev, (3.29)
b(z,q)=0 Vqeq. (3.30)
From (3.27)-(3.30), we have
a(u—z, v)—i—b(v,p—y):/ g =) vods, (3.31)
Is

b(u — z, q) =0. (3.32)
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Recall (2.16), we have
Ao = Al S e —2lny + lIp =yl (3:33)

In addition, we have the following lemma about the consistency of the DG schemes.

Lemma 3.1. Assume u € V and p € Q for the solution of (2.12), and z € V and y € Q for the solution of (3.29)-(3.30). Then
for the DG methods Ax(w, v) = Ag)(w, v)withj=1,...,4, we have

Ap(u, V") + By(v", p) = £(v") V' e VI, (3.34)
An(z, V") + By(v", y) = £ Vo' e VR (3.35)

Proof. Since —divT = f e [[*(22)]?, T e H(div, £2;S%) and [T] = 0 on any interior edge e. For u € V, [u] = 0 and
{u} = u on any interior edge e. Using (2.1), we obtain, for any v" € V",

An(u, v") + Bu(v", p) =2v ( f e(u): "(v")dx — [ [v"]: (e(u)} d5>
2 &y
- /pdivh(vh)dx—i-/ [v"1{p} ds
2 g

= Z f T: sh(vh)dx—/ [[vh]] :{T} ds.
K £

KeTh

By (2.10), (3.1) and noting that [T] = 0 on &}, we get

Z/T:eh(v”)dx= Z/—divT~v"dx+ > | (rng)-o"ds
K K

aK

KeTh KeTp KeTh
:fo-vhd)H— [v"] : {T}ds.
KeTh K Ep

Then

An(u, vh)+Bh(vh,p)=/f~vhdx+/ (Tn) - v" ds
2 I

:/f.vhdx+/ T, o' ds

2 Is

:/f~v”dx—/ gi, - ds.
Q I

The last equality is obtained by (2.15).
The second equation (3.35) can be proved by similar argument. H

By (3.26), (3.34) and (3.35), we get
Aut — ' ") 4 B0, p— pt) = / g — 1) o' ds, (3.36)
Is
Ap(z —u", V") + By(v", y —p") =0 (3.37)

for any v" € V".
4. A posteriori error analysis
4.1. Divergence free solution constructed from DG solution

To derive reliable and efficient a posteriori error estimators, we introduce a divergence free solution constructed from
the DG solution u" € V". We present a post-processing operator P, from the space of totally discontinuous velocities to
the space of velocities that have continuous components, such that Pu” is divergence free.

For k € N, let us define the spaces

o Bi(0K) = {v € C°(9K) : v|.€ Pi(e) V edge e C 9K},

o Gy(K) = V(Pi11(K)) S [Pu(K)P,
e G (K), the L?(K)-orthogonal complement of G(K) in [Py(K)]>.
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On each element K € 75, we define the following local space
Ul = {v e [H'(K)P : vloxe [Beoa(OK)P, div v € P(K),
— div (2ve(v)) — Vs € Gi_,(K) for some s € L2(I<)}.
Then we define the global space as
U'={veV st vxeU! foreachK e 7).
For the DG solution u" € V", we define the operator P : V" — U" by
(Pu™)|x= Px(u|x) for each K € 7y

Let {x{ }k+2 C e be the set of Gauss-Lobatto points on every edge e C K. We define the local operator Pk : [Piy1(K)]> —
U" as follows:

Peul(x)) = uh(x) 1<i<k+2 ecC ik, (4.1)
[ty gy dx= [t ogdx Ve € Gt (42)
/I;(IF’KU -8 /Ku“ -8, dx Vgi, € G (K). (4.3)

By (4.1), we have
Peu" = uh on oK. (44)

Lemma 4.1. The conditions (4.1)-(4.3) uniquely determine Pxu".

