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1. Introduction

In recent years, a family of nonlinear problems, known as hemivariational inequalities, has attracted much attention
in research community. The notion of hemivariational inequalities was introduced in early 1980s by Panagiotopoulos [1],
responding to the need in modeling and studying engineering problems involving non-smooth, non-monotone and/or
multi-valued physical laws and conditions. Mathematical theory of hemivariational inequalities can be found in several
research monographs (e.g., [2-7]) and many journal articles. Since no closed-form solution formula can be expected for
a hemivariational inequality arising in applications, numerical methods are needed to solve hemivariational inequalities.
An early comprehensive reference on the numerical solution of hemivariational inequalities is [8] where convergence of
finite element solutions and solution algorithms is discussed. In [9], an optimal order error bound is derived for linear
finite element solutions of a stationary variational-hemivariational inequality, and this is followed by a series of papers
on optimal order error bounds for linear finite element solutions of various hemivariational inequalities or variational-
hemivariational inequalities, e.g., [10-12] for stationary variational-hemivariational inequalities and [13-15] for some
time-dependent variational-hemivariational inequalities, cf. the recent survey [16].

Hemivariational inequalities of parabolic type arise in problems in heat conduction, electrostatics, flows through
porous media with semipermeability conditions (cf. [17]). Parabolic hemivariational inequalities are also studied in a
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number of other publications, e.g., [18-22], [7, Chapter 7]. In this paper, we present numerical analysis of a parabolic
hemivariational inequality arising in applications in semipermeable media [23]. Note that in [24], numerical analysis is
provided for a stationary analogue of the hemivariational inequality. For definiteness, we choose a model with a boundary
semipermeability term. The study of the parabolic hemivariational inequality will be carried out through that of an abstract
general parabolic variational-hemivariational inequality and follow [22] for the solution existence and uniqueness. The
parabolic variational-hemivariational inequality reduces to a parabolic hemivariational inequality when certain term is
dropped from the formulation.

In the study of hemivariational inequalities, we will need notions of the generalized directional derivative and the
generalized subdifferential in the sense of Clarke, introduced in [25]. We will only use real Banach spaces in this paper.
For a Banach space X, we denote its norm by || - ||x, its topological dual by X*, and the duality pairing of X and X* by (-, -).
Let ¢: X — R be a locally Lipschitz functional. Its Clarke generalized directional derivative at a point x € X in a direction
z € X is defined by

A —
¢°(x; z) = lim sup M
y—>x, 210 A
The Clarke subdifferential of ¢ at x is a subset of X* given by
dp(x) = {¢ € X* | ¢°(x:2) = (¢.2) Yz € X}.

Discussions of the subdifferential in the sense of Clarke can be found in the books [3,6,26]. We will also make use of the
notion of the subdifferential in convex analysis for a convex functional. The reader is referred to [27] for details on the
convex subdifferential.

Now we introduce the parabolic hemivariational inequality for applications in media with boundary semipermeability
(cf. [23]). Let £2 be a bounded Lipschitz domain in RY with d < 3 for applications. Since the boundary 352 is Lipschitz
continuous, the unit outward normal vector v exists a.e. on d§2. Decompose the boundary 952 into two parts I'p and Iy.
Let [0, T] be the time interval with a given T > 0. The pointwise formulation of the model problem is

uU—Au=f in £ x(0,T), (1.1)
u=0 onlpx(0,T), (1.2)

—g—z € dj(u) + d¢(u) on I'y x(0,T), (1.3)
Uli—o = Up in £2. (1.4)

Here 1 denotes the time derivative of u, j is a locally Lipschitz continuous function and dj denotes its generalized
subdifferential, I C R is an interval, ¢; is the indicator function of I and d¢; denotes its convex subdifferential. In the
context of an application with boundary temperature, the unknown function u represents the temperature and the interval
I gives the range of the temperature on the boundary I'y.

The rest of the paper is organized as follows. In Section 2, we introduce an abstract parabolic variational-hemivariational
inequality and review a result for its solution existence and uniqueness; this abstract parabolic variational-hemivariational
inequality contains the model problem (1.1)-(1.4) as a special case. In Section 3, we present a fully discrete scheme for
the abstract parabolic variational-hemivariational inequality where the time derivative is approximated by the backward
divided difference and the spatial variable is approximated by a Galerkin method. We derive a Céa’s type inequality that
is the starting point for convergence order error estimation. In Section 4, we specialize the results from the previous
section for the numerical solution of the model problem and proceed further to derive an optimal order error estimate
when the linear finite element method is applied for the spatial discretization. Note that in deriving error estimates
for the numerical solution of the parabolic variational-hemivariational inequality, we need to assume certain solution
regularity. It is possible to prove the convergence of the numerical solution to the solution of the parabolic variational-
hemivariational inequality under the minimal solution regularity available from the solution existence result, by extending
the arguments presented in [28] on the convergence of the numerical solution for an elliptic variational-hemivariational
inequality. In Section 5, we report computer simulation results of the fully discrete scheme in solving the model problem,
with an emphasis on evidence of numerical convergence orders of the numerical solutions that match the theoretical
predictions from Section 4.

