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We undertake a comprehensive study of the nonlinear Schrodinger equation
i, + Au = A [ul|” u + Ay |u|Pu,

where u(t,x) is a complex-valued function in spacetime R, x RY, A, and
Ay are nonzero real constants, and 0 < p, < p, < é. We address questions
related to local and global well-posedness, finite time blowup, and asymptotic
behaviour. Scattering is considered both in the energy space H'(R") and in the
pseudoconformal space S, := {f € H'(R"); xf € L>(R")}. Of particular interest is
the case when both nonlinearities are defocusing and correspond to the L2-critical,
respectively H: -critical NLS, that is, Ay, 2, > 0 and p, = %, Dy = ﬁ. The results at
the endpoint p; = % are conditional on a conjectured global existence and spacetime
estimate for the Li—critical nonlinear Schrodinger equation, which has been verified
in dimensions n > 2 for radial data in Tao et al. (to appear a,b) and Killip et al.
(preprint).

As an off-shoot of our analysis, we also obtain a new, simpler proof of
scattering in H i for solutions to the nonlinear Schrodinger equation

iu, + Au = |ul’u,

with % < p < %, which was first obtained by Ginibre and Velo (1985).
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1. Introduction

We study the initial value problem for the nonlinear Schrodinger equation with two
power-type nonlinearities,

(0, %) = 1y ), (L)

{iul + Au = A|ulPru+ 2,|ulP2u
where u(t, x) is a complex-valued function in spacetime R, x R”, n > 3, the initial
data uo.belongs. to H! (or 2),. A )}2 are nonzero real constants, and 0 < p; < p, < -%.

This equation has Hamiltonian

E(u(t)) == /]Rn |:%|Vu(t, x>+ pl;q lu(t, x)|P1 2 + i—2|u(t, x)

P2 gy (1.2

As (1.2) is preserved! by the flow corresponding to (1.1), we shall refer to it as the
energy and often write E(u) for E(u(?)).

A second conserved quantity we will rely on is the mass M(u(z)) := ||u(?)||
As the mass is conserved, we will often write M(u) for M(u(t)).

In this paper, we will systematically study the initial value problem (1.1). We are
interested in local and global well-posedness, asymptotic behaviour (scattering), and
finite time blowup. More precisely, we will prove that under certain assumptions on
the parameters 4,, 4,, p;, p,, we have the phenomena mentioned above.

One of the motivations for considering this problem is the failure of the
equation to be scale invariant. For p > 0, there is a natural scaling associated to the
nonlinear Schrodinger equation

2
L (R")*

iu, + Au = |u|’u, (1.3)

which leaves the equation invariant. More precisely, the map

u(t, x) — )f/ziu(L x) (1.4)

27 A

maps a solution to (1.3) to another solution to (1.3). In the case when p = % the
scaling (1.4) also leaves the mass invariant, which is why the nonlinearity |u|u is
called L?-critical. When p = é, the scaling (1.4) leaves the energy invariant and
hence, the nonlinearity |u|72u is called H!- or energy-critical. As our combined
nonlinearity obeys p, < p,, there is no scaling that leaves (1.1) invariant. On the
other hand, one can use scaling and homogeneity to normalize both 4, and 4, to
have magnitude one without difficulty.

The classical techniques used to prove local and global well-posedness in H!
for (1.3) (i.e., Picard’s fixed point theorem combined with a standard iterative
argument) do not distinguish between the various values of p as long as the

'To justify the energy conservation rigorously, one can approximate the data u, by
smooth data, and also approximate the nonlinearity by a smooth nonlinearity, to obtain
a smooth approximate solution, obtain an energy conservation law for that solution, and
then take limits, using the well-posedness and perturbation theory in Section 3. We omit the
standard details. Similarly for the mass conservation law and Morawetz type inequalities.
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nonlinearity |u|’u is energy-subcritical, that is, 0 < p < ﬁ; for details see, for
example, Cazenave (2003) and Kato (1987). However, the proof of global well-
posedness for the energy-critical nonlinear Schrodinger equation,

{(i6t+A)w= lw] 2w 15)

w(0, x) = wy(x) € H!

relies heavily on the scale invariance for this equation; see Bourgain (1999), Grillakis
(2000), and Tao (2005) for (1.5) with spherically symmetric data and Colliander
et al. (to appear), Ryckman and Visan (2007), and Visan (2006) for (1.5) with
arbitrary data. Hence, adding an energy-subcritical perturbation to (1.5), which
destroys the scale invariance, is of particular interest. This particular problem was
first pursued by the third author, Zhang (2006), who considered the case n = 3.
The perturbative approach used in Zhang (2006) extends easily to dimensions n =
4,5, 6. However, in higher dimensions (n > 6) new difficulties arise, mainly related
to the low power of the energy-critical nonlinearity. For instance, the continuous
dependence of solutions to (1.5) upon the initial data in energy-critical spaces is no
longer Lipschitz. Until recently, it was not even known whether one has uniform
continuity of the solution upon the initial data in energy-critical spaces. This issue
was settled by the first two authors (Tao and Visan, 2005), who established a local
well-posedness and stability theory which is Hélder continuous in energy-critical
spaces and that applies even for large initial data, provided a certain spacetime norm
is known to be bounded. Basing our analysis on the stability theory developed in
Tao and Visan (2005), specifically Theorem 1.4, we will treat all dimensions n > 3
in a unified manner.

The local theory for (1.1) is considered in Section 3. Standard techniques
involving Picard’s fixed point theorem can be used to construct local-in-time
solutions to (1.1); in the case when an energy-critical nonlinearity is present, that
18, p, = ’1472 the time of existence for these local solutions depends on the profile
of the data, rather than on its HX1 -norm. After reviewing these classical statements,
we will develop a stability theory for the L2-critical nonlinear Schrédinger equation
and record the stability result for the energy-critical NLS obtained by the first two
authors, Tao and Visan (2005).