Proof. We only need to show that if v € U}, satisfies

v(¥)=0 1<i<k+2, ecCdk, (4.5)

/ V-8 1dx=0 Vg,_; € G_1(K), (4.6)
K

/ v-gii,dx=0 Vg, G (K), (4.7)
K

then v vanishes on K.
The first condition implies that v|3x= 0. Moreover

[(divv)zdx:—/v-V(divv)dx—i—/ v-ndiveds=0
K K ] ¢

The first term on the right-hand side is zero because divv € Pi(K). Therefore, we get divv = 0. Moreover, there exist
functions q € L*(K) and g;- ; € Gi—,(K) such that

—div (e(v)) = Vg + g,

Then

/e(v) ce(v)dx = — / div(e(v)) - vdx
K K

/Vq vdx+/g -vdx
K K
——fqdivvdx

K

=0.
Thus, e(v) = 0. By Korn’s inequality, we have v = 0, which completes the proof. ®

Lemma 4.2. Pu" is divergence free.
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Proof. We first observe that div (Pu")|x€ Pu(K) for each K € 75, and

/diqu”dx:/Pu“mds:/lﬁhndS
2 r r
=[ @-nds—k/ 1?1~nds
Ip I's

0,

which implies that divPu" € Q. Here, we use the definition of the numerical flux 17” see (3.13)-(3.14).
Next, let g, € Qy, we obtain

/ div Pu" g, dx = Z (/ (Pcu") - n gy ds — /(IP’Kuh) - Van dx)
2 oK K

KeTy

= Z(/ ﬁ-nqhds—/uh-thdx>
oK K

KeTy
=0.

The last equality is due to (3.18). Thus, we have divPu" =0in 2. =

Lemma 4.3. There exists a positive constant C independent of h such that

2

Pu" —u" < h 2] (48)

ec&y

where the broken semi-norm is defined by |15, = Y7 |15 -

Proof. Setting w" = Pu" — u". From (4.1)-(4.3), we know

o~

w' =u"—u" on oK, (4.9)
/ W' g dx=0 Vg_; € G q(K), (4.10)
K
/ w' g dx=0 VYgi, G (K). (4.11)
K
Denote the neighboring element of K € 7, sharing the edge e C 9K by K. Then,
1
w' = E(uh|l(§_uh|K)~ (4.12)

Let us define the space

V(K) = [77‘5 Uk - /F‘Ekq ®=0 Vg _,€G(K),

K
/j-g;,] F=0 VE-, e ckil(z?)},
K

where K is the reference element. Note that for 7 € V(K), if 7 = 0 on K, then 7 = 0 on K. Thus, | - llo.s% is @ norm for

the space V(K). This follows from the proof of Lemma 4.1. By a scaling argument, we have

—~ ~ 1 1
h 3 3111 ph
lw'llox < Chgllwlloz < Chgllwhllg o < Chg llw"llo,ox < Chg IILu"]llo,ax -

By the inverse inequality, we can derive that

2 _
Do Iput —utfy e <R t2,

KeTh ec&y
ie, (48)holds. m

4.2. Reliable residual type error estimators

Setting T = 2ve(u™) — p'I, we define the local residual

Ry =f + div(2ve(u")) — Vp, foreachK € 7,
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R. =['l_'h] on &, R. = T_'ﬁ +gA\" onegs,

and the global error estimator
2
=Y hIRclk+ Y hellRell? + [u"l,,

KeTh ecgiugs
where
h?._ =111 4" 1112
Wl =y kLt
ec&y

Theorem 4.4. Let (u, p, A.) be the solution of (2.13), and let (u", p", A" be the solution of (3.23)(3.25). Then
lw—u"llny +1lp = p"ll + [Ae =A%, 5 S . (4.13)

To prove Theorem 4.4, we need the following two lemmas. In the proof of Lemmas 4.5-4.6, we only consider the IPDG
scheme (3.16), and similar argument can be applied to the other three DG schemes.

Lemma 4.5.

=ty + 1 = p"l + e = A2, o S+ Nz =6y + lly = p").

Proof. Since p — p" € [3(2), there exists a w € [H}(£2)]? such that
Ip=p"I> =(V-w.p—p"). and |wl, <Cllp—p"|. (4.14)
Let e = u — u" and w' € V" be a piecewise polynomial interpolation of w such that
lw—wx Shy*lwlx VKeTh, 0<s<I1,
and w' = 0 on I'. Recalling (3.36), we have
Ba(w, p — p") =By(w — w', p — p") + By(w', p — p")
=Bn(w — w', p — p") — An(e, w")
=By(w — w', p — p") + An(e, w — w') — Ay(e, w).