2. An abstract parabolic variational-hemivariational inequality

The model problem (1.1)-(1.4) will be studied as a particular case of an abstract parabolic variational-hemivariational
inequality. To formulate the abstract problem, we introduce two spaces V and H such that V is a strictly convex, reflexive
and separable Banach space, H is a separable Hilbert space, and V C H C V* is an evolution triple with both embeddings
continuous, dense and compact. Let K C V be a non-empty, closed and convex set in V. The norms in V and H are denoted
by || - |lv and || - [|lu, and the norm in R? is denoted by |-|. We use (-, -) for the duality pairing between V* and V, and use
(-, -) for the inner product in H; they are related by the identity

(v*,v) = (v*,v) Yv*eH,veV. (2.1)
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In addition, we need another reflexive Banach space U, and denote by (-, -)y*xy for the duality pairing between U* and
U, and by || - ||y the norm in U. Let [0, T] be the time interval of interest for the study of the inequality problem, with a
given T > 0. We further define Bochner spaces V = [2(0,T; V), H = L[*(0, T; H), 1 = [?(0, T; U), u* = L*(0, T; U*), and
w={veVv|veV

Consider the following parabolic variational-hemivariational inequality [22].

Problem 2.1. Find u € W such that u(t) € K for a.e. t € (0, T),

T
/ [(@(t) + Au(t) + y*&£(t), v(t) — u(t)) + P (u(t)) — P(u(t))] dt
0

T
> / (f(t), v(t) —u(t)ydt Yvev, v(t)ekK (2.2)
0
where
Eeu*, E(t)edJ(yu(t)) a.e.te(0,T), (2.3)
and
u(0) = uq. (2.4)

We impose the following assumptions.
H(A) The operator A: V — V* is Lipschitz continuous: for some constant Ly > 0,

lA(u) — A(v)llve < Lallu —vlly Yu,v eV, (2.5)
and satisfies the inequality
(A(u) — A(v), u—v) = mylu — o[y —mallu —v|l Vu,veV, (2.6)

with constants m; > 0 and m, > 0.
H(J) The functional J: U — R is locally Lipschitz continuous, for constants ¢ > 0 and o > 0,

Il <c Q1+ lully) Yuel, §edj(u) (2.7)
and
(€ —n,u—v)ysxy = —oflu— vllf, Yu,velU, &e€d(u), ned(v). (2.8)
H(®) The functional @:V — R is convex and continuous.
H(y) The operator y € £(V, U) is compact, the associated Nemytskii operator

7:M>20,T;V,V*) > U
defined by (yv)(t) = y(v(t)) is also compact, and for any § > 0, there is a constant ¢ = ¢(§) such that
Iyvly =élivllv +clvlm YveV. (2.9)

Ho f € H'(0, T; V*), up € V, and there exist & € 3J(yuo) and 19 € dP(up) such that Aug + y*& + no — f(0) € H.
We comment that (2.8) is equivalent to the inequality

P v—u)+ v u—v) <gllu—v| Yuvel,

known as the relaxed monotonicity condition in the literature. In H(y), the space M?2(0, T; V, V*) is used, which is a
Banach space defined by

M?%(0,T; V,V*)=1%0, T; V)N BV2(0,T; V*)
with the norm || - |[2¢0 ,v) + I - llpv2(0.7:v+)- Here,
BV*(0,T; V*) = {v: [0, T1 — V* | [vllpy20:7:v+) < 0}

and [[v|lgy2(p;7,v+) is defined as follows. Let 7 : 0 = top < t; < --- < ty = T be a partition of the interval [0, T] into N
sub-intervals, and let IT be the family of all such partitions. Then,

N—1
105y2(0 7y = SUP D 10(Ei41) = VI
Te i—0
The next result regarding Problem 2.1 holds [22, Theorem 6.1].

3
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Theorem 2.2. Under the assumptions H(A), H(J), H(®), H(y) and Hy, Problem 2.1 has a unique solution.

Remark 2.3. Let us make some remarks on the assumptions since in the literature, different assumptions are found to
ensure solution existence and uniqueness on Problem 2.1 and this may cause confusion.
On H(A): In [22], the operator A is assumed to be pseudomonotone and coercive, and satisfy a linear growth condition

and (2.6). By [29, Proposition 27.6 (a)], a Lipschitz continuous, monotone operator is pseudomonotone. By [29, Proposition
27.6(f)], the summation of a pseudomonotone operator and a strongly continuous operator is pseudomonotone. We define
an operator B: V — V* by

(Bu, v) = —my(u, v)y, u,vev.

