The Sturm sequence property of {fk(k)} The sequences {fk(a)} and

{fk(b)} can be used to determine the number of roots of fn(x)
which are contained in [a,b]. To do this, introduce the
following integer valued function s(A). Define s(A) to be the
number of agreements in sign of consecutive members of the

sequence {fk(k)}; and if the value of some member fj(x)=o, let



its sign be chosen opposite to that of fj_l(k). We will show
later that fj(x)=o implies fj_l(k)ﬁo.
Example Consider the sequence fo(k),...,fs(x) given in (9.4.5)

of the last example. For A=3,
(fO(A),...,fs(A)) =(1,-1,0,-1,0,1).

The corresponding sequence of signs is
(+i_i+i+!—!+’+)!

and s{3)=2.

We now state the basic result used in computing the roots

of fn(k) and thus the eigenvalues of T.

Theorem 9.5 Let T be a real symmetric tridiagonal matrix of

order n, as given in (9.3.22). Let the sequence {fk(A)IOskﬁn}
be defined as in (9.4.2), and assume all BQ¢O, 0=1,...,n-1.
Then the number of roots of fn(k) which are greater than A=a
is given by s(a), which is defined in the preceding paragraph.
For a<b, the number of roots in the interval a<A¢<b is given by
s(a)-s(b).
Proof The proof of this result is fairly lengthy; and those
who wish to skip it may go directly to the example following
the proof. This theorem is characteristic of all Sturm
sequences, but we will consider only {fk(k)}. The proof is
divided into several parts, beginning with a derivation of
properties of {fk(k)}.

(1) No two consecutive polynomials have a common zero.

For a proof by contradiction, suppose



F{0) = £, (A) =0

for some j:2. Then using (9.4.3) with k=j and solving for

JPYCNE
1

j-2
= 0.

Continue the argument inductively using (9.4.3) to prove
£,(\) =0, all kgj.

But this will contradict the definition fo(A)El.

{2) The zeroes of fk_l(k) interlace those of fk(A), for
k=2,3,...,n. For the simplest case, consider the zeroes of
fl(k) amd fz(k). The single zero of fl(k) is A:al. Since
f2(:tw)=+oo and fz(al)=—B?<0, there must be zeroes of f2(x) to
the left and right of ):al.

Assume the result is true for the zeroes of

fl(k),...,fk_l(k). We will prove it is true for the zeroes of
fk(K). Let the roots of fk_l(k) and fk_2(k) be (Al""'xk-l}
and {pl,...,uk_z}, respectively. By assumption,

A1 Mo Pp o - - gy A, . (9.4.6)

Note that since degree fk_l(R)=k—l and since there are exactly
k-1 roots Al""’kk—l’ they must all be simple roots. The

same is true of the roots Hys-- for fk_z(k).

rHg-2

Examine the sign of fk(k) at A:Aj_] and K:Aj. From

(9.4.3),



2
fk(kj) = (ak Aj)fk_l(kj)_ﬁk_lfk_z(kj)
2
= Pro1fr-2(Rj).
(9.4.7)
2
FeRjo1) = B fro(ry ).
Because fk_2(k) has a single simple root Hioq between Aj—l and
AJ, we have
sign fk_z(kj) = -sign fk—2(kj—l)'

But from (9.4.7) the same must be true of fk(Kj) and fk(Aj_l);
and therefore, fk(A) must have a root of odd multiplicity

between Aj—l and Rj. This is true for each k=2,3,...,k-1.

Since

fQ(A) = (—I)QAQ + lower degree terms, all 021,

we have

sign fk(—w) sign fk_z(—w),

(9.4.8)

sign fk(+w) sign fk_2(+w).