Based on the definitions of the bilinear forms A, and By, we rewrite each term by integration by part formula and
(3.1)-(3.2) as

Bt —w!p =) == [ (o= p)diviw — wyax+ [ w—w'ilp— pty s
Q &p

=f vh(p—ph)-(w—w’mx—/_[p—ph]-{w—w’}ds,
2 5;'

An(e, w — w) =2v(/ e(e): e"(w —whdx — [ [e] : {e"(w — w')}ds
2

&
- / [w—w'T: {(e"(e)} ds—i—/ neh; '[e] : [w— w'] ds)
&y £

=2v( - f divi(e"(e)) - (w — w')dx+ | [e"(e)]  {w— w'}ds
2 &l
- le] : {e"(w — w)} ds +/ neh; '[e] : [w— w'] ds),
& &
and
Anle, w) = 2v</ eh(e) : e"(w)dx — / €] : {e"(w)) ds).
Q &
Then from the above equations and (4.14), we obtain by Cauchy-Schwarz, trace and inverse inequalities
llp = p"II* = Ba(w, p — p")

=> f+div(2vs(uh)—Vph)~(w—w1)dx—/'[Th]-{w—w’}ds
ket VK &,
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- 21)(/ he) dx—i—/ [u"] }ds—i—/o neh; '[u"] : [[w—w’]]ds)
&

< ST + divieve") — Ipolllw — w'llc — > NT el (w — w'}le

KeTp ee&‘,’;
1/2 1/2
+ lellnylwlny + [ D k'3 D hell{e" (w2
eeg,? eeSh
1/2 1/2
> ki > ki — w'pii?
eeé‘,? eeé‘,?

1/2 1/2

Stly | (X rEIReZ) "+ (D0 hellRelZ) ™+ L. + lelly

KeTh ex’ié’,"1

In the last inequality, we used the fact that ||[u"]|l < C|/{u"]|l.. Hence
lp = p"Il S 1 + llellay- (4.15)
For any v € V, we have by (3.31) that

An(e, v) =Ap(u — z,v) + An(z — u", v)
=a(u —z, v) + Ay(z — u", v)

—Au(z — ", v) — b(v. p —y)+f g =11 v, ds.
Is

By the definition of the bilinear form A, and [v] = 0 on &f, we get

21)(/ e'u—u"): e"(v)dx — / [u—u']: {"(v)} ds)
Q &l

:21)(/ eh(z—uh):eh(v)dx—/ [[z—uh]]:{eh(v)}ds>
Q g
- b(v,p—y>+/ g — 1) v, ds.
Is

Due to the fact that [u —z] = 0 on &, the above equation reduces to

au—u' v)=az—u", v)— bv,p — y)—i—/ g — 1) v, ds, (4.16)

Is

where
a(u, v) = 2\)/ e'(u) : e"(v) dx.
17

As discussed in Section 4.1, let u* = Pu"" € V be a divergence free function constructed from u" such that b(u*, q) = 0
for any q € Q. Set v = u — u" + u" — u* in (4.16); we obtain

2 h h h
lellzy <llz —ullnyv(llelny + lu" —u*llny) + lelnvie’ — u|ny
h
+ / g —Ay) - (u, —ul)ds
Is
h h h h
=lellnyv(llz —u'lny + lu" —u(lhy) + 1z — [y lu" — u*|hy

+ f g —00) - (u —ul)ds
Iy

1 3 3
=5 lellsy + Slz = w'llsy + S lu" —wl, + / g7 = o) (e —uy)ds.
Is
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By the properties of A, (2.13) and A" (3.25),

/g(x’;—xr)-(u,—uﬁ)ds:/ g u, — A uh A u, A, ul)ds
Ts

Is

= / g (|| — Jul] — Juc| + |u])ds = 0.
Is
In addition,

/ g —A,)- (@ —w)ds < A — Al 0 — u
Is

2

h
=< €|A-f - )‘r|*,rs

1
+ Elluh —url? .

Therefore, we derive

2 1
lellh.y = 3lz = w5y + 3" —wly +2eI7 = Aol py + -l =l (4.17)
By (4.15), (4.17) and recalling (3.33), we have
e = A2, Slu—u"llny + llp = p"ll + 1" = z[lny + IP" -y
<+ llu—ullny + lu" = zllny + 1P" -yl

S+t =zl + p" =yl + €A] = Aol -
Hence, we obtain
e =AML, S+ Nz =y + Iy = p". (4.18)
Finally, by (4.15), (4.17) and recalling (3.33), we finish the proof. =

In the following lemma, we bound |z — u"||,.v + lly — p"|l.