This operator is strongly continuous due to the compact embedding of V to H. By the conditions (2.5)-(2.6), the operator
A —B:V — V*is Lipschitz continuous and monotone, and is hence pseudomonotone. Thus, the operator A= (A —B)+ B
is pseudomonotone, being the sum of a pseudomonotone operator and a strongly continuous operator. The linear growth
condition of A is a consequence of (2.5), and the coercivity follows from (2.6). That is why in this paper, we assume the
more easily checked Lipschitz continuity condition (2.5) and do not assume the pseudomonotonicity and the linear growth
condition.

On H(®): In [22], the functional ®:V — R U {400} is assumed to be proper, convex and lower semicontinuous. In

this paper, with K a non-empty, closed and convex set in V, we consider the particular form & + Iy for the functional
@ in [22], where I is the indicator functional of K, whereas @:V — R is convex and lower semicontinuous. By [27], a
Ls.c. convex functional on a Banach space is continuous. So in this paper we assume ¢:V — R is convex and continuous
from the outset (and use the symbol @ for ®).

In [7, Chapter 7], a smallness condition of the form oy ||y I> < my is required. Following [22], the smallness assumption
can be dropped at the expense of assuming H(y ).

For the model problem and problems in other applications, typically V is H'(£2) or its closed subspace, H = L*(£2),
U = [*(I") for I" a subset of 952 with a positive boundary measure and y is a trace operator, or U = L?(£2,) for 29 = £2 or
a measurable subset of £2 and y is an embedding operator, or we have vector versions of these spaces. For such settings,
H(y) is valid, cf. [21, pp. 460-461].

By a standard localization argument, we can derive the following localized version of Problem 2.1.

Problem 2.4. Find u € W such that for a.e. t € (0, T), u(t) € K,
((t) + Au(t) + y*&(t), v — u(t)) + ®(v) — (u(t))

> (f(t),v—u(t)) YveKk, (2.10)
where
Eeu*, E(t)edJ(yu(t)) a.e.te(0,T), (2.11)
and
u(0) = uy. (2.12)

Introduce a companion problem.

Problem 2.5. Find u € W such that for a.e. t € (0, T), u(t) € K,
(@(t) + Au(t), v — u(t)) +°(yu(t); y (v — u(t))) + @(v) — P(u(t))
> (f(t),v—u(t)) Vvek, (2.13)
and
u(0) = up. (2.14)

Let us show that Problems 2.4 and 2.5 are equivalent.

Theorem 2.6. Under the assumptions stated in Theorem 2.2, Problem 2.5 has a unique solution. Moreover, Problems 2.4 and
2.5 are equivalent in the sense that u € W is the solution of Problem 2.4 if and only if u € W is the solution of Problem 2.5.

Proof. Let u € W be the solution of Problem 2.4, guaranteed by Theorem 2.2. Since

(y*&(t), v —u(t)) = (£(), y(v — u(t))yrxv <J(yu(t): y(v — u(t))),
we derive (2.13) from (2.10). Thus, u € W is a solution of Problem 2.5.

4
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Now we prove the solution uniqueness of Problem 2.5. Let uy, u; € W be two solutions of Problem 2.5. Then for a.e.
t € (0, T), uy(t), uy(t) € K and for any v € K,

(in1(t) + Auy (1), v — uy (1)) + (v ua(0): y (v — i (1)) + S(v) — D(u(t)) = (F(£), v — us (1)), (2.15)
(1) + Auy(t), v — up(1)) 4+ J(yua(t): y (v — ux(t))) + P(v) — D(ua(t)) = (F(1), v — us(t)). (2.16)
We take v = uy(t) in (2.15), v = u4(t) in (2.16), and add the two inequalities to obtain
(W (t) — Ua(t), ua(t) — ua(t)) + (Auq(t) — Au(t), ug(t) — up(t))
< J2(yun(6); v (ua(t) — un(£))) + J°(puat); y (ua(t) — ux(t))).

Then,

1d
5 aHUl(f) — W (0)IIF; 4+ mallug(t) — a1 — mallug(t) — ua(O)Nf

< a1y (uy(6) — m ()
< % s (£) — ua(OI2 + ¢ lus(6) — us()]13
So

210 = w015 + s (6) = w17 < € flun(6) — ua(Oll-
Since u;(0) — u(0) = 0, by the Gronwall inequality, we derive from the above inequality that [u(t) — ux(t)[|? = 0,
i.e., U1 = u; and a solution of Problem 2.5 is unique. W

3. Numerical approximation of the abstract parabolic variational-hemivariational inequality

For the numerical solution of Problem 2.5, we let V' C V be a finite element space approximating V, and let K" = vinK
and assume it is non-empty. The space V" is constructed over a finite element partition of £2 from a regular family of
finite element meshes. The parameter h represents the mesh-size of the finite element partition. For the discretization of
the time derivative, we use a finite difference. Given a positive integer N, let k = T/N be the time step-size. The time

nodal points are t, = kn, n = 0, ..., N. For a continuous function g defined on the interval [0, T] we write g, = g(t,),
n=0,...,N.
In this section, we will assume the regularities
ueC(0,T;; V), ueH?*0,T;V*), fecC(0,T];V*). (3.1)

Note that u € H?(0, T; V*) implies it € C([0, T]; V*). An immediate consequence of the regularity assumptions is that
(2.13) holds for t € (0, T). Moreover, the first part of (3.1) implies that uy € K.
Let ug € K" be an appropriate approximation of ug. The discrete scheme for Problem 2.5 is the following.

