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Abstract In this paper, numerical analysis is carried out for a class of history-dependent variational-
hemivariational inequalities by arising in contact problems. Three different numerical treatments for temporal
discretization are proposed to approximate the continuous model. Fixed-point iteration algorithms are employed
to implement the implicit scheme and the convergence is proved with a convergence rate independent of the
time step-size and mesh grid-size. A special temporal discretization is introduced for the history-dependent
operator, leading to numerical schemes for which the unique solvability and error bounds for the temporally
discrete systems can be proved without any restriction on the time step-size. As for spatial approximation, the
finite element method is applied and an optimal order error estimate for the linear element solutions is provided

under appropriate regularity assumptions. Numerical examples are presented to illustrate the theoretical results.
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1 Introduction

The theory of variational and hemivariational inequalities plays an important role in the study of nonlinear
problems arising in Contact Mechanics, Physics, Economics and Engineering. It is generally agreed that
interest in variational inequalities started with a contact problem posed by Signorini in 1930s. The
mathematical theory of variational inequalities relies on the properties of monotonicity, convexity and
the subdifferential of a convex function. The existence and uniqueness results can be found in [3,17,18].
In terms of the numerical analysis for variational inequalities, the readers are referred to, e.g., [7,8,15].
Hemivariational inequalities as a useful generalization of variational inequalities were introduced in early
1980s by Panagiotopoulos [22]. For hemivariational inequalities, the notion of the subdifferential in the
sense of Clarke [5,6], defined for the locally Lipschitz function, plays an important role. Mathematical
theory of hemivariational inequalities is documented in several research monographs (see, e.g., [4,19,21,
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23,27]). A comprehensive reference on the numerical solution of hemivariational inequalities is [14] where
the finite element method is applied to solve hemivariational inequalities, convergence of the numerical
solution is discussed, and solution algorithms are proposed and tested. More recently, there has been
extensive research effort on optimal order error estimation and general convergence analysis of numerical
solutions for hemivariational inequalities (see, e.g., [2,9,10,12,13], and the survey paper [11]).

Variational-hemivariational inequalities are a particular family of hemivariational inequalities,
having a special structure that includes both convex and nonconvex functionals. Such inequalities arise
naturally in mathematical models for many contact problems (see [27] and the references therein). A class
of history-dependent variational-hemivariational inequalities with convex constraint is studied in [26]. The
novel structure of the inequalities involves a history-dependent operator, unilateral constraint and two
nondifferential functions, one of which is convex and the other may be nonconvex. Existence, unique-
ness and continuous dependence results are shown on the inequalities, and are applied to the study of a
quasistatic frictionless contact problem. Numerical approximations of the history-dependent variational-
hemivariational inequalities are the topic of [28], where the second-order accuracy for temporal discretiza-
tion is achieved by using the trapezoidal rule to approximate the history-dependent term. The spatial
discretization is done by using the linear finite element and an optimal order error estimate is proved.
Note that for the numerical method studied in [28], a restriction on the time step-size is needed to ensure
the unique solvability of the numerical solution. In this paper, we develop new numerical methods to solve
the history-dependent variational-hemivariational inequalities with the property that no restriction on the
time step-size is needed for the unique solvability of the numerical solution. Specifically, we use a partial
trapezoidal rule to approximate the history-dependent operator, i.e., we modify the trapezoidal rule by
applying the left-point rectangular rule for the sub-integral over the last time sub-interval. Consequently,
the history-dependent term is treated explicitly without loss of accuracy. This explicit treatment of the
history-dependent term eliminates the need for a restriction on the time step-size. Although the explicit
treatment is given in the history-dependent term, other implicit terms in the numerical scheme remain.
We provide a fixed-point iterative algorithm to implement the implicit scheme and prove convergence of
the iterative scheme, with a convergence rate independent of the time step-size and the mesh grid-size.
In addition, we propose two more schemes to solve the history-dependent variational-hemivariational
inequalities. One is of first-order and the other is of second-order with a slightly stringent small condition
compared with that of the other two schemes. For all the three schemes, optimal order error estimates
with linear finite elements for spatial approximation are shown.

The rest of the paper is organized as follows. In Section 2, we review some preliminary materials on
functional analysis and present the history-dependent variational-hemivariational inequality problem. In
Section 3, we propose three temporally semi-discrete schemes to approximate the continuous problem
and error estimates are established. The corresponding fully discrete schemes are provided in Section 4,
and the error estimates are derived for the discrete problems with or without convex constraints. To
implement the second-order implicit scheme, in Section 5 we describe a fixed-point iterative process and
prove that the iteration converges linearly with a convergence rate independent of the time step-size and
mesh grid-size. Then in Section 6 we apply the theoretical results developed in the previous sections in
the numerical solution of a viscoelastic contact problem and obtain an optimal order error estimate for
the linear finite element solutions under appropriate solution regularity assumptions. In Section 7 we
report results from simulation tests, focusing on the numerical evidence of the convergence orders.

2 Preliminaries

In this section we recall some notation, definitions and preliminary materials. Then we present a class of
history-dependent variational-hemivariational inequalities introduced in [26].

For the normed spaces X and X, let X* and X be their topological duals, and write || - ||x, || - [[x;,
| - llx~ and [| - [|x; for their norms. The duality pairing between X and X*, (-,-)x+xx, is usually
simply written as (-,-). Similarly, the duality pairing between X and Xj, (,-) X:xX,, is usually written
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as <'7 '>Xj'
For a convex function ¢ : X — RU {400}, the subset dp(z) of X*,

dp(x) = {2" € X* | p(v) — p(x) > (27,0 — ) x-xx, Vv € X}

is called the subdifferential (see [24]) of . If Op(x) is non-empty, any element z* € dp(z) is called a
subgradient of ¢ at x. Let ¢ : X — R be a locally Lipschitz function. The generalized (Clarke) directional
derivative of ¢ at z in the direction v € X is defined by (see [6])

d)O(x, U) = lim sup ¢(y + )‘U) B (b(y) .
' y—x, AJ0 A

The generalized gradient (subdifferential) of ¢ at x is a subset of the dual space X* given by
09(x) = {6 € X* | ¢°(;0) > (€,0) xxx, Vv € X},

An operator A : X — X* is pseudomonotone (see [19]) if it is bounded and u,, — u weakly in X together
with lim sup,, (A, un, — u) x=x x < 0 imply

(Au,u — v) xrxx < lIminf{Au,, u, —v)x+xx, VveX.

Next, we turn to some preliminary materials on function spaces and related operators. Following the
standard notation, we denote by N the set of positive integers, Ry = [0, 4+00) the set of nonnegative real
numbers, C(R,; X) and C*(R,; X) the spaces of continuous and continuously differentiable functions
from R to X, respectively. It is well known that if X is a Banach space, C(R; X) can be organized in a
canonical way as a Fréchet space, i.e., it is a complete metric space in which the corresponding topology
is induced by a countable family of seminorms. Furthermore, x; — = in C(Ry; X) as k — oo if and only
if max,¢po,p [|2x(1) — 2(r)[|x — 0 as k — oo for all n € N.

Let two normed spaces X and Y be given. Following [25], an operator S : C(R4; X) — C(R4;Y) is
called history-dependent if for any n € N, there exists an s, > 0 such that for all ¢ € [0, n],

1(Sun) () = (Suz)(B)ly < s / lur(s) — ua(s)llxds, Vuy,us € C(Ry; X). (2.1)

Now we are in a position to introduce the variational-hemivariational inequalities. Let X, X; and Y be
normed spaces and K C X. Given the operators A: X — X*, §: CR4; X) - C(R;Y), v : X = X
and the functions ¢ : Y x K x K = R, j: X; — R, we consider the following problem (see [26, 28]).