Also from (9.4.7),

sign f, (A;) = -sign fr-o(X;) = -sign £l o(+2).
The last equality follows since fk—2 has no zeroes to the
right of Hy- Using (9.4.8), fk(A) must have a zero to the
right of kl. A similar argument shows fk(A) has a root to the
left of Ak—l’ Counting roots of fk(x), there are k so far.
But degree fk(A)=k implies these must be all the roots, and

they must all be simple. This completes the proof that the

zeroes of fk_l(k) interlace those of fk(k).



(3) Ve now prove the main conclusion of the theorem,
that the number of roots of fn(k) which are greater than a is
equal to s{(a). The proof will be an induction on n.

For the sequence with n=1,

{fo(a),fl(a)} = {l,al—a},

it is straightforward that the number of agreements in sign
equal the number of roots of fl(h) greater than a.

Assume the result is true for the sequence

fo(a),...,fk_l(a),
and let the number of roots of fk_l(k) which are greater than
a be denoted by m. Denote the roots of fk_l(k) by {Ai} and

the roots of fk(A) by {vi). Then the induction hypothesis and

part (2) imply

A1>A2>...>Am>azkm+1>...)Ak_l, (9.4.9)

v1>A1>v2>...>um>xm>um+l>hm >...2A > U

» 1 (9.4.10)

K
We wish to prove that the number of roots of fk(k) which are

greater than a equals the number of agreements in sign in the

sequence
{fo(a), ..., 1, (a)}. (9.4.11)

From (9.4.9) and (9.4.10), the number of roots of fk(A)
which are greater than a must be either m or m+1. The proof

of our desired result breaks into three cases.

case (1) a#km+1,vm+1. Write

fro () = (=N (A ),
(9.4.12)

fk(k) (vl—k)...(uk—k).



There are two subcases. First, if A <ca<p then the

m+1 m+1’
number of roots of fk(A) greater than a is m+l. Also from
(9.4.12),
. k-1)-m . k-(m+1
sign fk_l(a) = (—1)( ) , sign fk(a) = {(-1) ( ),
which are equal. Since these agree, the number of agreements

in sign in the sequence (9.4.11) is m+l, using the original

number m from the sequence

{fo(a),...,fk_l(a)}.
This is the desired result. For the second subcase,

vm+1<a<Am, the number of roots of fk(k) which are greater than

a is just m. Also,

sign £, (a) = (-0){k"D)m g £.(a) = (-0)F ™,
which are different: and the desired result follows as
before.
case (2) a=v .- Thus fk(a)=0; and by agreement, the sign of
fk(a) is opposite to that of fk_l(a). Thus the number of

agreements in sign in (9.4.11) is still m, the same as the

number of zeroes of fk(k) which are greater than a=v .-

case (3) a=Am+1. Then fk_l(a)zo and there are m+l zeroes of
fk(k) which are greater than a. Using (9.4.3),

(@) = B fy o(a)s
and by construction of the signs in (9.4.11), due to
fk_l(a)=0,

sign fk—l(a) = -sign fk—2(a)'

Combining these gives



sign fk(a) = sign fk_l(a);

and thus the number of agreements in sign in (9.4.11) is m+l,
the desired result.

This completes the proof.

n
Calculation of the eigenvalues The past theorem will be the
basic tool in locating and separating the roots of fn(k). To
begin, calculate an interval which contains the roots. Using the

Gerschgorin circle Theorem 9.1, all eigenvalues are contained in

the interval [a,b], with

a = Minimum {a.—lB.|-|ﬁ._ Iy,
l¢i<n i i i-1
b = Maximum {a.+IB.|+|B. |}.
l<i<n i i i-1
where ﬁ0=Bn=0.

We use the bisection method on [a,b] to divide it into
smaller subintervals. Theorem 9.5 is used to determine how many
roots are contained in a subinterval, and we seek to obtain
subintervals that will each contain one root. If some
eigenvalues are nearly equal, then we continue subdividing until
the root is found with sufficient accuracy. Once a subinterval
is known to contain a single root, we can switch to a more

rapidly convergent method.