Problem 3.1. Find u"™* = {uf*}V = < K" such that for 1 <n <N,

hk hk
u- —u
(” o~ u’;k) + (Au, o — ) + s y (0" — ) + 0" — (U

k
> (fo, " —ul®y Vo e KM, (3.2)
and
ulk =yl (3.3)

The inequality (3.2) can be rewritten as
(UM, " — Uy 4 (AU, o — ulky kO ul®; (0" — ulk)) + k@ (") — k D (k)

> k(fp, " — uly 4 @, 0" —u) vl e K. (3.4)

Existence and uniqueness of a solution u* € K" to (3.4), for k > 0 sufficiently small, follow from a corresponding result
for elliptic variational-hemivariational inequality [16].
The rest of the section focuses on error analysis for the numerical solution. Denote

hk

n, 0=<n<N

en=1Uu, — U
for the numerical solution errors. Let v € K" be arbitrary but fixed. Then by (2.6),
myllenlly — msllenlly < (Aup — Aul¥, uy — ul¥)
= (Auy — Au®, uy — 01y + (Auy, v — up)
+ (Atty, uy — ul) + (Aul ulk — ol (35)
5
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From (2.13) at t = t, with v = uflk,

(Atty, ty — ul) < (i, up® — ) + ]y ttn; ¥ (Ul — un))
+ D) — D(un) — (fo. Uy — ). (3.6)
From (3.2) with v" = v/ € K",
Atk upt —up, h Rk O/ hk. . h . hk
(Aug', up —vp) < (T’U”_u )+ vy s y(og —uy))
+ @) — ey — (f,, v — ulky. (3.7)
Use (3.6) and (3.7) in (3.5),
millenlly — mallenllf; < (Aun — Aul¥, uy — v1) + (Atty, v} — uy)
uhk _ uhk
o+ G, g — ) o+ (v = )
+ 00 un; i — up)) + J°(puls y(vf — ul))
+ @) — D(un) — (fy, Vi — Un). (3.8)
Define a residual type quantity on K,
Ru(v) = (Uty + Aup, v — >+] (yun; y(v —up)) + @(v) — @(un) — (fa, v — Up). (3.9)
Then we can rewrite (3.8) as
hk h . U -
millenlly — mallenlly < (Aun — Aup’, iy — vy) + (lin — =— ==, u —vy)
+ Ru(v]) + Aa(°), (3.10)
where
An(J%) = ]2 un; y i — up)) + J°(uls y (ol — ul*)) — 10 un; ¥ (08 — up)). (3.11)
Denote
. Up — Up_
En=ily — "1 (3.12)
k
Note that
IEnllve < Il | enrve
and thus,
IEallys < kIIUIILz(t V) (3.13)
Write
. uhk — yhk e —e
(it — === = u) = (B = T () + (= 0])
en —en_1
= - ((%, en) + (En, en))
en — en_
+ (ﬂTnl’ Up — Uz) + (En; Up — U,’?)
Since
=t o) = L (el — lewtl + llew — en_1l) = i(nenn%,— lea 1lI2)
k 2k 2k
we have
. ulk — gk
(it — Tl n = ) = = (el — llenalg) = (En en)
€n — €n—1 h h
+(T,un—vn>+<En,un—vn). (3.14)

For the J° terms in (3.11), note that
Jorups v (o —up)) < JOvuns v (un — up) + 12y uls y (vl — un)),
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and by (2.8),
T uns y i — up)) + 120 ul; y(up — ul®)) < ollyenll.
Let § > 0 be a small number to be chosen. Applying (2.9),
Jovun: y(up — u)) +J°(vup’s v (un — ul)) < 8 lleally + csllenll-
Use the condition (2.7),
—J°(ytn; ¥ (v} — un)) < ¢ (1 + lyunllo) 1y (vp — ua)llu,
Jouls y (o —un)) < ¢ (14 llyulile) 1yl — un)ll
< c(1+ llyunlly + llveallv) Iy (vy — ua)llu-
Thus,
An(J°) < S llenlly + csllenlly + ¢ (1 + lyunllu + llveallv) 1y (un — vi)llu- (3.15)
From
(Aup — Aupt, up — vp) < [|Auy — AU+ l[un — v} v
and the Lipschitz continuity of A, we have
(Aup — Aup, uy — o)) < Lallenllv [lun — v} v

Then we deduce from (3.10) that

1
2 2 2 2
m1||en||v - m2||en||H + ﬁ (”en”H - ||en—1||H)

en — en_1
< Lallenllvllun — vl lly — (En, €n) + <%, Up — ) + (En, tp — v}) + Ro(v)))
+ 8 llenlly + csllenll? +c (1 + lyunlly + llyenllv) Iy (un — v)lu. (3.16)

Using the modified Cauchy inequality

1
ab<d8a®+ch®> Va,beR, c= —,
46
we have

h 2 h2
Lallenllv lun — vyllv < 8 lleally + ¢ lltun — vy Iy,
2 2
—(En, en) < 8 llenlly + c Enlly«.