Problem 2.1. Find u € C(Ry; K) such that for all t € R4,

(Au(t),v —u(t)) + p((Su)(t), u(t),v) — p((Su)(t), u(t), u(t))
+ 30 (yu(t); vv — yu(t)) = (ft),v —u(t)), VveK. (2.2)

In the study of Problem 2.1, the following hypotheses are adopted (see [26,28]):

X is a reflexive Banach space, K is a closed and convex subset of X with 0 € K, (2.3)
X, is a Banach space, v; € £(X;X;), there exists ¢; > 0 such that
(2.4)
lvllx, <¢llvlx, VvelX,
A: X — X* is an operator such that
(a) A is Lipschitz continuous with a Lipschitz constant L4 > 0; (2.5)

(b) A is strongly monotone, i.e., there exists m4 > 0 such that

(Avy — Avg,v1 — va) = mallvr —va|%, Voui,ve € X,
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p:Y x K x K — R is a function such that
(a) o(y,u,-) : K — R is convex and lower semi-continuous on K,Vy € Y,Vu € K;
(b) there exists o, > 0 and S, > 0 such that

(2.6)
(Y1, u1,v2) — @y, ur,v1) + (Y2, u2, v1) — ©(Y2, Uz, v2)
< agllur —uz xflvr — vallx + Bellyr — yally [[vr — vallx
Vyi,y2 €Y, Vug,uz,vi,v3 € K,
S:C(R4; X) = C(R4;Y) is a history-dependent operator, (2.7)

j: X; = Ris a function such that
(a) j is locally Lipschitz;
(b) 10(2)x; < o+ erllellx,. V= € X, with co,c1 > 0; (2.8
(c) there exists a; > 0 such that

jO(Zl;Zz —21) +j0(22;21 —29) < aszl - Z2||§(J, V21,2 € Xj.
f e C(RL; X, (2.9)
a¢+ajc? <magy. (2.10)

The space X is introduced for convenience of error estimation for the discrete problems. For a specific
contact problem, X; can be the space of square integrable functions over the contact boundary and
7v; + X — X is the corresponding trace operator. For a locally Lipschitz function j, (2.8)(c) is equivalent
to the following relaxed monotonicity condition:

<aj(21) — 3j(22),21 — ZQ> > —aszl — ZQ”?X_]W v21,22 S X]‘.

The unique solvability of Problem 2.1 has been shown in [28] under the conditions (2.3)—(2.10). We
consider the following form of the operator S : C(Ry; X) — C(R1;Y) (see [25]):

(Sv)(t) = R(/o q(t, s)v(s)ds + as), VveCRy; X)), VieRy, (2.11)

where R € L(X;Y), g € C(Ry xR4; L(X)), ag € X. It can be shown that the operator S given by (2.11)
is a history-dependent operator.

3 Temporally semi-discrete approximations

In [28], a second-order numerical scheme is provided to approximate the continuous Problem 2.1 with
a restriction on the time step-size. In this section, we handle the history-dependent term in a different
manner, and propose three temporally discrete schemes for solving Problem 2.1 without any restriction
on the time step-size. Moreover, we derive the corresponding convergence results. Below we use C' to
represent a positive constant independent of time step-size and mesh grid-size. We use the standard
notation for Sobolev spaces (see [1]).

For a fixed T € Ry, we split the time interval I = [0, 7] by uniform partitions. Given a positive
integer N, let k = T/N be the time step-size, and denote by t, = nk, 0 < n < N, the nodes. We
comment that all the discussions below can be extended to the case with non-uniform partitions of the
time interval. For a continuous function v of the temporal variable ¢, we write v; = v(t;), 0 < j < N.
For a discretization of the history-dependent operator S in (2.11), we employ a modified trapezoidal
rule to approximate the integral fot" q(t, s)v(s)ds in the sense that on the last sub-interval [¢t,,_1,t,], the
left-point rectangular rule is applied. Recall the trapezoidal rule

tn n—1
/0 Z(s)ds ~ gzuo) RS 20) + gzun). (3.1)
J=1
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The approximation of S,, := S(t,,) can be defined as follows:

n—1
k k
Sk opvi= R<2q(tn, to)vo + kY qltn, t;)v; + 4(tns tn 1)1 + a5>. (3.2)
j=1
Using arguments similar to that in [16, Section 3], for v € W2 (Ry; X) and ¢ € C* (R4 x Ry; £(X)),
we have
1S5, v = Snv]| < Ckllv]lw=(1,x), (3:3)
and for v € W2>°(Ry; X) and ¢ € C*(Ry x Ry ; £(X)),
IS5, L = Snvll < C k2 |ollwzoe (1,x). (3-4)

Remark 3.1. The choice of the operator th 1, used to approximate Sy, is not unique. For example,
we may choose

n—1

~k k k

Sn’U = R(Qq(t’f“ tO)UO + k Z Q(tna tj)vj + 5(2(1(%7 tnfl)vnfl - q(tny tn72)vn72) + GS),
j=1

which defines another second-order accurate approximation of S,,, or choose

— R(k; Z q(tn, tj)v; + a5>,
j=0

which is a first-order accurate approximation.
We note that the following weak formulation is equivalent to Problem 2.1.
Problem 3.2. Find u € C(Ry; K) such that for all t € R4,

(Au(t),v —u(t)) + o((Su)(t),u(t),v) — p((Su)(t), u(t), u(t))
+ 70 (yju(t); v = yu(t) + Ge(yult)), viv — vu(t) x,
> (f(t),v —u(t)) + (Je(yiult)), vjv —yult)x,, YvekK. (3.5)

In [28], j. is chosen as the differential of a quadratic function %HuH%(] In this paper, we discuss
about j. in a more general framework. Assume

Je: X5 — X; is a linear operator such that
(@) lje(2)lxy < acllzllx,, Vz € X (3.6)
(b) (Je(2),2)x;, = aszH%(j, Vze Xj.

The operator j. can be regarded as a convexification of j° in the sense that

30z 22 — 21) + 50225 21 — 22) + (Jel21), 22 — 21) x; + (Je(22), 21 — 22) x
< ajl|z1 _22HX (Je(21 — 22), 22 — 21) x;
<

0, (3.7)
where the last equality follows from (3.6)(b).
3.1 A first-order temporally semi-discrete scheme

The first-order temporally semi-discrete scheme for Problem 2.1 is the following.
Problem 3.3.  Find a discrete solution u* := {uk}N_, C K such that

<Au v =) + (S put u g ) = (S put gy )

70 (vjuls viv — yjul) + <Jc(7jun)7%v*7juﬁ>x,
<f7l7v_u >+<]c(7] Up,— 1) ’}/jv_r}/ju']fJXj? Vv e K. (38)
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Remark 3.4. Note that the approximation Sfl’ ru” for the history-dependent operator does not involve
k

information on the current numerical solution wu;,

and the second argument of ¢ is explicitly treated,
which is important for numerical implementation. The function ¢ appeared in (3.8) is convex with respect
to the unknown variable (the third argument) according to assumption (2.6). Moreover, j. plays the role
to convexify the function j, i.e., jO(vul;yjv —vuk) + (je(v;uk), 0 — vjul) x, becomes the directional
derivative of a convex function. Therefore, convex optimization techniques could be applied to solve
the inequality (3.8) and the unique solvability of Problem 3.3 can be obtained without the constraint
(2.10) by applying results on the elliptic variational-hemivariational inequality (see [20]). Specifically,
the operator Tj defined by Tyv = Av + 9j(v) + jo(v) is bounded, coercive and pseudomonotone, and the
function ¢(v) can be extended to X, denoted as @(v) with @(v) = +oo for any v € X\K. In this way,

the operator Ty with Thv = 0p(v) is maximal monotone. Hence, Problem 3.3 has a unique solution.

Remark 3.5. The choice of j. is not unique. The critical point is that j. should be “convex” enough
to have the non-convexity of j® under control, i.e., the inequality (3.7) is required. On the other hand,
we can split j° in another way, e.g.,

(Ge(vium)s v = vun) x, + G0 (vuls—1; 750 = vuh) = Ge(yun 1), 750 = v5up) x;)
could be used to approximate j(v;ukf;~v — y;uk). In this way, the inequality (3.8) becomes a convex

problem with linear operators, for which efficient numerical algorithms are available.

According to the statement in Remark 3.4, we have the following unique solvability result for
Problem 3.3.

Theorem 3.6.  Under the conditions (2.3)—(2.9) and (3.6), the semi-discrete Problem 3.3 is uniquely
solvable.

For error estimation, we first introduce some auxiliary techniques.