Our first main result addresses the question of global well-posedness for (1.1) in
the energy space:

Theorem 1.1 (Global Well-Posedness). Let u, € H!. Then, there exists a unique
global solution to (1.1) in each of the following cases:

1) 0<p,<p, < % and 2,7, € R;

(2) 0 < p, <p2§$and/11€]R, Ay > 0.

Moreover, for all compact intervals I, the global solution satisfies the following
spacetime bound®:

H})' (1.6)

luall st rmny < C(U1. llueg

’In this paper we use C to denote various large finite constants, which depend on the
dimension n, the exponents p;, p,, the coefficients 4,, 4,, and any other quantities indicated
by the parentheses (in this case, |I| and |Juy| ;). The exact value of C will vary from line to
line. :
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We prove this theorem in Section 4. The global existence of solutions to (1.1)
under the hypotheses of Theorem 1.1 is obtained as a consequence of three factors:
the conservation of mass, an a priori estimate on the kinetic energy, and a ‘good’
local well-posedness statement, by which we mean that the time of existence for local
solutions to (1.1) in the two cases described in Theorem 1.1 depends only on the H-
norm of the initial data. This ‘good’ local well-posedness statement coincides with
the standard local well-posedness statement when 0 < p, < p, < ﬁ. However, when
Py = ﬁ further analysis is needed as the standard local well-posedness statement
asserts that the time of existence for local solutions depends instead on the profile of
the initial data. In order to upgrade the standard statement to the ‘good’ statement we
will make use of the stability result in Tao and Visan (2005).

In Section 5, we consider the asymptotic behaviour of these global solutions.
We will be able to obtain unconditional results in the regime ¢ < p; < p, < -5 It
is natural to also seek the endpoint p, = % for these results, but there is a difficulty
because the defocusing L2-critical NLS,

iv,~|—Av=|v|%v 17
v(0, x) = vy(x)

is not currently known to have a good scattering theory (except when n > 2 and the

initial data is spherically symmetric (Killip et al., preprint; Tao et al., to appear a,b)

or when the mass is small. However, we will be able to obtain conditional results in

the p, = % case assuming that a good theory for (1.7) exists. More precisely, we will

need the following

Assumption 1.2. Let v, € H!. Then, there exists a unique global solution v to (1.7)
and moreover,

7
t,x

V| 2w < C(||lv .
ol = 2 o S (lvoll2)

We can now state our second main result.

Theorem 1.3 (Energy Space Scattering). Let uy € H}, * < p, < p, < -, and let u
be the unique solution to (1.1). If p; = ;—‘, then we also assume Assumption 1.2. Then,
there exists unique u, € H! such that

[Ju(t) — e’muinm — 0 ast— +oo

in each of the following two cases:

(1) 44, 4, > 0;
(2) 2, <0, 4, >0, and we have the small mass condition M < c(||Vuy||,) for some
suitably small quantity c(||Vuyll,) > 0 depending only on ||Vuy|,-

Remark 1.4. Note that in each of the two cases described in Theorem 1.3, the
unique solution to (1.1) is global by Theorem 1.1.

We prove this theorem in Section 5. The scattering result for case (1) of the
theorem is obtained in three stages:

First, we develop an a priori interaction Morawetz estimate; see Section 5.1.
This estimate is particularly useful when both nonlinearities are defocusing (that is,
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both 4, and 4, are positive) and, as such, is an expression of dispersion (quantifying
how mass is interacting with itself). As a consequence of the interaction Morawetz
inequality, we obtain |V|="% u € L; . Interpolating between this estimate and the
estimate on the kinetic energy (which is obviously bounded when both nonlinearities

are defocusing by the conservation of energy), we obtain control over the solution
2(n+1)

in the Lf“Lx(”T -norm.

The second step is to upgrade this bound to a global Strichartz bound using
the stability results for the L>-critical and the energy-critical NLS; see Sections 5.2
through 5.5. When both nonlinearities are defocusing and % <P <DPy= 5, We
view (1.1) as a perturbation to the energy-critical NLS (1.5), which is globally
wellposed (see Colliander et al., to appear; Ryckman and Visan, 2007; Visan, 2006)

and moreover, the global solution satisfies

Il %(RX]RH = C(”wo”m)-

tx

Whenever the two nonlinearities are defocusing and % =P <Py < 75, WE View
(1.1) as a perturbation to the pure power Equation (1.7) (normalizing 4, = 1).

Of particular interest (and difficulty) is the case when the nonlinearities are
defocusing and p; = %, p, = —%5. In this case, the low frequencies of the solution
are well approximated by the L2-critical problem, while the high frequencies are
well approximated by the energy-critical problem. The medium frequencies will
eventualy be controlled by a Morawetz estimate. Thus, in this case, the global
Strichartz bounds we derive are again conditional upon a satisfactory theory for the
L2-critical NLS, that is, we need Assumption 1.2.

In the intermediate case % <p<p,< ﬁ, we reprove the classical scattering
(in H!) result for solutions to (1.3) with ¢ < p < %5 due to Ginibre and Velo (1985)
and based on a Morawetz inequality developed by Lin and Strauss (1978). The
proof we present in Section 5.3 (Ode to Morawetz) is a new and simpler one based
on the interaction Morawetz estimate.

The last step required to obtain scattering under the assumptions described
in Case (1) of Theorem 1.3 is to prove that finite global Strichartz bounds imply
scattering; see Section 5.8.

In order to obtain finite global Strichartz norms that imply scattering in the
second case described in Theorem 1.3, we make use of the small mass assumption
(as a substitute for the interaction Morawetz estimate) and of the stability result for
the energy-critical NLS. See Sections 5.6 and 5.7.

