Speaker: Hsiang, Wu-Chung

Title:Remarks on Ozsváth-Szabó's TheoryAuthors:Wu-chung Hsiang and Tian-jun LiAffiliations:Princeton University

Abstract: Let $M^3 = H \bigcup_F H$ be a Heegaard diagram of an oriented 3-dimensional homology 3sphere M^3 , where H's are handlebodies (of genus g) and $F = \partial H$ is the common boundary surface. The meridians of both sides become the α -curves $(\alpha_1, \alpha_2, \ldots, \alpha_g)$ and the β -curves $(\beta_1, \beta_2, \ldots, \beta_g)$ on F. Assume that they intersect transversely. Fix a complex structure of F and it induces a symplectic structure on the g-fold symmetric product $\operatorname{Sym}^g(F)$. The tori $T_{\alpha} = \alpha_1 \times \alpha_2 \times \cdots \times \alpha_g$ and $T_{\beta} = \beta_1 \times \beta_2 \times \cdots \times \beta_g$ are Lagrangians of $\operatorname{Sym}^g(T)$. Peter Ozsváth and Zoltán Szaobó have considered the Lagrangian intersection homology theory á la Floer. It turns out that the chain complexes may depend on various choices but the homology groups are the same up to isomorphisms. These are the O-Z invariants of M^3 . For the standard S^3 , it is isomorphic to \mathbb{Z} . (We say that O-Z = 1.)

In a very preliminary joint work with T.J. Li, we try to describe O-Z directly from the α -curves and β -curves on F. Particularly, we are experimenting the the following question:

Question: How do we describe the α -curves and β -curves when O-Z = 1 (and g = 2)?

We also speculate the relative O-Z invariants. We hope that the relative invariants may be used to study the general case (i.e. g > 2) for O-Z = 1.