Moreover,
C” e ” _h < _h <3 2 _ . hy2
venllully (un — vp)llu < cllenllvliun — vyllv < 3 llenlly + ¢ llun — vyl
and
h h 1 2 1 hy2
(En, up — Un) < |[Enllvsllun — Un”V =< 5 ||En||v* + E lup — Un||v~

Thus, from (3.16) and [[ux|lv < llullcqo, vy

1
(my —48) |leally — (M2 + ¢5) llenllf; + o (Ileall?; — len—11%)

en — €en—1
< ¢ [llun = vally + Nl + lly (un = v)llu] + Ravp) + (===, un = vp),
where the constant ¢ depends on |[ul|c(o,11.v). Choose § = m/8 to obtain
my 1
> lenlls — (my + cs) llenll?; + 7% (Ileall?; — llen—1117)
en — en—1
< c[lun — vplly + UEalI+ + 7 (un — v)dllu] + Ra(v]) + (————, tn — vy),

or

leall? — lenallfy + K lleally < ckllenlly + ¢k [llun — villy + IEallgs + lly (un — vi)llu]

+ ck|Ra(v!)] + ¢ (en — €n_1, U — V).

7
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Replace n by i in the previous inequality and sum over i from 1 to n:

n
2 2 2
llenlly; — lleolly + k E lleilly

i=1

n n
<ckY el +ck Y [l — vy + NENT + Iy (i — v)lu]

i=1 i=1

n n
ok Y IR+ (e — ey, ui— vf).
i=1 i=1

Note that

n

h

c Z(ei —eji_1, Ui — V)
i—1

h h
= ¢ ey, Uy — v} +cze., Ui — vf') = (i1 — vf},)) — ¢ (eo, ur — vf)

< % llenllfy + ¢ llun — v} 1% + ;k; lleilly
+ck ‘Z (s = v') = (uirr = o DIG« + ¢ lleollf; + ¢ llur — il
Then from (3.17),
lexll?s + anj leilly < cki [lleilly + Nl = vf I + ly (s = vy + [RiCoP)] + IEl7]
i=1 i=1

c (||eo||%, + g = {115 + llun — vpl17)

+ck™ Z lI(ui — o) — (uirr — vl Dl
Applying Gronwall’s inequality, we conclude that if k > 0 is small enough, then

N N
max flenlf +k D llenlly < ck Y [llun = vylly + 1y (tn = v)llu + [Ra(op)] + Enl3+]
n=1 n=1

2 h 2
+c (||eo||H + max[u, — vnnH)

+ck” 12 I(u — (g1 — v Il

By (3.13),

N
2 o112
D IEGe < k20 7.0

n=1

Therefore, for all v! € K", 1 <n <N,
N
max luy — uf I +k Y s — ufly < ckZ llun = vpl5 + Iy (= v)llu + [Ra(v})]]

n=1

2 hy 2 h2
e (k o+ o — uE + max flun — vh13)

+ k™Y ll(un — vE) = (ungr — vl

(3.17)

(3.18)

(3.19)

This is a Céa’s type inequality and it is the starting point for convergence order error estimation, as is illustrated in

Section 4.
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4. Numerical analysis of the model problem

Our main goal in this section is to derive error estimates for numerical solutions of the model problem (1.1)-(1.4). For
the source function f and the initial value ug, we assume

f e (0, TT; [*(£2)), uo € HA(£2). (4.1)
In addition, we assume j: R — R is locally Lipschitz continuous,
PNl <c(+1r) VreR (4.2)
for some constant ¢, and there exists a constant « such that
P =)+ 20 —n)<aln—rn* Vr,rneR. (4.3)
Let

V={veH'(2)|v=0o0nIp},
K={veV|velonIly},

H =I1*),

U = L*(Iy).