In the remaining two sections, we present our results on finite time blowup and
global well-posedness and scattering for (1.1) with initial data u, € 3, where 3, is the
space of all functions on R” whose norm

IA1ls == 11f

g+ ||xf||L§

is finite (as usual, we identify functions which agree almost everywhere).
The finite time blowup result is a consequence of an argument of Glassey (1977);
in Section 6 we prove the following

Theorem 1.5 (Blowup). Let uy€3, J,<0, and 2<p, <. Let y,:=

Im [, ritg0,uydx denote the weighted mass current and assume y, > 0. Then blowup
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occurs in each of the following three cases:

(1) 2, >0,0 < p, < p,y, and E(u,) < 0;

2) 4, <0, % < p, < p,, and E(uy) < 0;

(3) 4, <0, 0 <p, <2, and E(uy) + CM(uy) < O for some suitably large constant C
(depending as usual on n, p,, p,, A, 4,).

2
More precisely, in any of the above cases there exists 0 < T, < C % such that

lim || Vu(t)| > = oo.
t—T, x

Remark 1.6. When comparing the conditions in Case (1) and Case (3) of
Theorem 1.5, one might be puzzled at first by the fact that we need stronger
assumptions to prove blowup in the case of a focusing nonlinearity than in the case
of a defocusing nonlinearity. However, one should notice that the condition

_ l 2 A pi+2 /2 P2+2]
E(r) = /m [2|vu(t, OF + - Sl D) oS [dx < 0
is easier to satisfy when A, < 0 and 4, < 0. Specifically, even when the kinetic energy
of u is small, which, in particular, implies that there is no blowup for ||Vu(7)||,, the
energy E can still be made negative just by requiring that the mass be sufficiently
large. Hence, in order to obtain blowup of the kinetic energy in this case, it is
necessary to add a size restriction on the mass of the initial data.

Remark 1.7. In Theorem 1.5, we do not treat the endpoint p, = % For the focusing
L2-critical nonlinear Schrédinger equation, it is known that the blowup criterion
is intimately related to the properties of the unique spherically-symmetric, positive
ground state of the elliptic equation

—AQ + 1,]0]7Q = —Q.

For results on this problem and a more detailed list of references see Merle and
Raphael (2005a,b).

In Section 7 we prove scattering in 3 for solutions to (1.1) with defocusing
nonlinearities and initial data u, € %. More precisely, we obtain the following

Theorem 1.8 (Pseudoconformal Space Scattering). Let u, € 2, A, and 1, be positive
numbers, and o(n) < p; < p, < - where a(n) is the Strauss exponent o(n) :=

n—2
2—nta/n2+12n+4 . . . .
W. Let u be the unique global solution to (1.1). Then, there exist unique
scattering states u, € %, such that

le ™ u(t) —uplls — 0 ast — +oo.
We summarize our results in Table 1.

2. Preliminaries

We will often use the notation X < Y whenever there exists some constant C so that
X < CY; as before, C can depend on n, p,, p,, 41, 4,. Similarly, we will use X ~ Y if
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Table 1
Summary of results. In all cases the initial data is assumed to lie in H!. The
positive scattering results when p, = % are conditional on Assumption 1.2

Ay A 2 GWP Scattering Provided
>0 4 €eR 0<p1<p2§n472 v ? —

>0 4, >0 t<p<pm=>H v inH' = —

J>0 A eR f<p<pm=H v in H'  M(u,) < 1
>0 ;>0 a(n)<p <p, <5 v in 3 uy € %

<0 42, €eR O<p <p,<? v ? —

<0 4,>0 0<p1<p2,%<p2§n%2 X Yo >0, E(uy) <0
<0 4, <0 i—‘,<p1<p2§n472 X Yo >0, E(uy) <0
<0 4, <0 0<p1§;—‘<p2§£ X Yo > 0,

E(uy) + CM(uy) <0

X SY S X Weuse X « Yif X < cY for some small constant ¢. The derivative opera-
tor V refers to the space variable only. We will occasionally use subscripts to denote
spatial derivatives and will use the summation convention over repeated indices.

We use L’(IR") to denote the Banach space of functions f: R" — € whose

norm
i1 = ( [, reorrax)

is finite, with the usual modifications when r = oo, and identifying functions which
agree almost everywhere. For any non-negative integer k, we denote by W+’ (R")
the Sobolev space defined as the closure of test functions in the norm

o
ox*

”f”W"”(lR“) = Z

| <k

f

r

We use L/L” to denote the spacetime norm

q/r 1/q
Nl orrrxmmy = (/ (/ u(t, x)|'dx> dt) ,
R \ /R"

with the usual modifications when ¢ or r is infinity, or when the domain R x R” is
replaced by some smaller spacetime region. When ¢ = r we abbreviate L/L" by L{,.
We define the Fourier transform on IR” to be

F© = [ e fx)ax.

R”

We will make use of the fractional differentiation operators |V|* defined by

IVIF(E) = |2 F ().
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These define the homogeneous Sobolev norms

I Wiy == VP Sz

Let ¢ be the free Schrodinger propagator. In physical space this is given by
the formula

¢ f(x) = M f(y)dy

1
(4mir)n/? /nzn

for t # 0 (using a suitable branch cut to define (4nit)"/?), while in frequency space
one can write this as

() = eI} (). 2.1)
In particular, the propagator obeys the dispersive inequality
le™ flle S 1e7 211l 22)

for all times ¢ # 0.
We also recall Duhamel’s formula

t
u(r) = =08y (1) — i / =98 (i, + Au)(s)ds. 2.3)

Ty

. . T P e 2 n n
We say that a pair of exponents (g, r) is Schrodinger-admissible if s+1=3

and 2 < ¢, r < co. If I x R” is a spacetime slab, we define the S°(/ x IR") Strichartz
norm by