Lemma 3.7. Let {a,} be a nonnegative sequence satisfying

n—1
Qp <b0+01kzaj+91an71+92an,2, VW/}Q,
j=0

where ag, a1, by, 01,602 and Cy are nonnegative constants and 0 < 61 + 62 < 1. Then

a, < bo " Clk‘<a0 + al) Cik n—2.
1—-6;—0- 1—6;—0, 1—6; -0,

+ 61a1 + 92@0) <1 +

Proof.  For convenience, let

_ bo Clk(ao—i—al)
a:

- 0101 + Ooaq.
10, -0,  1_9¢,_g, a0

We prove the result with an induction. For n = 2, we have the following bound:
as < bo + Cik(ar + ag) + 0161 + b2a0 < &

Thus, (3.9) holds for n = 2. Assume that for n < m,

o <al14 Gk "
s 1—6; — 6 ’

Then for n =m +1,

my1 < by + Olkza]‘ + 010 + 020, -1
=0
B m Clk j—2
<b0+01k|:a0+a1+az (1+1_01_02)

Jj=2



Wang S F et al. Sci China Math  November 2020 Vol. 63 No.11 2213

~ Clk m—2
+ (61 + 92)04(1 + I — 92>
_ (1 + 1_311592 )mil -1
:b0+C1k(a0+a1)+a~Clk Clk‘ (1—01—02)
B Clk m—2
+ (01 + 92)&(1 + 1_01_92>

Cyk m-t B O,k m=2
- 1—6; — 14—
10102> ( 01 92)4‘(914‘92)0&( +19192)

B Clk m—2 B Clk m—1
<all4+ —— 1 Sall+——FF— ;
a( +1_91_92> (1+ Cik) a( +1_91_92>

<a(1+

where we use the fact that
bo + Clk(ao + al) — (1 -0, — 92)5( < 0.

This completes the proof. O
Corollary 3.8.  Assume that {a,} is a nonnegative sequence satisfying

n—1
an <by+ Cok Y _aj+bran_1, Vn>1,
j=0

where ag, by, 01 and Cs are nonnegative constants and 601 < 1. Then

bo Ok Cok \" !
< 1 . 1
an, (1_914-1_91@04-91&0)( +1_91) (3.10)

Lemma 3.9. Assume ey, e; and ex are nonnegative numbers such that

e < ejep + e (3.11)
Then
eo < e1 +ea. (3.12)
Proof.  From (3.11), we have
e\’ e, e1 2
(eo—2> §Z+€2§ <2+62> . (3.13)
Taking the square root of both sides gives (3.12). O
We now turn to an error analysis for Problem 3.3. For convenience, we denote ||R| = ||R||(x,y) and
llall = llallcrxr;cx))- The following smallness condition is needed instead of the original one (2.10):
ay, + acc? <ma. (3.14)

Theorem 3.10.  Assume (2.3)—(2.9), (3.6), (3.14) and the regularity ¢ € C1(Ry x Ry L(X)), u €
Wlicoo (Ry; X). Then for the semi-discrete solution of Problem 3.3, the following error bound holds:

mga;vq\un —uP|lx < Csk, (3.15)

where C's > 0 is a constant independent of k.

Proof. ~ We take t = t,, in the inequality (2.2) to get

(A, v — up) + p(Sntt, Up, v) — P(Sntt, Up, Up)
+j0(’7jun§’7jv_'7jun) = <fn;v_un>7 Vv e K, (3'16)
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where Spu = R([f," q(tn, s)u(s)ds + ag). Let v = uk in (3.16),

<Aun7 qu - Un> + (p(Sn’U,, Un, qu) - @(Sn% U, Un)
+j0(7jun§7jui - ’Yjun) = <fnaulri - Un> (3'17)
Taking v = u,, in (3.8) yields
(Augy, wp —upy) + @(Sp pu by, un) — o(Sy gt up )

+ 50 (vjul s viun — vuk) + Gelyjub ), vjun — vub) x,
> (frtin — ult) + (Ge(ulh_1), Vitn — VU)X, - (3.18)

Adding (3.17) to (3.18) and employing the strong monotonicity of A, we obtain

mallun —up % < (Au, — Aul up — uy)
< p(Shu un,uk) O(Snu, Up, Up) —|—<p(Sn Luk ufl 15 Un)

—o(8E uF ub k) + 50 (vuns vyl — vjun)
+ 50 (vl viun — vuk) + Ge(vul), vjun — viul) x,
— (Je(Yiun 1), vitn — VU)X,

which is rewritten as

mallun —upl% < B, + Ej + Ej,, (3.19)
where
E, = (Sk Lu UI:L 15 Un) — (Sk LU UI:L 1’uk)
+ O(Sntty U, ul) — O(Sptty Un, Uy, (3.20)
Ej. = (Je(vjun)s Vit — Vi) x; = (Ge(Viuh_1)s Vit = Vitn) X; (3.21)
Ej = j°(jun; viupy — vjun) + 50 (v5un; Yiun — vjup)
+ (Ge(Vun), Y5t = Vitn) x; + (V) Vit — V5Un) X, - (3.22)

The term FE; can be bounded by zero from the above according to (3.7). Utilizing the regularity of v and
the properties of j. gives

Ej. = (je(yjtn — Vit _1);7jtn — Vilip)x,
= (Je(jtin — Yjtn—1), Vit — VuL) x,
+ (Je(Vtn—1 = Yuh_1)s Vit — ViUn) X,
< e (kllullwroe (1,x) + llun—1 =y [1x) |un — up||x- (3.23)

From (2.6) we can see

k
Ey < (apllun —up_yllx + BollSnu — Sy putlly)llun — urllx

<
< (kag|[ullwr. 1.x) + agllun—1 =y llx

+ BollSnu — Sy put Iy )llun — uyx. (3.24)
From (3.3), it holds that

|1Snu = Sp putlly < |ISpu— Sy pully + 1Sy pu— Sy pu®lly
n—1

< Ckllullwoor:x) + kHRllllfJH >l —uflx. (3.25)
7=0
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From (3.19) and (3.23)—(3.25), we obtain

n—1
3 ,
mallun — upllx < Ckl|ullwioerx) + kBRIl l4ll Dl —uflx
§=0
+ (ay + ozcc?)Hun_l - uﬁ_1||x. (3.26)

By applying Corollary 3.8, we have

Cllullw.=:x) +< 3kB, | Rlllq

mAfozwfozcci mAfatpfOzcc?

Qg+ aec? . 28,IIR n-l
P 00D ) (e SRV
A

ma — Qp — e

ot — ]l < (k

Note that when t =ty = 0, the integral of history-dependent operator is zero and there is no temporally
discrete error; thus ||ug — uf||x = 0. Then,

Dl (. Salllal Y™

ma — ay — Qec? mA—ozw—acci

J

lun —upllx <k

< C3k7
where ;
C oo (] s8R
o= Lltbroen o (BhlRllal, )
ma — 0y — QcC; ma — Gy — QcC;
and the error bound (3.15) follows. O

~k
Remark 3.11. The first-order accuracy remains valid if §,, is used to approximate the history-
dependent operator S in the temporally semi-discrete scheme (3.8).

3.2 Second-order temporally semi-discrete schemes

In this subsection, we propose and study two second-order schemes to temporally approximate Prob-
lem 2.1. The first scheme is the following.

Problem 3.12.  Find u* := {uf}N_ C K such that

<Aufw v = ’U’]:L> + (p(S]:L’L’U,k, uﬁa U) - @(Sﬁ,Luka ufm U,Z)
+j0('yjuﬁ;7jv — vjufl) > (fo,v—uk), VoeK. (3.28)

Note that the history-dependent operator is approximated by using available numerical solution values
k

and the current unknown value u,

is not involved. In this way, unlike the numerical scheme studied
in [28], the semi-discrete Problem 3.12 is ensured to have a unique solution regardless of the size of the
time step-size by using the same Banach fixed-point argument as in [28].

Theorem 3.13.  Under the conditions (2.3)—(2.10), the semi-discrete Problem 3.12 has a unique solu-
tion.

We turn to the error estimation of Problem 3.12.