and let y:V — U be the trace operator. The weak formulation of the problem (1.1)-(1.4) is to find u: 2 x (0,T) - R
such that

u(0) =uy in £2, (44)

and for t > 0,

u(t) e K, (u(t), v — u(t)) +/

2

Vu(t) - V(v — u(t)) dx + / Fu(t); v —u(t))ds

I'n
sz(t)(v—u(t))dx Vv eK, (4.5)
2
where if 1(t) is in [?(£2), then

(u(r), v) 2/ u(t) v dx.
2

Moreover, u(t) and f(t) stand for u(x, t) and f(x, t), respectively.
Define a functional

j(v):/ jlw)ds, veV.
I'n
Then J: V — R is locally Lipschitz continuous, and from (4.2) and (4.3), we have their counterparts (2.7) and (2.8) with
possibly different constant (cf. [6]). Introduce an auxiliary problem of finding w: £2 x (0, T) — R such that
w(0)=1uy in £, (4.6)

and for t > 0,

w(t) e K, (w(t),v— w(t)) +/ Vu(t) - V(v — w(t))dx +J(w(t); v — w(t))
2

> [ f0w-uoydr voek, (47)
2

Applying Theorem 2.6 and recalling the last paragraph of Remark 2.3, we can conclude that under the stated assumptions
on f and j, the problem defined by (4.6) and (4.7) admits a unique solution w € W. Since [6]

Jou; v)5/ Pu;v)ds Yu,v eV, (4.8)
I'n

the solution w satisfies (4.4) and (4.5), i.e., w € W is a solution of the problem defined by (4.4) and (4.5). The solution
uniqueness can be verified in a standard way. Thus, the problem defined by (4.4) and (4.5) has a unique solution u € W.

Given a positive integer N, let k = T/N be the time-step, and let t;, = nk, 0 < n < N, be the nodal points of the
time interval [0, T]. For simplicity, we assume £2 is a polyhedral/polygonal domain, and express I'y as the union of flat
components I'y; for 1 <i <iy:

Iv=UN Ty;
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Let {7"}~0 be a regular family of finite element partitions of £2 such that each partition 7" is compatible with the splitting
of the boundary into I'; and Iy, i.e., if the intersection of a face (in 3D) or a side (in 2D) of an element in 7" with I'; or
I'y has a positive relative measure, then the face or the side lies entirely on a flat component of I'p or I'y. Here, h > 0
denotes the mesh-size parameter. Let V! C V be the linear finite element space corresponding to the partition 7" and
let K" = V" NK. Then the numerical method is to find u™ = {uf*}N < K" such that

n
upk = uft, (4.9)

and for 1 <n <N,
hk hk

u™ —u
/ S (W — ) dx + / Vulk . vl — uydx + / FOqulk; v — ulkyds
2 k Q I'n
> / Ho" —uM™ydx Vol e KN, (4.10)
2
where f, stands for the function f(x, t;,).
For error estimation of the numerical solution, we assume the solution regularity

u e C([0, T]; H*(2)) N H'(0, T; H'(£2)) N H*(0, T; L*(£2)), (4.11)
uln, € C([0, Th; HA(Iv,)), 1<i<iy. (4.12)

With the same trick used in proving the solution existence for the problem defined by (4.4) and (4.5), based on
applications of the inequality (4.8), it can be seen that the Céa’s type inequality (3.19) holds for the numerical solution
defined by (4.9) and (4.10), where in the definition of the residual type quantity R,, the expression J° is replaced by er i°.

As a preparation in applying (3.19) for error estimation, we first derive some relations for the solution u of the problem
(4.5), under the regularity assumption (4.11). Let v in (4.5) to be of the form u(t) £ v with v € C§°(£2) be arbitrary to
obtain
/ @(t)v 4+ Vu(t) - Vu)dx = / f(tyvdx Vv e C§°(£2).
2 2

By an integration by parts,

/ U(t)v — Au(t)v) dx = / f(tvdx Yv e C§°(£2).
2 o)
Therefore,
u(t) — Au(t) = f(t) a.e.in 2, t €(0,T). (4.13)
Consider the residual term, for v € V,

Rn(v)=/ [an(v_un)+vun‘v(v_un)_fn(v_un)]dx+/ jo(un§v_un)d5-
Q I'n

Perform an integration by parts and apply the boundary condition v — u, = 0 on Ip,

Rn(v)Z/ (i1, — Aup _fn)(v_un)dx+/
2 T}

N

u )
[ 8vn (v —up) + 2 (up; v — un)] ds.

Making use of (4.13), we obtain
du,

Ry(v) = / [a (v — up) + (s v — un)] ds.
In v

Since u € C([0, T]; H*(£2)), we have du/dv|p, € C([0, T]; L*(Iy)) and

ou
‘ / a—n(v—un)ds =c P lv = unll2ery,)-
ry ov Villeqo,miz2(ry)y)
Also,
‘ / Plun; v —up)ds| < / € (1 + [up(x)]) [v(x) — uy(x)| ds
Iy Iy
< c (T4 Ntmllcqorrizciv) 10— tallizgry)-
Thus,

[Ra(ui)| < c(u) llv} = nllizgry)- (4.14)

n

10
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Therefore, from (3.19), we have that for all v! € K", 1 <n <N,

N N
hk 2 hk 12 h2 h
max luy — U ) + kD tn = U2y gy = kY [lun = w1 + o = vy |
n=1

n=1

I
eI+ o — wliZ g+ max un — vl |

+Ck_1Z||(un_U1’;)_(un+1 _vll"l1+l)||§2(_9)' (415)