”u”SO(lx]R”) ‘=Ssup ||'4||L7L;(1x1R”) (24)

where the sup is taken over all admissible pairs (g, r). We define the §'(I x R")
Strichartz norm to be

||”||S'(1x1Rn) = ||VM||$'0(1><JR”)'

We use S1(I x R") to denote the space S(I x RN S°(I x R"). We also use
N°(I x R") to denote the dual space of S°(1 x R") and

N'(I x R") := {u; Vu € N°(I x R")}.
By definition and Sobolev embedding, we obtain

Lemma 2.1. For any §' function u on I x R", we have

IVill oz + 1Vl 2in 202 + [IVul| 20en + ([ Vue]] -2
+4 Ly, 2L

n=2
L/ n—2 an x

o+l o el s 3 S Dl

where all spacetime norms are on I x IR".
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Let us also record the following standard Strichartz estimates that we will
invoke throughout the paper (for a proof see Keel and Tao, 1998):

Lemma 2.2. Let I be a compact time interval, k = 0, 1, and let u : I x R" — C be an
S* solution to the forced Schridinger equation

iu,+Au=F
for a function F. Then we have
el st remny S Nt iz (rery + 1 iy (2.5)
for any time t, € I.

We will also need some Littlewood-Paley theory. Specifically, let ¢(¢) be a
smooth bump supported in the ball |¢| < 2 and equalling one on the ball |¢] < 1.
For each dyadic number N € 2% we define the Littlewood-Paley operators

P_yf(&) == ¢(¢/N)F(©),
Py (@) =1 = e(&/NIF (&)
Pyf(&) = [9(¢/N) — 9(2E/N)F (&)
Similarly we can define P_y, P.y, and Py,__y := P_y — P_,,, whenever M and N are

dyadic numbers. We will frequently write f_ for P_,f and similarly for the other
operators. We recall some standard Bernstein type inequalities:

Lemma 2.3. Foranyl <p <q < oo and s > 0, we have

[Py Sl S NTIIVIPon S
NVEPnflliy S NIP<n Sl
IVI=Pyflly ~ NPy flle

||P5Nf||1,f£ 5 N%_Z”PSNJC”L‘;

1Py flls S NP~ |[Pyf

Ly

p.
Lx

For our analysis and the sake of the exposition, it is convenient to introduce a
number of function spaces. We will need the following Strichartz spaces defined on
a slab I x R" as the closure of the test functions under the appropriate norms:

u = |lu 2

llellvir) [ ||Lii”f)(1xlk")

u = (lu 2(n+2)

lclhwen = lll 2
“"‘”Z(I) = ||u||L,/,+1LX2(:j1” (IxIR™)
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Definition 2.4. Let I x R” be an arbitrary spacetime slab. For 0 < p; < p, <
we define the space

4
n—=2"

X1y ;= () LVL%(I x R™),

i=1,2

and
S0 = Ly 0 Ly e 30 -
() :={uw;VueX'(n}, X'(D):=X"(HnX'),
where 7y, 1= j;(ffg* p; = "i”T::’z) It is not hard to check that (y,, p,) is a Schrodinger

admissible pair and thus $° ¢ X°.
In the case 0 < p; < p, = n472, we define the spaces

dnta)  20(n+2)

X0 :=L'LP (I x R"YN L™ L, (I x R") N V(D)

and

X' ={uw;Vue XD}, X'(D:=X"()NnX').

Define p?f := ”("’”) and let y,, p} be the dual the exponents of y;, respectively p,
introduced in Deﬁmtlon 2.4. It is easy to verify that the following identities hold:
1 (n—2 4+ 1
_,zl_p,(n ) it (2.6)
Vi 4 Vi
1 1 ;
— =t 27
pPi  Pi P
11 1
———. (2.8)
P, 1’1 n

Using (2.6) through (2.8) as well as Holder and Sobolev embedding, we derive
the first estimates for our nonlinearity.

Ay and A, be

. . 4
Lemma 2.5. Let I be a compact time interval, 0 < p, < p, < =5,

nonzero real numbers, and k = 0, 1. Then,
|l e+ Dl S 3 a2 el
2 NE(IxR?) ~ Xt Ik (n

and

H (Aylul?u + AslulPu) — (4 [v]P 10 + Ay |v|P20) ||NO(I><]R/1)

m(! 2) .
S M (ul g+ M0l ) e = vl o,

i=1,2

When the length of the time interval 7 is infinite, the estimates in Lemma 2.5
are useless. In this case we will use instead the following
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Lemma 2.6. Let I x R" be an arbitrary spacetime slab,
Then

4
n

w_)
IIMIIW([)

V[ ullyp- (2.9)

2—
et 2| e 1oy S ||u||V<1>

Proof. By the boundedness of the Riesz potentials on any L?, 1 < p < oo, Holder,
and interpolation, we estimate

Haal” 2l ey S J1VIClee] ) || 2

¥ (1xR7)
< |||M|p|| 142 |||V|]\U|| 2(n+2)
Lt ( LT (xR
S ull” o, |||V|ku|| 2r42)
L* (xR L™ (IxR7)
27M np_n
S lull” 202 lluell %5022y V] ul] o
L™ (IxR") L, 777 (IxR") L™ (IxR7)
which proves (2.9). 0

When deriving global spacetime bounds that imply scattering, we would like
to involve the Z-norm which corresponds to the control given by the a priori
interaction Morawetz estimate. For £k =0, 1 and % <p< ﬁ, applying Holder’s
inequality we estimate

p
INR(COl
S NV [ull ) flull”
L (1 xIR") L°°L,(2 (IxR")
SIvPal, il e Nl

“ 7 (IxR7) L L" Z(leR”)

2(n+1)
In order to use the a priori L"™'L,"™" control (given to us by the interaction

Morawetz estimate in the case when both nonlinearities are defocusing), we would

like to replace the L?L,:Tp-norm by a norm which belongs to the open triangle
2(n+1)

2n
determined by the mass (L:°L?), the potential energy (LLi), and the L''L,"" -
2n
norm. This can be achieved by increasing the time exponent in the Lfo’” >-norm
by a tiny amount, while maintaining the scaling (by which we mean replacing the
pair (2 2n ) by another Schrodinger-admissible pair). We obtain the following

Lemma 2.7. Letk =0, 1 and % <p< ﬁ. Then, there exists 0 > 0 large enough such
that on every slab I x R" we have

2(20+ )

191 ul?w) | O Nul

th+1L:(,f'f1” ] L¥L? 2L

k
s S SNV ull by %llull

2 0 B(0
< Nl e 550 20 )

s (2.10)
n=2

t bx
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where

o(0) _p< >+m and P(0) :=§<p—m>.