Lemma 4.6.

Iz —u"lny + ly — p"Il < n. (4.19)

Proof. By an argument similar to that in proving (4.15), we can derive that
Iy = p"ll < iz — u"|lny +n. (4.20)

lete* =z—uw=z—u'"+u" —u =f+¢ ande e V" be a piecewise polynomial interpolation of e* such that
e =0on Ip e =0on I%, and

le* —€|sks hy*leflix VK €T, 0<s<1.
By (3.37), we have
An(e*, €") =An(e", e* — ') + Ay(&, ) + An(¢, @)
=An(e*, e* —e') — Bu(e,y — p") + An(¢. €')
=An(e*, e* — ')+ Bu(e* — €',y —p") — Bu(e*,y — p") + An(¢, €').
Then let us analyze the above equality term by term. Note that [e*] = 0 on E,?. By integration by part formula, we get

Ap(e*, e* —é') :21)/

2

&) : e'(e* —e)dx+2v / el(e): e'(e* —e')dx

2

—2v | [ef—eé']: {e"(e*)}ds
&y

=— / div(2vel(&)) - (e* — €'Y dx + 2v / [e"(&)] - {e* — €'} ds
2

iyeS
EUE,

+2v | [€]:{e"(&)}ds + 21)/ e'(e): e'e* — e')dx,
gl Q
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m(z. &) =20 / e'(2): e(e)dx - f 121 - (e"(e)) ds
Q 5,?

- [Oue’]] {eM(o) ds + /0 neh; '[¢] : [e* — '] ds), (4.21)
Ep &y
and

Bh(e*—e’,y—P“)=—/(J’—ph)divh(e*—e’)d?<+ le* —e'l{y — p"} ds
2

&

=f Vay—p") (¢ —edx— [ [y—p'l-fe" — &'} ds.
2

ieS
glues

Since e* = z — u* is divergence free, By(e*,y — p") = 0.
Combining the above equality together and applying the approximation property of e/, we obtain by trace and inverse
inequalities

2
lle*lly,y = An(e*, ")

_Z/R,< e —el)dx — Z /Re w—w'

KeTh ecglugs
n 2v<[ h(g): ee)dx —2 [ [u': {eh(e’)}ds—i—/ neh ' [u"] : [e" — e’]]ds)
Q & &
<nllellny.

So, we obtain
eI,y <n.
Then, by triangle inequality and (4.20), we obtain (4.19). ®
The proof of Theorem 4.4 can be completed by applying Lemmas 4.5-4.6.

4.3. Efficiency of the local error estimators

In this subsection, we consider the efficiency of the local error estimators,
1/2 1/2

me=helRellx + | Y2 helRelZ )+ | 30 h w2 | (422)

ec&(K) ecE(K)

For this purpose, following the ideas in [61,62], we make use of the bubble functions on polygonal element K € 7, and
edge e € &. For each polygonal element K, by assumption A3, we know that there exists a uniformly shape regular and
quasi-uniform triangulation 77,K . Let ¢ be constructed piecewise as the sum of the classical barycentric bubble functions
on 771“ and 7, be the standard edge bubble functions on e € &,. Then we have the following lemma.

Lemma 4.7 ([61,62]). For each K € T, and e C 9K, let ¢x and t. be the corresponding bubble functions, respectively. Let
[P(K)1? C [HY(K)]? and [P(e)]*> C [H'(e)]? be finite-dimensional spaces of functions defined on K or e. Then

o1} 5 [ ot axs ol vo e PP,
K
Il < lexvlic + helexvlig < llvlle Yo € [PK),
o2 < /fev ds < [lvll7 Vv e [P(e))?,
€
Pltevllx + b *|mevl ¢ S Ivlle Yo € [P(e)].
Followmg the ideas in [51,63], we first give the residual equation. Recall (4.16) and (3.29), for any v € V, we have
a(u — u", v) + b(v, p — p")
=a(z, v) + b(v, y) — au", v) - b(v, p") +/ gy =) v ds
Is

=0"(v) + Z/ (div(2ve"( —vp") - vdx

KeTh
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[ et - wds [ g0 -x) v
gluep I