Theorem 3.14.  Assume (2.3)~(2.10) and the regularity ¢ € C2(Ry x Ry; L(X)), u € W2 (Ry; X).
Then for the semi-discrete solution of Problem 3.12, we have the error bound

max ||u, — uf || x < C4k?, (3.29)
<N

X

where Cy > 0 is a constant independent of k.
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Proof.  Let v =u, in (3.28) to get
(Auk o, —uky + o(SF Lu ub uy) — (ST Lu uf uk)
+ 30 (vt Ve — V) = (Forun — ug).
Adding (3.17) to (3.30) and employing the strong monotonicity of A, we have

mallun —up |k < (Sp Lu®,up, un) = o(Sy Lu”,uy, )

+ O(Sntt, U, uF) — O(Sptt, U, )
+ 50 (v vy — vun) + 3 (vjun; i — vjun)
< apllun — upllx + BollSnu — Sy by lun — urllx
+ o flun —up -
Similar to (3.25) by using (3.4) instead, it holds that

n—1

ISnu = Sy putlly < CK? [ullwz(r,x) + kﬂlelllquIZII%*ukllx-
7=0

Applying (3.32) to (3.31), we have

g koo k
5 [ISnu = Sy putlly

[ — upllx < ———F——
ma — 0y — Q5

$kBolRIgl
<0k2 u 2,00 (J: +<P— k X-
o)+ 2 g 2 5

Then by Corollary 3.8,

348, 1Rl la)
— L2C - 2 me PR —uk
i ol < (BCTllwemr + 220 P o o

3 n—1
B R
(12l )
ma — 0y — Q5
<C4k'2,

where

3
35, IRlllal
Cs = Cllullwa~(rx) - exp {t |
J

ma — a, — ajc?
Thus the second-order error estimate (3.29) is established.

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

O

Remark 3.15.  For the numerical scheme in [28], the history-dependent operator is implicitly treated
in the sense that its approximation depends on the current unknown solution component. As a result, a
restriction for the time step-size of the form k < (ma — a, — ajc?)/ﬂ¢||R||||q|| is needed to ensure the

unique solvability and for the derivation of the error bound there. In contrast, for our numerical scheme

given by Problem 3.12, we have the unique solvability and error bound for an arbitrary time step-size.

Next, we modify (3.8) and give another scheme of second-order.
Problem 3.16.  Find a discrete solution u* := {uk}N_ C K such that

<Au£€w U= uﬁ) + @(Sk Lu 2un 1 uﬁ727 U) - (p(SfL,Luk7 Q’U’ﬁfl - u']retf27 uﬁ)

+ 70 (v v — ) + (Ge(yun), Y0 — v5up) x,
> (Je(2yjun_1 = Yjun—2)s 70 = vum)x; + {fav —uy), YveK, n>2,
and forn =1,
(Auf, v —uf) + (87 pu®,ul, v) — (ST pu”, uf, uf)
+ 70 (uls v — yuk) = (fr,o —uf), Vee K.

(3.35)

(3.36)
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The uniqueness and existence results for (3.35) are similar to that of Problem 3.3. As for (3.36),
it can be referred to Problem 3.12. Then we have the following uniqueness and existence results for
Problem 3.16.

Theorem 3.17.  Assume (2.3)—(2.10) and (3.6). Then Problem 3.16 has a unique solution u* =
{ukyN_ C K.
Next7 we derive an error bound for the semi-discrete solution of Problem 3.16. Meanwhile, a stronger

constraint compared with (3.14) is needed, i.e.,

a, + acc? < %. (3.37)

Theorem 3.18.  Assume (2.3)—(2.9), (3.6), (3.37) and the regqularity ¢ € C?*(Ry x Ry; L(X)), u €
w2 (R, ; X). Then for the semi-discrete solution of Problem 3.16, the following error bound holds:

loc

. k) < 2 .
max [|un — up | x < C5k7, (3.38)

where Cs > 0 is a constant independent of k.

Proof.  For n = 1, we have a second-order accuracy result for (3.36) by Theorem 3.14:
luy — uf || x < Cak?. (3.39)

For n > 2, taking v = u, in (3.35), we have

(Auf un —ul) + ‘P(Sk L 2ul =k g ) — ‘P(SI:L,LUkv 2up_y —uf_y,ul)
+ 50 (v uks viun — vuk) 4+ Ge(viul), viun — vub) x,
> (s tn — uly) + (Ge(2vjup 1 — Yjub o), vjtn — YUk ) x, - (3.40)

Combining (3.17) with (3.40) and using the strong monotonicity of A, we obtain

malun — UI:LHg( < o(Snu, un,uﬁ) — p(Sntty Un, up)
+ (S L“ 2ul ) —ub un) — o(Sh Lu 2uf ) —up_o,uy)
+ 50 (vgums vyur = yiun) + 50 (vguls vy — yyul)
+ Gelvjun), Yiun = vjun) x; — Ge(2v5ul 1 = Vit —2), Vit — ViUn) X,
= E,+E; + Ej,, (3.41)

where Ej; is defined in (3.22) and

Esa (Sk LU 2“ -1 uerL—Qaun) - (Sk LU 2un 1 uﬁ_%uﬁ)
+ o(Snu, up,u n) O(Snlty Uy, Up ), (3.42)
Ej, = (Ge(un), vitn — vub) x, — (e(@yjul ) — vl o), vjun — vjul) x, - (3.43)

We bound ch and Ew as follows:

Ej. = (je(Yun — 29jUn—1 + VjUn—2), Vjln — VjUL) X,
+ 2(je (V-1 — YU _1), VilUn — VU)X,
— (Je(Yjtn—2 = Yjuh_s), Vitn — VU)X,
< el (K |ullw2.eo(1,x) + 2l|un—1 — ub_[lx
+ [t = ulh ol x)lun — ul]|x, (3.44)
B, < (FPagllullwzeq.x) + 200 [tn—1 —uf_y|1x

+ apllun—z —up_ollx + ByllSnu — Sy pu®ly)llun — gl x- (3.45)
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From (3.41)—(3.45) and (3.32), we have

n—1
mallun —uplx < Ck|lullwe.es(r,x) + kﬂwlRlleJIIZHu]—ukllx
=0
+ (g + @) (2lun—1 = up [ x + [lun—2 — ;o[ x)- (3.46)

Applying Lemma 3.7 to (3.46) and combining (3.39), we have

c2
& Qy +
[tn — U llx < (W@Ilul —uf[|x + fluo — ug | x)

3kB IR lal
ma — 3(ay, + .3

e Ollullwe=ix) )(1 L skBolRIllal "
)

ma — 3(ay +ajc?) ma —3(a@+o¢cc§

)(|| o — ugllx + lur — uf| x)

< G5k, (3.47)
where
o= (;leben o, Al
5= 2 4 2
ma — 3(ay + accf) ma — 3(ay + accf)
ay + auc? 38R
20, ]> .exp{ 5 Bl Bl i tn}7
ma mA—3(a¢+accj)
which leads to the error bound (3.38). O

4 Fully discrete approximation

In this section we consider fully discrete approximations of Problem 2.1 with or without constraints.
The notation and assumptions follow from the previous section, and a regular family of finite element
partitions {T"} with the mesh grid-size h is introduced for the spatial discretization. Let X" C X be
the conforming finite element spaces. We consider internal approximations only, i.e., K" = X" N K is
nonempty, convex and closed.

Certainly, different fully discrete schemes can be constructed with different temporally semi-discrete
schemes proposed in the previous section. We state these fully discrete schemes as follows.

Problem 4.1.  Find the discrete solution u*" := {uf"}N_ < K" such that
(Auy, o —upl) * (S, Lu "ot 0") = o(Sp ")
+ % (v, ,% —un") + <jc(w kh) 70" = vunt)x,
<fn7 - ’U, > + <jC(’7J ) 'YJ 7jufih>Xj7 Vvh € Kh' (4'1)

Problem 4.2.  Find the discrete solution u*" := {uf"}N_ < K" such that

<Au’r€Lh vh - kh> (SI:L,Lukh, ufﬁ? Uh) - @(S]:L,Lukhv ufzhv uﬁh)
+.] (’YJ Un, 77] _’}/juﬁh) 2 <fnvv _ukh>a vvh € Kh' (42)
Problem 4.3.  Find the discrete solution u*" := {uf"}N_ < K" such that

(A = ) 5 2, — )~ 5 2~ o )
+ 5%(v; ﬁh;%' byl 4 Ge(yukty, yoh — >Xj
> (0" —ul) + (Ge@yjull ) — yubly), ot = yubhx,, Vot e KM n>2, (4.3)
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for n=0,1 the following scheme is used:

»y Y » o Y U'n

+ 50 (s =) 2 (fas " =gy, Vot e K (4.4)

(Aubt, o — ubh) (S5 Luth ukh o) — p(Sh Lt ukh, ukt)

In the following, we will only discuss the fully discrete Problem 4.3, since the other two fully discrete
schemes can be discussed similarly. Similar to the temporally semi-discrete case, we can show that under
those same conditions for the temporally semi-discrete, Problem 4.3 has a unique solution. An error
bound for Problem 4.3 is given next.