Proof. First note that the pair (2 + é, %) is Schrodinger-admissible.
Once «(0) and f(0) are positive, (2.10) is a direct consequence of Holder’s
inequality, as the reader can easily check. It is not hard to see that 0 — «(f) and

0 — P(0) are increasing functions and moreover,

oc(Q)—)p(l 2)+2 and p(0) > 2<p—f> as 0 — .

As % < p < —, the two limits are positive. Thus, for 6 sufficiently large we

obtain
a(0) >0 and f(0) > 0.
This concludes the proof of the lemma. a

When p = ﬁ, we can still control the N°-norm of |u|’u in terms of the Z-norm.
The idea is simple: Note that by Holder, we have

4
n=2 M” 2n_
L2LIF2 (IxR™)

4
et =2l oy S Il

S llul . : (2.11)

2n_
LLI2 (IR oo 572 (xR

In order to get a small fractional power of |lu[|,, on the right-hand side of
(2.11), we need to perturb the above estimate a little bit. More precisely, we will

on 2n
replace the norm L?L;~ by L?>**Ly for a small constant & > 0. The latter norm
2n(2+¢) 2n(2+¢)

interpolates between the $°-norm L>**L;*** and the §'-norm L2t*L;C7
provided e is sufficiently small. Thus,

el S lullsirmeys (2.12)

L2+sLn 2 e (IxRR")

provided ¢ is chosen sufficiently small. Keeping the LZL”+2 -norm on the left-hand

side of (2.11), this change forces us to replace the norm L°°L” = (which appears on
the right-hand side of (2.11)) with a norm which lies in the open triangle determined

N
by the potential energy (L°L:™?), the mass (L°L?), and the Z-norm. Therefore, we
have the following

Lemma 2.8. Let I x R" be a spacetime slab. Then, there exists a small constant
0 < 0 < 1 such that

I

4 =0
nizu”f\’“(lle” ||M||Z(1)||I/t||s| 2]><]R”) (213)
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Proof. We will in fact prove the following estimate

4 (n+De () b()
[lul=ul , 2 Sl el Sl o (2.14)

which holds for & > 0 sufficiently small. Here, all spacetime norms are on the slab
I x R" and

(1+¢)e 4 (n+2+¢)e
Wre M OIS et

a(e) =

In order to prove (2.14), we just need to check that for ¢ > 0 sufficiently small,
a(e) and b(e) are positive, since then the estimate is a simple consequence of
Holder’s inequality.

It is easy to see that as functions of g, a is increasing and a(0) = 0, while b is

decreasing and b(0) = —%. Thus, taking & > 0 sufficiently small, we have a(e) > 0
and b(g) > 0, which ylelds (2.14) for the reasons discussed above.
Taking 0 := g"(;]l‘; and using (2.12), we obtain (2.13). O

Remark 2.9. An easy consequence of (2.14) are estimates for nonlinearities of the
4 . .
form |u|"=2v. More precisely, on every spacetime slab / x IR” we have

(,xw)“l)”sluxw)

4
=20 orermy Sl

[l

and

4
el =2 vl o rxmny S IIUIIZU)IIMIISI(,XW)||v||51(,xmn)

3. Local Theory

In this section we present the local theory for the initial value problem (1.1). We
start by recording the local well-posedness statements. As the material is classical,
we prefer to omit the proofs and instead send the reader to the detailed expositions
in Cazenave and Weissler (1990), Cazenave (2003), and Kato (1987, 1995).

Proposition 3.1 (Local Well-Posedness for (1.1) with H!-Subcritical Nonlinearities).
Let uy € H!, A, and 2, be nonzero real constants, and 0 < p, < p, < }1472. Then, there
exists T = T(|\ug|l 1) such that (1.1) with the parameters given above admits a unique
strong H!-solution u on [—T, T]. Let (—=T,,,, mm) be the maximal time interval on
which the solution u is well-defined. Then, u € S'(I x R") for every compact time
interval I C (—T ) and the following properties hold:

min? max

o IfT, .. <oo,then
lim {lu(0)]sy = oo
t=Tax x

similarly, if T, < oo, then

min

tim u(0)y = o,

Tonin
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o The solution u depends continuously on the initial data u in the following sense:
There exists T = T(||\uglly1) such that if u(()m) — uy in H' and if u™ is the
solution to (1.1) with initial data u\", then u'™ is defined on [—T, T| for m
sufficiently large and u"™ — u in S'([-T, T] x R").

