95i:47067 47B99 42A99 46L99 47A10

Jorgensen, Palle E. T. (1-IA); Pedersen, Steen (1-WRTS) Harmonic analysis and fractal limit-measures induced by representations of a certain C^* -algebra. (English. English summary)

J. Funct. Anal. 125 (1994), no. 1, 90-110.

Let Ω be a measurable subset of \mathbf{R}^d with finite, positive Lebesgue measure, and let Λ be a subset of \mathbf{R}^d containing 0. For $\lambda \in \Lambda$, set $e_{\lambda}(x) = e^{i2\pi\lambda x}$ for $x \in \Omega$. Then (Ω, Λ) is called a spectral pair if $\{e_{\lambda}; \lambda \in \Lambda\}$ is an orthonormal basis of $L^2(\Omega)$. Given such a pair, the authors construct recursively a sequence of spectral pairs $(\Omega_j, \Lambda_j)_{j \geq 0}$ with $(\Omega_0, \Lambda_0) = (\Omega, \Lambda)$. Moreover, if μ_j is the measure on \mathbf{R}^d defined by $\mu_j(B) = m(B\Omega_j)/m(\Omega_j)$ for every Borel set B in \mathbf{R}^d , they get a fractal probability measure μ as a limit of (μ_j) . Finally, two sets of isometries of $L^2(\mu)$ are defined, and they both provide representations of some Cuntz algebra. Conversely, such a measure may be reconstructed from suitable representations of Cuntz algebras.

See also the preceding review. Paul Jolissaint (CH-NCH)