Theorem 4.4.  Assume (2.3)-(2.10), (3.6) and (3.37). Under the regularity assumptions q¢ € C2(Ry x
Ry; L(X)), u e Wli’coo(R_,_; X), we have the error bound

_ kR < : . h L h||3
max o — ufllx < Co max it {un = 0" lx + g — 250",
+E(" un)|? } + Cok?, (4.5)
where Cg > 0 is a constant independent of k,h and
E<vha un) = <Auna ol — un> + @(Snuv U Uh) - QD(Sn’U,, U, un)
+j0(7jun;’7jvh_'7jun) - (fn,vh—un>, Uh 6Kh~ (46)
Proof.  First, we consider the general case of n > 2. To this end, we take t = t,, and v = uF" in (2.2)
to get
<Auna u];h - un> + @(Snua U, ufbh) - ‘P(Snua Unp, un)
+ 70 (vt Vi = Yiun) = (frs ubl = un). (4.7)
On the other hand,

(Au, — Aquh, Uy — uflh> = (Aup,u, — uﬁh> + <Auflh, uflh - vh>

+ (AuFt P — ). (4.8)
Combining (2.5)(b) with (4.3), and (4.7)—(4.8), we have

mal|un — Uﬁh\@c < @(Snu,un,uﬁh) — P(Snt, un, up)
+ (St 20l — gl ") — (S Lt 20l — gl ugh)
+ <Auﬁhvvh — Up) — <fmvh — Up) +j0(7jun§ 'Yjufzh — YjUn)
+ (Gelvyunt), 70" = vunt) x; + 30 (jusls v = yyun)
— (Geyjupty — yyupts), 0" = yun) x,
= By, + Eyy + Ej + Ea + E(W", u,), (4.9)

where

_ k kh kh kh k kh kh kh kh
ESPl - @(Sn,Lu ’2un71 - un723un) - @(Sn,Lu a2un71 —u u )

n—2 “n
+ o(Snu, up, uflh) — o(Spu, Up, Up), (4.10)

Esoz = @(Sﬁ,Lukhv 2U§l}i1 - qull% vh) - QO(SI:L,Lukh’ 2“"]2}11 - ufz}i% un)
+ o(Snt, Un, tun) — P(Sptt, U, vh), (4.11)

Ej = 50 (vjun; vyus = vjun) + 50 (sl pio" — ypult)

+ (e(yjun), Yiub — viun) x; + Ge(viun) Vitn — vun) x;

= 12 (vjtms 0" = jun), (4.12)
Eq = (Aufh 0" —w,) — (Auy, o™ — u,,)
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+ Gelyul), 10" = viun) x, — Ge(viun), viue" — vjun)x,
— (Ge@yjupy — yully), 0" — yul) x, .

Let us bound E,,, E,,, Ej and F4 in turn. Then

By, < aplluy — up || x Jun — 20y +ull 5l x
+ Bl Snte — SEL M Iy g — ul | x,
Ep, < apllup —v ||X||Un —2ul )+ ullyllx

+ Bl Snu = SplLu Iy flun —o"[|x.

Using the sub-additive property of generalized directional derivative, we have

Ej < 30 (vjun; vy —250") + 50 (vjunl; vi0™ = gul) — o lun — w3

10 (Yjtn; YVitn — 50") + 5 (iun; vl — yjun)

N //\

J
J

+ 70 (vunl 0" = vun) 4 30 (s viun — iust) = o lun — ul %

(2c0 + c1llvjunllx; + erllvuslx, ) vsun — 0" lx,

<
< (20 + 2e1¢5 [[un|x) 175 un — 20" | x; + €16 lun — u | x [Jun — v"||x.
Since A is Lipschitz continuous with a Lipschitz constant L4 > 0, we obtain

Ex < Lalun — u | xlun — 0" |lx + (Ge(vjun — 2v5ul™  + vjus o), viun —;
+ (Ge@yjully — ubt o) viun — 0" x, + Ge(rui), o™ — yiun) x; -

We have

(Ge2rjupy = yuns) s vjum — 70" x; + Gelvyupt), 70" = vjun) x,
= (Je(=jtn + 29jtn—1 = Yjtn-2),vjun — 70" x,
+ Ge(Viun — vul™), viun — 10" x, — 20 (Vitn—1 — Vi), Yjtn — V5V
+ (Je(Ytn—2 = Yunts), Yiun — 10" x,
< aec QHun - UhHX(Hun — 2Up—1 + un of|x + [Jun — uthX)

+acc un — 0" [|x (2llun—1 = upyllx + fun—2 — w5 x)-
Together with (4.9) and (4.14)~(4.18), for £ <ma/3 — a, — a.cj, we obtain

mallun —un 1% < (Ck* ullwa(r,x) + 2(% + o)) lun—1 — upl|x
+ (g + act)) Jun—2 = up ol x + BellSnu — Sy Lu
+ Cllun — vhllx)Hun - ukhllx + Ck?lup — vhllx
+ (o + accd) 2llun—1 — ui | x + lun—2 — uy5)lx)
+ BollSnu = Sﬁ,Lukhlly)llun ="
+ Cllygun — 30" 1, + 1 B@", un)].

kh”Y

Applying Lemma 3.9 and the Cauchy-Schwarz inequality, we have

thX

l|tn — u CkQHuHW?m(I;X) + 2(0490 +acc )Hun 1 u HX

kh
Uy, >Xj

h>Xj

+ (o + ) )lun—2 — up |l x + kﬁHRHHQHZ luj —uf" %

7=0

2.2
Qi + QL)

+C’||un7vh\|x+0k2+ ||unffuh||x

+ 2e||un_1 — ul || x + ellun_2 — ul 5| x

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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+ Clvjun — 0" x, + CIE®", uy)|- (4.20)

For n = 0 and n = 1, a slight modification based on the proof of Theorem 3.14 and the above arguments

give
C 1 1
lluo — ug"||x < — {lluo — "I x + llvjuo — 10" |5, + [E@", uo)| 2}, (4.21)
A= Qp — QjC;
lur —ui®[lx < ¢ {llur —v"lx + Iy — 30" 1%
— oy — ajc? i
J
1 3
B un)|Z + k2 ulweee 1)} + kBl Rl llglllluo — ug" | x- (4.22)

Applying Lemma 3.7 to (4.20) and combining (4.21)—(4.22), we get

1
lun — uillx < (C{Ilun = x + hgn = 50" 1%, + 1B, )| 2+ B fullwzoe rx)}

Q, + @ c? + e
———— (2w — uf" | x + [Juo — ud" ) x)
ma

3K, Rllllql
ma — 3(ay + a.ci +¢)

e LT T

ma — 3(a + accf +e

(o — wx + [[ur — U’fhx))

1

< C max ([[un —v"[x + [y5un — 10" |%, + [E@", uwa)|? + &), (4.23)

0<n<N J

where 35 12

38l Rlll4ll
Cs=C o (13X) ° Yo" tn ¢-
¢ Illw=. 1) - exp { ma —3(ay, +accl +¢) "

Then we have the error bound (4.5). O

Now we consider the error estimation for the numerical solution of the discrete problem without
constraint. We introduce the following assumption on ¢ as in [28], which allows us to simplify the error
bound (4.5):

p:Y x K x K — R is a function such that

there exists a constant c, > 0 satisfying

V1 + Vg

, (4.24)
(Y usv1) + @y, u,v2) = 20( yyu, — < cpllvr — val%,

VyeY, VYu,v,v € K.
Theorem 4.5.  Keep the assumptions stated in Theorem 4.4. In addition, let K = X and the function ¢
satisfy the assumption (4.24). Then the following error bound holds:

kh : h b3
g [y — il < O maxinf {fu,— "l 4 e -0t 15) +82). (4.25)

