Speaker: Verchinine, Vladimir

Title: Semigroup of three-page embeddings of singular knots

Authors: Vladimir Verchinine

Affiliations: Université Montpellier II, France; Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: This is a joint work with V. Kurlin. We develop the Dynnikov method of three-page embeddings for *links with singularities* of the following type: with possible double points of intersection in general position. Let SK be a semi-group with 15 generators from the alphabet $\mathbf{A} = \{a_i, b_i, c_i, d_i, x_i, i \in \mathbf{Z}_3\}$ and 84 relations:

- (1) $a_i = a_{i+1}d_{i-1}, \quad b_i = a_{i-1}c_{i+1}, \quad c_i = b_{i-1}c_{i+1}, \quad d_i = a_{i+1}c_{i-1},$
- (2) $x_i = d_{i+1}x_{i-1}b_{i+1}$,
- (3) $d_1 d_2 d_3 = 1$,
- $(4) \quad b_i d_i = d_i b_i = 1,$
- (5) $d_i x_i d_i = a_i (d_i x_i d_i) c_i, \quad b_i x_i b_i = a_i (b_i x_i b_i) c_i,$
- (6) $x_i(d_{i+1}d_id_{i-1}) = (d_{i+1}d_id_{i-1})x_i,$
- (7) $(d_i c_i)w = w(d_i c_i)$, where $w \in \{c_{i+1}, x_{i+1}, b_i d_{i+1} d_i\}$,
- (8) $(a_ib_i)w = w(a_ib_i)$, where $w \in \{a_{i+1}, b_{i+1}, c_{i+1}, x_{i+1}, b_id_{i+1}d_i\}$,
- (9) $t_i w = w t_i$, where $t_i = b_{i+1} d_{i-1} d_{i+1} b_{i-1}$, $w \in \{a_i, b_i, c_i, x_i, b_{i-1} d_i d_{i-1}\}$,
- (10) $(d_i x_i b_i) w = w(d_i x_i b_i)$, where $w \in \{a_{i+1}, b_{i+1}, c_{i+1}, x_{i+1}, b_i d_{i+1} d_i\}$.

Theorem 1. Every singular knot can be represented by an element of the semi-group SK. Two singular knots are ambient isotopic if and only if the corresponding elements of SK are equal. An arbitrary element of SK corresponds to a singular knot if and only if this element is central, i.e. it commutes with every element of SK.