Now let us choose v = IT "y, € V", the finite element interpolant of u,,. Then by the finite element interpolation error
estimates [30-32] and recallmg the solution regularity (4.11)-(4.12), we have

2

llup — 11" uH”HI(Q) <ch ||un||H2(_Q

lup — 17" un”Lz(_Q) <ch* ||un||H2(9

172

2

lup — 11" Unll2(ryyy < ch (Z ||u"”H2(FN )>

i=1
Moreover,

(Un — Hhun) — (Un1 — Hhun-H) = (1 - Hh) (U — Uny1),
Iun = IT"up) = (1 = T35 ) < € B llttn — tnia 14

Now
41 .
Up — Upy1 = _/ u(t)dts
tn
5 It . 2
“un - urH’l”Hl(_Q) S k/[ “u(t)“Hl(Q)dt
n
Then,

K I un = IT"un) = (g — Tt 1)1y ) < W12 124010y

Therefore, from (4.15),
hk 2 hl 2 2
max fuy — up o)+ kYl — 17 o) < € (K + 1) (4.16)

5. Numerical examples

In this section, we report computer simulation results on two numerical examples. In the first numerical example,
there is no constraint on the value of the unknown solution, i.e., the inequality problem is posed over an entire space. In
the second numerical example, there is constraint on the range of the values of the unknown solution. The focus of the
numerical examples is to provide numerical evidence of the first order convergence in both h and k.

In the numerical examples, we take 2 = (0,1) x (0,1), Iy = {0} x (0,1) and I'p, = 92\Iy. We use uniform
triangulations on the domain £2 such that the unit interval [0, 1] on each of the four sides of §2 is split into 1/h equal
sub-intervals, cf. Fig. 1.

The corresponding finite element space V" is constructed from the standard continuous piecewise linear functions. Let
Upef = uMo-*o be a reference solution in computing numerical solution errors; choose e.g., hp = 1/512 and kg = 1/1024.
Then the numerical convergence orders in h are computed from the errors ||t — u'vko ||H1(9 forh=1/8,1/16,...,1/128,

whereas the numerical convergence orders in k are computed from the errors |[uy — u ho, k”Hl(-Q) for k = 1/16, 1/32, cen
1/256.

5.1. Numerical example without constraint

We consider the following problem
U—Au=f in £ x(0,T] (5.1)

11
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FD

Fig. 1. Domain £2 and its uniform triangulation with h = 1/32.

0.5
—i(r)
- - - M(r)
0
0.5
“1r
3 25 2 5 -1 05 0

Fig. 2. M and j for the numerical example without constraint.

u=0 onIp x[0,T] (5.2)
au
—5 € M(u) on Iy x [0, T] (5.3)
v
u=20 in £, (5.4)
where T = 0.5, f(x,t) = —30(1 — te™") and the multivalued function M : R — 2F is given by
0 for r € (—oo, —2]
M(r) = —2—r forre(-2,-1)

[-1,0] forr=-1
0 forr € (—1, +00).

Note that M(r) = 9j(r) and (see Fig. 2)

0 forr < -2,
J=3-3rr—2r-2 for —2<r<-1,
-1 forr > —1.

2

An iterative scheme with Lagrangian multiplier (see [24]) is used to find the solutions at each time step. We report the
i — 3 6 9 12 16 20 23 26 29 32 in Fige 3_ i i
reference solution at the moments t = £, &%, &2+ &3+ 54 84° 51° 51 &1 a3 in Figs. 3-4, and the corresponding Lagrangian

multipliers at these moments in Fig. 5.

In order to show the numerical convergence order with respect to mesh size, we take h = 3, &, &, &, 5 and fix
time step k = ko = 10%. The errors of these numerical solutions, i.e.

N 1/2
h,k ho.ko 12
(koZuun 0 — °||H1(m> :

n=1

are reported in Table 1, from which the first order convergence in h is observed.

12
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The solution at time = 3/64 The solution at time = 6/64

0
05
-1
515
2
2.5
-3
1
08
06
0
04 o 0.2
02 08 06
0
X 1 v
The solution at time = 9/64 The solution at time = 12/64

The solution at time = 16/64 The solution at time = 20/64

The solution at time = 23/64 The solution at time = 26/64

0.2 0.6
Y:

The solution at time = 29/64 The solution at time = 32/64

0
05
A
5156 515
2 2
2.5 2.5
3 3
1 1
08

* /o
04 04 0.

o
02 0\(/(03 06
1

3 6 9

16 20 23 26 29 32

12
64’ 64’ 64 64’ 64’ 64’ 64’ 64’ 64’ 64°

Fig. 3. Reference solution at the moments t =

13
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att= 3/64 att=20/64
05+ att= 6/64 att=23/64
att= 9/64 att=26/64
att=12/64 att=29/64
att=16/64 at t=32/64