Proof.  We start with

(Au, — Aulh u, — kY = (Au, — AuF? u, —o") + (Au, — At 0" — ukh)

= (Au, — AuF? u, — ") + (A, 0" — )

+ (At — ul™y 4 (AuF" B — . (4.26)

n ron

Furthermore, we replace v with 2u,, — v in (3.15) to get

(Atp, uy — v) + @(Sntty Un, 2uy — V) — @(Sptt, Up, Up)
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+ 70 (Yjun; Vit — Yj0) = (fayun —v), Vo€ X.
Similarly, take v = v" in (4.27) to get
(A, up — ") + ©(Spt, Uy, 2uy — ") — O(Spu, Uy, uy)
+ 50 (vun; Yjtn = 40") = (f i = 0").
Combining (2.5), (4.3), (4.7), (4.26) and (4.28), we have

mal|u, — uthX (Au, — Aukh - h) + p(Snu, Uy, 2uy, — vh)

+30(S Uy Upyy Uy, )7290(Snuaunaun)

@(Sk Lukh 2un 1 ﬁhQ,v ) — <P(Sk Lukh 2un 1 zhmu
+j0<'7juna'7jun_ Y50 )+J (’Yjun;%‘ n —’Yjun)
+ 0 (rjuns v 0" = ) + (e(vukt), vo" — it x,

= (Je(2yjully — yull o), 0" — yjul) x,
= E<P1 + E@z + E<P3 + Ej + Ea,

(4.27)

(4.28)

(4.29)

where E, , E,, and E4 are the same as in (4.10), (4.11) and (4.13), respectively with their bounds

(4.14), (4.15), (4.17). In addition,

E,, = o(Snu, tp, 2u, — vh) + o(Snu, un,vh) —20(Spu, Un, Up),

Ej = §0(yjtn; vitn — 750") 4+ 5 (it vjubt — yjun)

+ 70 uls y o — k) = Ge(un — Uk, viun — 5w

The assumption (4.24) shows that
Egy < Cllupn — "%

Using the sub-additive property again, we obtain
Ej < Cllyjun —v0" |15, + Cllun — up|lx [lun — o"|x-

(4.29) together with (4.30)—(4.33) and analogy to (4.20) give

1
mallun —wix < Clllun — 0"||x + [lyjun — %‘vhl\% }+ClSnu— Sy,

kh
n >Xj'

uthY

+ (aec] + ap + &) ([un—2 — up ollx + 2lun—1 — up || x).

Similar to the constrained situation, the error bounds for n = 0,1 are

C 1
Juo — ug"||x < s {lluo — v"|lx + [lvjuo — v0" 1%},
— O‘Lp — ch J
kh C h hi%
lur = ui[lx € ——————5{llus = v"|[x +[lnju — "Ik,

ma — Qp — QcC;

+ K2 {|ull w2 (1)} + Chlluo — ug||x.

Combining (4.34)—(4.36), we find the following error bound by an application of Lemma 3.7:

1
lun — uillx < <C{Ilun = 0"lx + Igun — 10" 1%, + 2 ullwzeerx) }

a, + « 2 + e
———— (2w — uf"||x + [luo — ug"||x)

Ck

" (Iluo — w™lx + —ulhx>)

ma — 3(ay + .l +¢)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)
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y 1+ Cl{) n—2
ma — 3(a, + accz +e)

_ b3 2
<€ mas, (un = o"llx + Ign — 70" 1%, + ). (4.37)

Thus, the proof is completed. O

5 Numerical computation using fixed-point iteration

Notice that in Problems 3.12 and 4.2 and in the initial steps of Problems 3.16 and 4.3, the implicit
discretization with respect to the unknown solution component is used. Let us discuss how to implement
these numerical schemes in practice. We use a fixed-point iteration approach. We first consider the
fixed-point iterations for the temporally semi-discrete schemes.

Problem 5.1. Let TOL be a given error tolerance. For 1 < n < N, find a sequence {ﬂﬁ’z} C K from
the iterations

<Aﬁﬁ,i,’0 - ﬂfm> + ‘P(S’:L,Lukaﬁfm 1) — o(Sh LU]c u’IICL i 17@7]72,1')
+5%0 ’Zi;%‘v — 5 ;) + <Jc(% iy ), 750 — Vil ;) X,

<f7’w - >+ <JC(,YJ Unp,i— 1) Vv _,Yjaﬁ,i>xj7 Vve K (51)

k k
until the relative error W < TOL; choose uk to be the last iteration af”

In Problem 5.1, the index ¢ refers to the i-th iterate at time level ¢,,. For the initialization of iteration,
we may use the iterative solution from the previous step, i.e., ﬁﬁ’o =uk_| for n > 1. Now we consider
the convergence of the sequence {i ;} generated by (5.1) to the solution of (3.28).

Theorem 5.2.  Assume (2.3)—(2.10). Then the iteration (5.1) converges linearly with a convergence
rate p = (o, + acc?)/m,q that is independent of the time step-size k.

Proof.  Taking v = @}, ; in (3.28), we have

(A, i 5 — ) + @(Sp pu® up, iy ) — @(Sy pu®up, uy,)

+j0(7jun;7jun,i - Vjun) = <fmﬁ1]§,i - UI:L> (5'2)

Taking v = u¥ in (5.1), we have

<A~n (2l n ﬂﬁ, > (Sk LU uﬁ i—lvuﬁ) - 90(852 Luk ufn i—laﬁfz,i)
+5%y ’fm;w —w »)+<Jc(vfﬁ,i)mj Uy = Vil ) X,
k ~k
<fn7 - > + <¢76(7J Uy i— 1) YiUn — ijun,i>Xj' (53)

Combining (5.2) with (5.3), we have

(At 5, up — ) + (Aug iy — ) < aplluy; =y

nm ny Yn,i

k ~k
n un,ifl ||X

+acfllun — @, illxlluy — @ ;o llx. (5.4)
By the strong monotonicity of A and (5.4), we have the following relation:
malluy — il x < (ap + ace])lluy — a5 ) x. (5.5)

Therefore, the stated result is proved. U

In analogy to the temporally semi-discrete scheme, the iteration algorithm for the fully discrete scheme
can be stated as follows.
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Table 1 Comparison of the three temporally semi-discrete schemes

Semi-discrete problem Numerical method CO Constraint

Problem 3.3 - Convex optimization First-order ma > ap + acc?

- Convex optimization
Problem 3.12 - Fixed-point iteration Second-order ma > Qg+ oy c?

(each step)

- Convex optimization
- Extrapolation

Problem 3.16 ) P o . Second-order ma/3 > o, + ozcc§
- Fixed-point iteration

(initial step)

Problem 5.3. Let TOL be a given error tolerance. For1 <n < N, find a sequence {ﬂﬁhl} C K" such
that

kh b ~kh k . kh ~kh h k _ kh ~kh  ~kh
(At s, 0" =) + (S pu™ g g, 0") — (S LU gy Ty )
~kh h ~kh ~kh
+ 30 (s 0" — sl + (el m) vv" — k) x,
2 <fn>Uh - ﬂfsz + <jC(’Yjan,i—1)>’Yj - VjunfLi>va vvh € Kha (56)

”~kh ,&kh,

until the relative error %H;l”x < TOL; choose u’fbh to be the last iteration ﬁﬁflz

The sequence {ﬂﬁhl} can be similarly proved to converge to the solution of (4.2).

Theorem 5.4.  Keep the assumptions in Theorem 5.2. Then the iteration (5.6) converges linearly with
a convergence rate p = (o, —|—acc?)/mA that is independent of the time step k and the mesh parameter h.

So far we have proposed three types of schemes and the corresponding numerical treatments to solve
Problem 2.1. Note that the difference of the schemes lies in the way the temporal discretization is done.
We list the schemes and summarize their main properties in Table 1, where CO stands for convergence
order.

We use the result of previous step to approximate the current step in Problem 3.3 which is easy to
implement while with low accuracy. For Problem 3.16, the approximation for current step is performed
with an extrapolation, thus an initial step is introduced and we employ a fixed-point iteration to solve
it numerically. As a result, we obtain a second-order accuracy with stronger small condition constraint.
Inspired by this fixed-point iterative procedure, we propose a new scheme in Problem 3.12, in which a
fixed-point iteration is used to approximate this scheme for each step.

