Speaker: Eudave-Munoz, Mario

Title: Incompressible surfaces and (1,1)-knots
Authors: M. Eudave-Munoz and E. Ramirez-Losada
Affiliations: Instituto de Matematicas, UNAM and CIMAT
Abstract: Let T be a standard torus in $S^{3} . K$ is a $(1,1)$-knot if K can be positioned so that K intersects T in two points, which divide K into two arcs, and such that each of the arcs is parallel to a simple arc lying on T.

We give a description of all $(1,1)$-knots which contain an essential meridional surface, that is, an incompressible, meridionally incompressible, not ∂-parallel, properly embedded surface in the exterior of a knot K, whose boundary consists of meridians of K.

In particular, we show that for given $g>0$ and $h>0$, there are $(1,1)$-knots which contain an essential meridional surface of genus g, and whose boundary has $2 h$ components. This contrasts with a result of Gordon and Reid, which shows that (1,1)-knots cannot contain "planar" essential meridional surfaces.