0.1

Fig. 4. Reference solution on I}y at the moments t = >, S

9

12 16 20

23

26 29 32

64’ 64' 64’ 64’ 64’ 64’ 64’ 64’ 64’ 64°

05
att= 3/64 att=20/64
att= 6/64 att=23/64
att= 9/64 at t=26/64
att=12/64 att=29/64
att=16/64 att=32/64
0 -
05
Ar
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 5. Lagrangian multiplier on I}y at the moments t = 2

6

9 12 16 20

23

2 20 32

64’ 64’ 64’ 64’ 64’ 64’ 64’ 64’ 64’ 64"

Table 1
Convergence order with respect to mesh size h.
h 1 1 1 1 1
8 16 32 64 128
Error 1.6494e—01 8.3162e—02 4.2787e—02 2.1346e—02 1.0716e—02
conv. order - 0.99 0.96 1.00 0.99
Table 2
Convergence order with respect to time step k.
k 1 1 1 1 1
16 32 64 128 256
Error 3.4185e—01 1.9290e—-01 9.9814e—02 4.8450e—02 2.1772e—02
conv. order - 0.83 0.95 1.04 1.15

In order to show the convergence order with respect to time step, we use the finest mesh with size h = hg =
The errors of these numerical solutions i.e.

11 1 1 1
16° 32 64’ 128" 256°
1/2

N
2 : hg,k ho,ko 12

k “uﬂo - uno OHHI(Q) 5
n=1

take the time step k =

14
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-0.5

-2 -1.5 -1 -0.5 0

Fig. 6. M and j for the numerical example with constraint.

Table 3
Convergence order with respect to mesh size h.
h 1 1 1 1 1
8 16 32 64 128
Error 1.7051e—01 8.5912e—02 4.2863e—02 2.1259e—02 1.0707e—02
conv. order - 0.99 1.00 1.01 0.99
Table 4
Convergence order with respect to time step k.
k 1 1 1 1 1
16 32 64 128 256
Error 3.4076e—01 1.8692e—01 9.9067e—02 4.8670e—02 2.1540e—02
conv. order - 0.87 0.92 1.03 1.18

are reported in Table 2. From this table, we can see the convergence with respect to the time-step k is of first order, which
confirms the results obtained in our analysis.

5.2. Numerical example with constraint

The settings of this example are the same as those in Section 5.1, except that the multivalued function M : R — 2% is
given by (see Fig. 6)

0 forr € (—o0, —2),
(—o00,0] forr=-2,
M(r)=3-2—-r forr e (-2, —1), (5.5)
[—1,0] forr =—1,
0 forr € (—1, +00).

Note that M(r) = 9j(r)+ d¢;(r), where the locally Lipschitz continuous function j is the same as in the previous example,
I = [—2, o0), and the indicator function is

0 ifr > -2,
+00 otherwise.

di(r) = {

A similar iterative scheme is used to obtain the numerical solutions as that used in Section 5.1. We report the reference

; _ 3 6 9 12 16 20 23 26 29 32 i pigc 7_ ; ; ol
§olu_t10n at the moments t = &, 1+ &1 510 84* 54° 61° §4* 51+ oz 0 Figs. 7-8, and the corresponding Lagrangian multipliers
in Fig. 9.

1 1 1 1

. . _ 1 1 1 1 i .
In order to show the convergence rate with respect to mesh size, we take h = 3, 15, 35, 55» 15 and fix time step

ﬁ. The errors of these numerical solutions are reported in Table 3, from which the first order convergence

in h is observed.

In order to show the convergence order with respect to the time step, we use the finest mesh with size h = % and
take k = 1, 5. o+ T35+ 35g- The errors of these numerical solutions are reported in Table 4. From this table, we can see
the convergence order with respect to the time-step is about 1.

k=ky =

15
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The solution at time = 3/64 The solution at time = 6/64

The solution at time = 9/64 The solution at time = 12/64

The solution at time = 16/64 The solution at time = 20/64

The solution at time = 23/64 The solution at time = 26/64

The solution at time = 29/64 The solution at time = 32/64

i i _ 3 6 9 12 16 20 23 26 29 32
Fig. 7. Reference solution at the moments t = &1, &, & &1 64* 54° 51 &4° &1° 51°
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a . . . . . . . . . )
0 0.1 02 03 04 05 06 07 08 0.9 1

3 6 9 12 26 29 32

3 6 9 16 20 23 29
64’ 64" 64’ 64’ 64’ 64’ 64’ 64’ 64’ 64"

Fig. 8. Reference solution on Iy at the moments t =

all= 3i64 al1=20/64
atl= 6/64 att=23/64
L att= 9/64 att=26/64
att=12164 att=29/64
att=16/64 att=32/64

4

0 0.1 02 03 04 05 06 07 08 0.9 1

6 9 12

16 20 23

26 29 32

i i ipli =3 6 9 16 20 26 29
Fig. 9. Lagrangian multiplier on Iy at the moments ¢ = £, &1, & 51 64’ 64* 51 54° &1 51°
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