99h:28019 28A80 42B10 46E30

Jorgensen, Palle E. T. (1-IA); Pedersen, Steen (1-WRTS) Orthogonal harmonic analysis and scaling of fractal measures. (English. English, French summary)

C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 3, 301–306. Let Ω be a measurable subset of \mathbf{R}^d with finite Lebesgue measure m. A problem raised by I. E. Segal asks: For which sets Ω does the Hilbert space $L^2(\Omega,m)$ admit an orthonormal basis of the form $\{e_{\lambda}(x)=\exp(i2\pi\lambda\cdot x);\ \lambda\in\Lambda\}$ for some suitable subset Λ of \mathbf{R}^d ?

In the present note, the authors continue to study related problems; namely, they consider pairs of measures (μ, ν) on \mathbf{R}^d such that $F_{\mu}(\lambda) = \int e^{-i2\pi\lambda \cdot x} f(x) d\mu(x)$ induces an isometric isomorphism of $L^2(\mu)$ onto $L^2(\nu)$. It turns out that if μ is a finite measure, then ν is a counting measure with uniformly discrete support. The type of measure studied is of fractal nature and comes from special affine transformations of \mathbf{R}^d .

Paul Jolissaint (CH-NCH)