Proposition 3.2 (Local Well-Posedness for (1.1) with a H;-Critical Nonlinearity).
Let uy € H!, 2, and J, be nonzero real constants, and 0 < p; < p, = ﬁ. Then, for
every T > 0, there exists n = n(T) such that if

||€"Auo||xl([—T,T]) =,

then (1.1) with the parameters given above admits a unique strong H!-solution u
defined on [—T, T). Let (—T,,,> T,par) be the maximal time interval on which u is well-
defined. Then, u € S'(I x R") for every compact time interval I C (—T,,;,, T,..) and

the following properties hold:
o IfT,

max

in»
< oo, then

[u() g = 00 or |ullsio,7,, xR = 0°-

Similarly, if T,,;,

< oo, then

||“(t)||111 =00 or |lulls 1, 0xrr) = 0
o The solution u depends continuously on the initial data u, in the following
sense: The functions T,,, and T, are lower semicontinuous from H! to (0, co].
Moreover, if u(()m) — uy in H! and if u"™ is the maximal solution to (1.1) with
initial data ul", then u™ — u in LIH'([=S, T] x R") for every q < oo and

every interval [—S, T C (=T 1> Tax)-
We record also the following companion to Proposition 3.2.

Lemma 3.3 (Blowup Criterion). Let u, € H' and let u be the unique strong
H!-solution to (1.1) with p, = =% on the slab [0, T,] x R" such that

||’4||>'<1([0,T0]) < 0.

Then, there exists 0 = 0(uy) > 0 such that the solution u extends to a strong
H!-solution on the slab [0, T, + 6] x R".

The proof is standard (see, for example, Cazenave, 2003). In the contrapositive,
this lemma asserts that if a solution cannot be continued strongly beyond a time Ty,
then the X'-norm (and all other $'-norms) must blow up at that time.

Next, we will establish a stability result for the Lﬁ-critical NLS, by which we
mean the following property: Given an approximate solution

o~ ~ ~14 ~
v, + Av=[v|"v+e
(0, x) = Uy(x) € L*(R")
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to (1.7), with e small in a suitable space and v, — v, small in L2, there exists a genuine
solution v to (1.7) which stays very close to v in L?-critical norms.

Lemma 3.4 (Short-Time Perturbations). Let I be a compact interval and let ¥ be an
approximate solution to (1.7) in the sense that

(i0, + A)D = 9] D + e,

for some function e. Assume that
10l 22 xmry = M (3.1)
Sfor some positive constant M. Let t, € I and let v(t,) close to 0(t,) in the sense that
lv(zo) — V(t)ll2 = M’ (3.2)

for some M' > 0. Assume also the smallness conditions

0y < &0 (3.3)
|72 (u(t0) = 0(8)) [,y < & (3.4)
lellxogxrny < € (3.5)

Sfor some 0 < & < g, where gy = gy(M, M) > 0 is a small constant. Then, there exists
a solution v to (1.7) on I x R" with initial data v(t,) at time t = t, satisfying

[v—"2llyy S e (3.6)
[v—="3ll500xrm S M (3.7)
lvllsorwrny S M+ M’ (3.8)

[1(i0, + A)(v — V) + el youxrm S & (3.9)

Remark 3.5. Note that by Strichartz,

Hé’i(tft(’)A (v(t9) = 0(1y)) “v(l) S llv(to) = 0(z)

L2
so the hypothesis (3.4) is redundant if M’ = O(e).

Proof. By time symmetry, we may assume f, = inf /. Let z := v — v. Then z satisfies
the following initial value problem

4.
nyY — e

iz, + Az =0+ (042)— |
z(ty) = v(ty) — 0(%y)-

For t € I define

S@) = (160, + A)z + el oy, nxre-
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By (3.3), we have

S@) S 160, + A)z +ef| 20un
L

T (10, ] X R7)
< 1+3 il
~ ”Z”V([to,tj) + ”Z”V([to,t])||v||V([tO,t])
oL
S ”Z”v([fo,;]) + & ”Z”V([to,t])' (3.10)

On the other hand, by Strichartz, (3.4), and (3.5), we get

Iz, S ||ei(t_t0)AZ(t0)||V([t0,t]) + 8(1) + [lell ogry, qxrm)
< S(1) +e. 3.11)

Combining (3.10) and (3.11), we obtain
S() < (S() + &) + 8 (S(t) + &) + .

A standard continuity argument then shows that if &, = gy(M, M’) is taken
sufficiently small, then

S(t) < e foranytel,

which implies (3.9). Using (3.9) and (3.11), one easily derives (3.6). Moreover, by
Strichartz, (3.2), (3.5), and (3.9),

lzlls0xmmy S N2(E) 22 + [1(i0; + A)z + ellgoxmey + llell o, xmm)
SM +e,
which establishes (3.7).
To prove (3.8), we use Strichartz, (3.1), (3.2), (3.3), (3.5), and (3.9):
[olls0 0y S IT0(E) |22 + 160, + A)vll jorwme)
S 0G0 2z + llo(zo) — ()22 + 110, + A) (v — ) + el yogr ey
+ 1@, + D)0l yorxmrny + lell ioxwrr)
SM+M+ e+ |0, + M| 2w

L2 (IxRm)

S M+ M + 5]
SM+ +||U||v(1)

4

SM+M+g""
SM+M. O

Building upon the previous lemma, we have the following

Lemma 3.6 (L2-Critical Stability Result). Let I be a compact interval and let ¥ be an
approximate solution to (1.7) in the sense that

(i0, + AT = 9|7 D + e,
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for some function e. Assume that

[0l 22 xmmy < M (3.12)
vy =L (3.13)

9]

for some positive constants M and L. Let t, € I and let v(t,) close to v(t,) in the sense
that

[v(te) — (1)l o = M’ (3.14)
for some M' > 0. Moreover, assume the smallness conditions

“ei(t—to)A(U(Z‘O) — f)(fo)) “ 1400} =€ (3.15)
lelliogxrny < € (3.16)

for some 0 < & < g where ¢, =¢&,(M,M',L) >0 is a small constant. Then, there
exists a solution v to (1.7) on I x R" with initial data v(t,) at time t = t, satisfying

[v—"0lly, < eC(M, M', L) (3.17)
||U_5||SO(1len) < C(M, M/, L)M, (318)
[vllsouxmny = C(M, M', L). (3.19)

Remark 3.7. By Strichartz, the hypothesis (3.15) is redundant if M’ = O(e); see
Remark 3.5. Assumption 1.2 is not explicitly used in the proof of this lemma,
although in practice one needs an assumption like this if one wishes to obtain the
hypothesis (3.13).