6 Application to a contact problem

In this section we apply the results of abstract numerical analysis in the previous sections to a particular
history-dependent variational-hemivariational inequality. A viscoelastic frictionless contact model studied
in [26] will be considered. For details on the model, we refer the reader to [26,28].

Problem 6.1.  Find a displacement u: Q x R, — R? and a stress field o : Q x Ry — S? such that for
allt e Ry,

o(t) = Fe(u(t)) + pe(u(t)) = Priucmye(n(t)))

/ Bt — s)e(u(s))ds in Q, (6.1)

Div o(t) 4+ fo(t) =0 in Q, (6.2)
u(t)=0 on Iy,
o(t)v = fa(t) on I'y,
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u(t) < g, ou(t) +&(t) <O,

(o, (t) + & () (uy(t) —g) =0 on T, (6.5)
& (t) € 0ju(uu(t)),
o-(t)=0 on Is. (6.6)

As is standard in the literature in the area of the paper, we denote by S¢ the space of second-order
symmetric tensors on RY, w = (u;), v = (1), o = (045), e(u) = (Vu + (Vu)T)/2 the displacement
field, outward unit normal on the boundary, stress tensor and linearized strain tensor, respectively. In
addition, v, := v - v and v, := v — v, v stand for the normal and tangential components of a vector field
v, 0, := (ov)-v and o, := ov — o,V represent the normal and tangential components of the stress
field o, respectively. In (6.1) Pps(.(.)) denotes the projection on the Von Mises convex, &/ and % are
the elastic and relaxation tensors, and p is a constant. In this model, time-dependent surface tractions
of density fo and volume forces of density fy are considered. On I's, the penetration is restricted by a
non-negative function g and the potential function is denoted as j,,. The function spaces V and H are

V={v=(v) € H'(Q;R?) |v=0a.e. onT;},
H == {T = (Tij) c L2(Q;Sd) ‘ Tij = Tji; ]. < Z,] g d}

The inner products in the Hilbert spaces H and V are

(o, 7) = / o (@) @)z, (u,0)y = (e(u), e(t))y

and the associated norm are denoted by || - |3z and || - ||y The space of fourth-order tensor fields Qo is
given by
Qoo = {€ = (Eijr1) | Eijrr = Ejirt = Eriij € L(), 1 <, 4, k1 < d}.

We now list the assumptions on the problem data, following [26,28]. The elasticity tensor A : Q x S¢
— S is symmetric and positive. The relaxation tensor B € C(R; Q) and the bound x : R — R is
Lipschitz continuous. The potential function j, : I's Xx R — R is measurable with respect to the first
argument on I's for all » € R and is locally Lipschitz with respect to the second argument on R for a.e.
x € I's; j, (-, e(+)) belongs to L' (I'3) for some € € L?(I'3). Besides, |0j,(x,r)| < ¢ +1|r| for a.e. ¢ € '3,
for all » € R with ¢, ¢ > 0. In addition, there exists @, > 0 such that for a.e. € I's,

Jo(@,risre — 1) + jo(®, roiry — r2) < @ylry —rof?, Vry,re €R.

For the body force and surface traction, we assume fo € C(Ry; L2(Q;R?)) and fo € C(Ry; L?(T'g; RY)).
Let U = {v € V | v, < g a.e. on I'3} be the set of admissible displacements. Define the function
iRy = V*hy

(f(t),v)vexv = (fo(t),v)r2(ray + (f2(t), V)20, rey, YV EV, ViR,

Then the weak formulation of Problem 6.1 can be described as follows.

Problem 6.2. Find a displacement uw: Ry — U such that the following inequality holds:

(e(u(t)),e(v) —e(u(t))n + ple(u(t)),e(v) — e(u(t))n
PM(n(C(t)))E(U(t)) e(v) —e(u(t))u

—I—/F 32wy (8); vy — uy, ()T = (f(t), v — w(t))y-xv, VveU, teR,. (6.7)
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To apply the abstract results from the previous sections to the study of this contact problem, some
definitions are needed. We let v, : V — L?(T'3) be the trace operator defined by vjv=wv, forveV.In

addition, we define the following operators (see [26,28]):

(Au,v)y-xv = (Fe(u),e(v))y + ple(u),e(v))y, VYu,velV,
lylly = Irl+[18lln, Yy=(r,0) €Y :=RxH,

go(y, U,’U) = _:U’(P]\/I(H(r))e(u)a 6(”))7‘1 + (0,6(’0))%, vy = (7‘, 0) €y, vuvv ev,

(jc(,)/ju)vr)/jv)L?(F;;) == Oéj(’}’ju,’)/j’v)Lz(Fg)’ Vu,v c V"
J(vv) :/ Ju(v,)dl, Vv eV,
s

-(/ o) s, [ - Se(uls))ds) . Vu € C(RiiV)

Note that for j. defined in (6.11), the constants a. and «; in (3.6) are equal: a. = a;.

The unique solvability of Problem 6.2 has been verified in [26]. Here, we consider fully discrete methods
for solving Problem 6.2. Assume the domain {2 is polygonal /polyhedral with a regular family of partitions

{T"}. The linear element space is constructed as follows:
={v"cC@)? | V" |r e Py (T) for TeT" v"=00nT,}
with P; being the space of polynomials of degree no greater than one. Define

b= {v" € V7| v < g at node points on T's}.

Assume g is concave; then U" € U. Thus the approximation is internal and the numerical methods for

Problem 6.2 are defined as follows.

Problem 6.3.  Find a discrete displacement u*" := {uf"}_ ) c U such that

(e(ufh), e(v") — () + pe(ul), e(v") — e(ub"))y
= 1Py @1y () E(vh) — e(uM)n

+<I;%’(t —to)e +kZ%’ ukh)

N |

+ 2Bty — tn_1)e(utm ) e(v) — s(uﬁh)>

H
0/, kh . h kh kh h kh
+ Jo (s vy =ty )dD 4 o (g, vy — g’ ) L2 (ry)

kh h kh

h kh h h
>Ck]( n—1,05 Uy _un,u)Lz(F3)+<fnav - u, >V*><V7 Vo' eU 3

where

C(tnr) = *IIE HH+/~€ZIIE IIH+*|I€( "Dl

Problem 6.4.  Find a discrete displacement ukh = {ufP N C UM such that
(e(uy"),e(v") — e(up)) + ule(uy"),e(v") — e(uy))n
,U(PM(K(Z(%?I)))E(UTL )se(v") — e(ur))u

k

n—1
+ (2%”(75” —to)e(uf™) + k ; Btn — t)e(u;™)

Bt — el ), (o) — e ’“h))
H

+/ JS( ﬁhy,vl},‘ —ufﬁ,)dF > (fn,vh — uﬁh)v*xv, v e UM
ITs

(6.14)

(6.15)
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Problem 6.5.  Find a discrete displacement u*" := {ul"}_ ) c U such that

(e(uy"),e(v") e(ukh))q.[ + u(&‘(ukh), e(v") — e(uy"))n

— (P, M(r(C(tn_))E (2u "o),e(v) —e(u))u
+ (’;@ —to)e +k:293 uth)

k

2%<—mAkmﬂmawwmeﬁH

0¢, kh h kh kh h kh
+ jv( nwvy - un,u)dr—’_aj(u Uy — un,V)LZ(F:s)

> aj(QUfL’lLV — uffizy,vfj — uﬁﬁ,)Lz(pa) + <fn,vh — uﬁh>v*xv, Vol e UM, n>2, (6.16)
and forn =1,
(e(uf"),e(v) — €(u'fh))w + ple(u™),e(v") — e(uf"))x

- ,U(PM(H( )€ e(ur"),e(v") —e(ui™)u
+ (kB(tr — to)e(ug"), e(v") — e(ui™))n

b [ Rl - ) > (0t )y e U (617)
I's
The numerical scheme for n = 0 is similar to (6.17) except that the approximation for the history-

dependent term is omitted.

