Speaker:Saveliev, PeterTitle:Higher order Nielsen numbersAuthors:Peter SavelievAffiliations:Marshall University

Abstract: Suppose X, Y are smooth manifolds, $f, g : X \to Y$ are maps. Then the Coincidence Problem studies the coincidence set $C = \{x : f(x) = g(x)\}$ and $m = \dim X - \dim Y$ is called the codimension of the problem. For a map $f : X \to Z$ and a submanifold Y of Z, the Preimage Problem studies the preimage set $C = \{x : f(x) \in Y\}$, $m = \dim X + \dim Y - \dim Z$. In case of codimension 0, the Nielsen number is the lower estimate of the number of points in C changing under homotopies of f, g, and for an arbitrary codimension, of the number of components of C. In this talk I will consider an approach to the calculation of other topological characteristics of C. The goal will be to estimate the bordism groups $\Omega_*(C)$. In comparison to the classical theory the Nielsen equivalence of the points of C is replaced with an equivalence of singular submanifolds of C. We consider topologically and algebraically essential classes and define higher order Nielsen numbers.