2(n+2)

Proof. Subdivide I into N ~ (1 + A) n

€0

subintervals I, = [t;, 1] such that

||ﬁ||v(1j) ~ &p,

where g, = g,(M, 2M’) is as in Lemma 3.4. We need to replace M’ by 2M" as the
mass of the difference v — v might grow slightly in time.

Choosing g, sufficiently small depending on N, M, and M’, we can apply
Lemma 3.4 to obtain for each j and all 0 < & < ¢,

o =Bl S COJe
v = lls00,xmny S CUHM’
||U||SO(1jx1R") SC(HHM + M)
(00, + A)(v = V) + el jog,xmny S CO)E,

provided we can prove that (3.14) and (3.15) hold with ¢, replaced by #;. In order
to verify this, we use an inductive argument. By Strichartz, (3.14), (3.16), and the
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inductive hypothesis,

l[o(z;) = o(z))

2 S [[o(tg) = 0(to)

+ e”NO([lO,lj]x]R”) + ||e||N0([lO,lj]><]R”)

2 + 1166, + 4)(v — v)

J
SM +) Clk)e +e.

k=0

Similarly, by Strichartz, (3.15), (3.16), and the inductive hypothesis,

ei(titj)A(v(tj) - i)(tj)) ”‘/(1) S ei(t7t0)A(v(t0) - i‘)(1‘0)) || v(I) + ”e”f\’o([lo,t}-]x]R”)

+ 160, + A)(v = ) + ellgo(s.1 1 m)

Se+ i C(k)e.

k=0

Here, C(k) depends on k, M, M’, and g,. Choosing ¢, sufficiently small
depending on N, M, and M’, we can continue the inductive argument. O

The corresponding stability result for the Hx'—critical NLS in dimensions 3 <
n < 6 is derived by similar techniques as the ones presented above. However, the
higher dimensional case, n > 6, is more delicate as derivatives of the nonlinearity are
merely Holder continuous of order n4T2 rather than Lipschitz. A stability theory for
the H!-critical NLS in higher dimensions was established by the first two authors,
Tao and Visan (2005). They made use of exotic Strichartz estimates and fractional
chain rule type estimates in order to avoid taking a full derivative, but still remain
energy-critical with respect to the scaling®. We record their result below.

Lemma 3.8 (H!-Critical Stability Result). Let I be a compact time interval and let @
be an approximate solution to (1.5) on I x R" in the sense that

- LA
(i0, + A)w = |w|—w+ e
for some function e. Assume that

”ﬁ)”vv([) <L (3.20)

01l 211wy < Eo (3.21)
for some constants L, E;, > 0. Let t, € I and let w(t,) close to w(t,) in the sense that

lw(to) — w(to)ll gy < E (3.22)

3A very similar technique was employed by Nakanishi (1999), for the energy-critical
nonlinear Klein-Gordon equation in high dimensions.
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for some E' > 0. Assume also the smallness conditions

172
(Z 1Py Ve ' =% (w(ty) — (1)) 17 50y 2002 ) <e (3.23)
N )

=== v
L, "2 L (IxR?

[ Vell o xrny = & (3.24)

for some 0 < & < &,, where &, = &,(Ey, E', L) is a small constant. Then, there exists
a solution w to (1.5) on I x R" with the specified initial data w(t,) at time t = t,

satisfying

7
[V(w — W) spiz 2002 < C(Ey, E', L) (8 + 8("’2)2> (3.25)
L,“jLX"ZH (IxIR")
7
w— W51 0gm < C(Eg, E', L)(E' 4+ & + £-2? 3.26
S (IxR™) 0
“w”S'l(leR”) = C(EO’ E/’ L) (327)

Here, C(Ey,E',L) >0 is a non-decreasing function of Ey, E',L, and the
dimension n.

Remark 3.9. By Strichartz and Plancherel, on the slab I x R" we have

12
(Z [Py Ve =% (w(ty) — (1)) |I° Auizy 2t )
N )

2
L2 L P (xR

12
< (Z 1Py¥ ((ty) w(r()))nim)

SV (w(ty) — w(to))ll 12
SE,
so the hypothesis (3.23) is redundant if E' = O(e).
We end this section with two well-posedness results concerning the L2-critical
and the H!-critical nonlinear Schrodinger equations. More precisely, we show that
control of the solution in a specific norm (| - ||, for the L2-critical NLS and | - ||,

for the H!-critical NLS), yields control of the solution in all the S'-norms .

Lemma 3.10. Let k=0,1, I be a compact time interval, and let v be the unique
solution to (1.7) on I x R" obeying the bound

[vllvgy < L. (3.28)
Then, if ty € I and v(t,) € H*, we have

ol 5t mny = CAL) (1) | - (3.29)
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2n+2)

Proof. Subdivide the interval I into N ~ (1 + %) " subintervals I; = [t;, t;,,]
such that

”U”v(lj) =n,

where 5 is a small positive constant to be chosen momentarily. By Strichartz, on
each I; we obtain

. < M i (o) »
ol ey S M0 s + V1 (o] v)IIL%(M”)

4
S Gz + M0l 5 1ol 7, mny
4
S s+ n7 ol crny-
Choosing # sufficiently small, we obtain
1l r,smny S M€ N

Adding these estimates over all the subintervals /;, we obtain (3.29). d

Lemma 3.11. Let k =0,1, I be a compact time interval, and let w be the unique
solution to (1.5) on I x R" obeying the bound

lwllwg < L. (3.30)
Then, if t, € I and w(t,) € HX, we have
lwlls gy < CCL) [w(to) | (3.31)