—Z/RK vdx—f Re-vds+/ g — 1) v ds. (4.23)
K giues Ts

KeTy

Let Rx be an approximation to the residual R¢ from a suitable finite-dimensional subspace [P(K)]2. Note that gg
vanishes on the boundary of K, so it can be extended to be zero on the rest of domain as a continuous function. Let
v = Rgpy in (4.23). By a standard argument, we have

IRkl S et llu—u"|lcy +he'llp — p"llk + IRk — Rillk- (4.24)

For the residual R,, set R, be its approximation from [P(e)]2. Because 7, vanishes on the boundary of w,, similarly, we
can extend it to be zero on the rest of domain as a continuous function. For e € S,f, choose v = R, 7. in (4.23), we have

/ o' — ") : &' (Rer.) dx — f (b — ') div(Rere) dx
=/ RK.keredx—/ne.kereds+/g(x’;—x,).(ieere),ds
We e e

:/ Rx -izezedx—f(ke—Re)-ieereds—fiee.Rereds+[g(x'; — ;) - (Ree), ds.
we e e e
Then by Lemma 4.7, we get
IRe? < / R, Rt ds
e
<(ltt = v + 1P = Pl IReTel 1.0, + IRk [0, IReTello 0
+ IIRe — RelllIReTelle + A} — Xrl*,elReTeh we
<h*(lu —u" —p' A R hy? IR R
She U= uM gy 4 1P = Ploe + A = A2 DlIRelle + B IRk llo,we IRe e
+ IRe — RellellRe]le-
Hence, by the triangle inequality and (4.24), we obtain

||Re||e<h*”2(||u—u||wev+||p Pl + 1A — A2, ,)
IRk = Rcllw, + [Re — Relle. (4.25)

In addition, for e € 6,'1, choose v = R, 7, in (4.23) and by similar argument, we can derive
IRelle < h " (It = 4" lwv + 1P = P"llu) + M * IRk — Rillu, + IRe — Relle- (4.26)

Note that div(2ve(u")) — Vp; is a polynomial in K and so is [2ve(u®) — p"I] on e. Hence, the terms ||[Rx — Rx|lx and
IRe — R.||. can be replaced by ||f — f|lx and ||xh A . lle» with discontinuous piecewise polynomial approximations ).

By trace inequality, we have
ho V2t e < ho M — ], + V(0 — u")]l,. (4.27)

~

Note that the extra term h;!|lu — u"||,, is not desirable, however, this term is expected to be of the same order as
V(1 —u")]o.
Combining (4.24), (4.25), (4.26) and (4.27), we obtain a lower bound of the local error indicator defined in (4.22).

Theorem 4.8. Let (u,p, A.) be the solution of (2.13), and let (u", p", ).’}) be the solution of (3.23)-(3.25). Then the local
estimator (4.22) satisfies

h h h
Sl = oy + 10 =Pl + Y A — A2,
ecE(K)NE;

= —h -
el = Fllog + D hellAf = X012 + bl — (4.28)

ec£(K)NE}
5. Numerical examples

Given an initial mesh 7, each loop of the h-adaptive algorithm consists of four steps as shown in Fig. 1.
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(7.) Solve —— Estimate —— Mark —— Refine

| (Toir)

Fig. 1. Loop of h-adaptive algorithm.

TO N=6 dof=42 T5 N=75 dof=525

T,, N=654 dof=4578 T,; N=8334 dof=58338

Fig. 2. Adaptively refined meshes in Example 1.

In each loop, solve the problem by the DG method on the mesh 7, first. Next, based on the a posteriori error analysis,
we choose the error indicator as the local error estimator (4.22). Then we mark the elements to be refined by the bulk
criterion strategy

Yom=0) m, 0<6<1. (5.1)

KeMy KeTy

The elements are sorted according to the values of the local error indicators, i.e., elements with larger errors are placed
into the marked set M, until the inequality (5.1) is satisfied. Finally, the marked elements are refined to obtain a new
mesh 7,.1. To refine the elements in M, midpoints on the three edges are connected to divide the element into four
new elements. Note that hanging nodes are allowed for DG methods, so additional subdivisions to eliminate the hanging
nodes are not needed.
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100F 1
—e— uniform meshes
—«— adaptive meshes
— optimal rate N2
10.1 | | | |
10° 10° 102 10° 104 10°
N
Fig. 3. Convergence rate in Example 1.
Table 3
Order of convergence for adaptively refined meshes in Example 1.
N dof Estimator Order
1131 7917 3.2819 -
1797 12579 2.5784 0.5210
3153 22071 1.9973 0.4542
5049 35343 1.5673 0.5149
8334 58338 1.2393 0.4685
14097 98679 0.9736 0.4591

In the following examples, we use the IP DG scheme with penalty parameter n = 10, and set the parameter 6 = 0.5
for the bulk criterion strategy. To solve the discretized problem, we adopt the Uzawa algorithm in [25].