Using arguments similar to that found in [28], we can show that under the following solution
regularity: uw € W2°(Ry;V), o € C(Ry; H (8%), u € C(Ry; H2(Q;R?)), and u, € C(Ry; H2(T's)),

loc
the following optimal order error bounds hold:

kh
RN lun, —uy ||y < C(h+E"), (6.18)

where 1 = 1 for Problem 6.3 and n = 2 for Problems 6.4 and 6.5.

7 Numerical results

In this section, we present some numerical results for the three fully discrete schemes stated in
Problems 6.3-6.5. The same physical setting as depicted in Figure 1 is employed.

b oLy l

 deformable body

T; contact interface

i g Layer of asperities

Rigid obstacle

Figure 1 Initial configuration of the contact problem
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Let Q= (0,L1) x (0, Ly) be a rectangle with boundary I'" which is divided into three parts
Fl = {0} X (O,Lg), FQ = {Ll} X (O,Lg) U [O,Ll] X {LQ}, F3 = [O,Ll] X {0}

For a given S > 0, the function j, is defined as

€0
e = [t ds (7.1)
with
0, s<0,
c18, 0<s< sy,
pi(s) = (7.2)
c181 + ca(s — s1), 51 < 8 < Sg,

€152 + ca(s2 — 51) + c3(s — s2), 5> s,
where s1, S2, ¢1, co and c3 are constants. The elasticity tensor &7 satisfies

K
—(e11 +e22)di; +

(e)ij =

with 1 < 4,57 < 2. E is the Young modulus, ~ the Poisson ratio of the material and J;; denotes the
Kronecker symbol. For the volume and surface forcing, we set

fo = (0,—0.1sin(t))N/m?, (7.4)
_ [(0,00N/m on {L1} x (0, La),

2 = { o (7.5)
(0, —0.2sin(t) sin(mz/2))N/m on [0, L1] x {L2}.

7.1 Convergence tests

In this subsection, we test the convergence behavior for the three numerical schemes. The projection on
the Von Mises convex is not considered in the convergence tests; thus we let ;1 = 0 in Problems 6.3-6.5.
Values of the other parameters are

Li=2m, Ly=1m, E=2N/m? &k =0.3,
;=05 g¢g=015m, S=1N, RB{t)=e ", T=05,
S1 = 0]., Sg = 015, C1 = 0]., Cy = 70.]., C3 = 0.4.

The uniform rectangular finite element partitions are introduced to numerically solve the above
problem. The numerical solution with h = k& = 1/256 is used as the “reference” solution in
computing numerical solution errors, and the temporal and spatial convergence orders in the H' norm
will be shown.

7.1.1 First-order scheme

In Tables 2 and 3, we present the temporal and spatial convergence orders of first-order scheme respec-
tively, and the first-order accuracy in both time and space are shown.

7.1.2  Second-order scheme by fixed-point iteration

In Tables 4 and 5, we present the temporal and spatial convergence orders of second-order fixed-point
iteration scheme, respectively, and the second-order accuracy in time, first-order in space are shown.

In addition, we compute the H; errors for different mesh grid-sizes. Two refinement paths are taken
to be k2 = h and k = h. The results are displayed in Table 6 and the first-order accuracy is shown for
both the two refinement paths in Figure 2, which indicates the second-order convergence order in time.
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Table 2 Convergence orders with spatial step-size fixed for first-order scheme

h k lu(-, T) — ukl|;y Order
1/256 1/4 9.82316E—3 -
1/256 1/8 2.39681E—3 2.0351
1/256 1/12 1.29335E—-3 1.5215
1/256 1/16 9.51587E—4 1.0667
1/256 1/32 4.49031E—4 1.0835
1/256 1/64 1.93357E—4 1.2155

Table 3 Convergence orders with temporal step-size fixed for first-order scheme

h k lu(-, T) — ukl||y Order
1/8 1/256 1.81905E—-2 -
1/16 1/256 1.01388E—2 0.8433
1/32 1/256 5.51935E—3 0.8773
1/64 1/256 2.92633E—3 0.9154

Table 4 Convergence orders with spatial step-size fixed for second-order scheme by fixed-point iteration

h k lu(-, T) — ukl|y Order
1/256 1/4 2.30136E—3 -~
1/256 1/8 6.06211E—4 1.9246
1/256 1/12 2.75085E—4 1.9487
1/256 1/16 1.54881E—4 1.9967
1/256 1/32 4.16384E—5 1.8952

Table 5 Convergence order of the errors with temporal step-size fixed for second-order scheme by fixed-point iteration

h k lu(, T) — ukl||y Order
1/8 1/256 1.81822E—2 -~
1/16 1/256 1.01334E-2 0.8434
1/32 1/256 5.51570E—3 0.8775
1/64 1/256 2.92399E—3 0.9156

Table 6 Comparison of the Hj errors in the refinement path k2 = h and k = h for second-order scheme by fixed-point

iteration
o llu(, T) — ukh |1 Difference between
Mesh grid-size 2= P the front two
h=1/16 1.03714E—2 1.01335E—2 2.38E—4
h=1/36 4.66049E—3 4.55114E—-3 1.09E—4
h=1/64 2.98351E—3 2.92393E—-3 5.96E—5
h =1/100 1.44761E—-3 1.39882E—3 4.88E—5
h=1/144 8.58858E—4 8.17035E—4 4.18E—5
h=1/196 4.00877TE—4 3.49632E—4 5.12E—5

7.1.3 Second-order scheme with extrapolation

In Tables 7 and 8, we present the temporal and spatial convergence orders of second-order scheme with
extrapolation, respectively, and the second-order accuracy in time, first-order in space are shown.
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Error vs. mesh grid-size for second-order scheme by fixed point

Hi -error

Figure 2
fixed-point scheme

Table 7 Convergence orders with spatial step-size fixed for second-order scheme by fixed-point iteration

—¥— Kk2=h
—G- k=h

—-=—"-slope of 1

Mesh grid-size

(Color online) The loglog plot of Hy errors with h =1/16, 1/36, 1/64, 1/100, 1/144, 1/196 for second-order

h k lu(-, T) — ukl||y Order
1/256 1/4 1.02222E-2 —
1/256 1/8 1.15624E—-3 3.1442
1/256 1/12 3.53015E—4 2.9261
1/256 1/16 2.41930E—4 1.3135
1/256 1/32 5.74370E—5 2.0745

Table 8 Convergence orders with temporal step-size fixed for second-order scheme with extrapolation

h k lu(-, T) — ukl|y order
1/8 1/256 1.81823E—2 -
1/16 1/256 1.01335E—2 0.8434
1/32 1/256 5.51576E—3 0.8775
1/64 1/256 2.92403E—3 0.9156

Table 9 Comparison of the H; errors in the refinement path k2 = h and k = h for second-order scheme with extrapolation

Mesh grid-size

l[u(-, T) — w1

Difference between

K2 =} k=h the front two
h=1/16 1.42988E—2 1.01343E—2 4.16E—-3
h=1/36 6.89462E—3 4.55108E—3 2.34E-3
h=1/64 3.13943E—-3 2.92396E—3 2.15E—4
h =1/100 1.49765E—3 1.39884E—3 9.88E—5
h=1/144 8.90577TE—4 8.17048E—4 7.35E—5
h=1/196 3.93167E—4 3.49639E—4 4.35E—5

In addition, we compute the H; errors for different mesh grid-sizes. T'wo refinement paths are taken
to be k2 = h and k = h. The results are displayed in Table 9 and the first-order accuracy is shown for
both the two refinement paths in figure 3, which indicates the second-order convergence order in time.

In Figure 4, the normal displacement on the boundary I's at time 7" = 0.5 for the three numerical
schemes is shown, from which we can see, the maximum penetration is reached as the forcing increased.
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Error vs. mesh grid-size for second-order scheme with extrapolation

—¥— k=h
—C K2=h

—-=—"-slope of 1

2|

Hi-error

1079

1072
Mesh grid-size

Figure 3 (Color online) The plot of H; errors with h =1/16, 1/36, 1/64, 1/100,

with extrapolation

1/144, 1/196 for second-order scheme

o Normal displacement at T = 0.5 of 1st-order scheme 0 Normal di at T = 0.5 of 2nd-order scheme with extrapolation
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Figure 4 (Color online) Normal displacement on I's at time 7' = 0.5 of three numerical schemes
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