Speaker:	Illman, Soren
Title:	Hilbert's fifth problem and proper actions of Lie groups
Authors:	Soren Illman
Affiliations:	University of Cambridge and University of Helsinki

Abstract: Suppose G is a locally euclidean group and M is a locally euclidean space, and let

$$\Phi: G \times M \longrightarrow M \tag{1}$$

be a continuous action of G on M. In his fifth problem Hilbert asks if one then can choose the local coordinates in G and M so that Φ is real analytic.

When G = M and

$$\Phi: G \times G \longrightarrow G \tag{2}$$

is the multiplication in the group G the answer to Hilbert's question is affirmative, as was proved by Gleason, Montgomery and Zippin.

For the question (1) we prove.

Theorem. Let G be a Lie group which acts on a C^1 smooth manifold M by a C^1 smooth proper action. Then there exists a real analytic structure β on M, compatible with the given smooth structure on M, such that the action of G on M_β is real analytic.

Concerning the uniqueness of β in Theorem 1 we have (from a paper by the author and Marja Kankaanrinta).

Theorem. Let M and N be real analytic proper G-manifolds, where G is a linear Lie group. Suppose that M and N are G-equivariantly C^1 diffeomorphic. Then M and N are G-equivariantly real analytically isomorphic.