Example 5.1. The first example is considered in an L-shape domain £ = (—1, 1)?\ [0, 1]*> with slip boundary I's =
{—1} x (=1, 1) and the Dirichlet boundary I'p = 942\ I's, see Fig. 2. Boundary conditions are set as u|r,= 0 and u,|= 0.
Let v = 1 and g = 0.2. The external force f is defined by

3(x—0.1%(y — 0.1) y—0.1
fix,y)=— 5~ 3
(x—012 +(y—0.12) ((x—0.12+ (y —0.12)2
B 3(y —0.1) B 3(y —0.1)
(X=0.12 +(y—0.12)3  ((x—0.12+(y —0.12)3
x—0.1 3(x —0.1)(y — 0.1)?
hx,y)=— 7~ 5
(x =012 +(y—0.172)2 ((x—0.12 +(y — 0.1)?)2
~ 3(x—0.1) ~ 3(x —0.1)3
(Xx— 012 +(y—0.12)> ((x—0.12 +(y — 0.12)3
1
T+ 1.05)2

Because the exact analytic solution is not available, we summarize the numerical results of the total error estimator
n with respected to number of elements N and degrees of freedom (dof) for adaptively refined and uniformly refined
meshes in Tables 3-4, respectively. Adaptively refined meshes are shown in Fig. 2, and error estimator is plotted with
respected to number of the elements N on uniformly refined meshes and adaptively refined meshes respectively in Fig. 3.
Note that the expected optimal convergence rate is O(N~1/2),

Example 5.2. We consider a Stokes flow in a channel. The computational domain is given by £2 = [0, 10] x
[0, 1]\ [2, 2.5] x [0,0.5]. We choose v = 1, g = 0.2 and f = 0. The slip boundary I is selected as the boundary
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To N =178 dof =546

Ti N =528 dof = 3696

Ts N =3918 dof = 27426

B N

Fig. 4. Refined meshes in Example 2.

102
10'F 1
S
®
E
k7
L
100 1
—e— uniform meshes
—— adaptive meshes
—optimal rate N2
107! \ \ .
10" 102 108 104 10°
N
Fig. 5. Convergence rate in Example 2.
Table 4
Order of convergence for uniformly refined meshes in Example 1.
N dof Estimator Order
384 2688 10.8207 -
1536 10752 5.9337 0.4334
6144 43008 3.2035 0.4446
24576 172032 1.7214 0.4480

on the bottom, the Dirichlet boundary I is the side on the top, and furthermore, set
Ulx—0= (¥(1—y),0), uly=1=0,

u|X:10= (y(l _y)70)7 un|F5= 0.

In this example, we simulate the case where there is an obstacle in the channel, so the block [2, 2.5] x [0, 0.5] is cut
out from the computational domain. There is no solution formula, so the numerical results of the total error estimator
n are listed with respected to number of elements and degrees of freedom for adaptively refined and uniformly refined
meshes in Tables 5-6, respectively. Adaptively refined meshes are shown in Fig. 4, and error estimators on uniformly
refined meshes and adaptively refined meshes are plotted with respected to N in Fig. 5.
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Table 5

Order of convergence for adaptively refined meshes in Example 2.
N dof Estimator Order
900 6300 2.2044 -
1497 10479 1.7185 0.4894
2313 16191 13717 0.5181
3918 27426 1.0474 05118
6456 45192 0.8196 0.4911
12413 86891 0.6073 0.4586

Table 6

Order of convergence for uniformly refined meshes in Example 2.
N dof estimator order
312 2184 4.8320 -
1248 8736 3.1918 0.2991
4992 34944 2.2006 0.2682
19968 139776 1.2417 0.4128
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