Proof.  The proof is similar to that of Lemma 3.10. Subdivide the interval I into

2(n+2)

N~ (1+ )" subintervals I; = [t;, t;,,] such that

”w”W(Ij) =1,

where # is a small positive constant to be chosen later. By Strichartz, on each I; we
obtain

. < O e : =
||w||Sk(1/_X,Rn) S lw(e) g + 11V (|w|n vw)“L:?:f) (1 xR

4
S wlp) e+ Twlli lwllse,<me

S lw(z)l

_4_
Ae N2 ”w”S"(IjX]R”)'
Choosing # sufficiently small, we obtain
lwllse,mny S lwlep) s

The conclusion (3.31) follows by adding these estimates over all subintervals /;. O
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4. Global Well-Posedness

Our goal in this section is to prove Theorem 1.1. We shall abbreviate the energy
E(u) as E, and the mass M(u) as M.

There are two ingredients to proving the existence of global solutions to (1.1)
in the cases described in Theorem 1.1. One of them is a ‘good’ local well-posedness
statement, by which we mean that the time of existence of an H!-solution depends
only on the H!-norm of its initial data. The second ingredient is an a priori bound on
the kinetic energy of the solution, i.e., its H;-norm. These two ingredients together
with the conservation of mass are sufficient to yield the existence of global solutions
via the standard iterative argument.

Before we continue with our proof, we should make a few remarks:

The existence of global L2-solutions for (1.1) when both nonlinearities are L2-
subcritical, i.e., 0 < p; < p, < % follows from the local theory for these equations
and the conservation of mass. Indeed, the time of existence of local solutions to
(1.1) in this case depends only on the L>-norm of the initial data and global well-
posedness in L? follows from the conservation of mass via the standard iterative
argument. For details see Cazenave (2003) and Kato (1987, 1995). However, we are
interested in the existence of global H!-solutions so, in order to iterate, we also need
to control the increment of the kinetic energy in time.

Moreover, while in the case when both nonlinearities are energy-subcritical the
time of existence of H!-solutions depends on the H!-norm of the initial data, in the
presence of an energy-critical nonlinearity, i.e., p, = ﬁ the local theory asserts that
the time of existence for H!-solutions depends instead on the profile of the initial
data. In order to prove a ‘good’ local well-posedness statement in the latter case, we
will treat the energy-subcritical nonlinearity |u|”'u as a perturbation to the energy-
critical NLS, which is globally wellposed (see Colliander et al., to appear; Ryckman
and Visan, 2007; Visan, 2006).

4.1. Kinetic Energy Control

In this subsection we prove an a priori bound on the kinetic energy of the solution,
which is uniform over the time of existence and which depends only on the energy
and the mass of the initial data. More precisely, we prove that for all times ¢ for
which the solution is defined, we have

lu@lz < C(E, M). “4.1)

As the energy

1 y) 1
E(u(r)) = /]R |:§|Vu(t, X+ pl—_:_2|u(t, X)[P 4 pzj-Zlu(t’ x)|pz+z}dx

is conserved, we immediately see that when both 4, and 4, are positive, we obtain
IVu()ll3 < E.

uniformly in time.
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Whenever 4, < 0 and 4, > 0, we remark the inequality

2411 |2 ,
= izl u(t, )| + izlu(h 0| = =C(y, Ay)u(r, )P,
1 P2

which immediately yields
IVu()3 S E + M,

uniformly over the time of existence.
When both A, and A, are negative, the hypotheses of Theorem 1.1 also force
0<p <p, < %' By interpolation and Sobolev embedding, for all times ¢ we obtain

pin n)

(@)l 52 < N5 Rl OIF "

< MiwHE ||Vu<r>||§“"‘“’ ,

where i = 1, 2. Thus,

)I:

luol 3 s M= IVu()l,* (4.2)

Next, we make use of Young’s inequality,
ab < ea’ + P 4.3)

valid for any a, b, € > 0, with 1 < g < oo and ¢ the dual exponent to g. Taking
a=||Vu(®)|,>,b=1, and g = =, we obtain

(n— -)I"

Pit2 < Ml Y o
lu2 S IVu()]l,

(1=2)p; _ i
(el Vut 5 + &),

SM'"”

=2

Choosing ¢ sufficiently small, more precisely &€ = ¢cM -1 for some positive

constant ¢ < 1, we get

lu(0) |25 < cl|Vu()|3 + C(M)

pit2 —
Thus, by the conservation of energy,

[Vu()|l, < C(E, M)
uniformly in .

4.2. ‘Good’ Local Well-Posedness

In this subsection we prove a ‘good’ local well- posedness statement for (1.1) in the
presence of an energy-critical nonlinearity, i.e., p, = . More precisely, we will
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find T = T(||ug|l ;) such that in this case, (1.1) admits a unique strong solution
u € S'([—T, T] x R") and moreover,

lullsi -7 ryxrey < C(E, M). (4.4)

In the case when both nonlinearities are energy-subcritical, this is a consequence of
Proposition 3.1. The bound (1.6) follows easily from (4.4) by subdividing the interval
I into subintervals of length 7, deriving the corresponding S'-bounds on each of
these subintervals, and finally adding these bounds.

To simplify notation we assume without loss of generality that |1,| = |4,]| = 1.
Moreover, by the local theory (see Section 2, specifically Proposition 3.2 and
Lemma 3.3) it suffices to prove a priori X'-bounds on u on a time interval whose
size depends only on the H!-norm of the initial data. That is, we may assume that
there exists a strong solution u to (1.1) with p, = % on the slab [T, T] x R" and
show that u has finite X'-bounds on this slab as long as T = T(||u,| u1) is sufficiently
small. '

In establishing this local well-posedness result, our approach is entirely
perturbative. More precisely, we view the first nonlinearity |u|”'u as a perturbation
to the energy-critical NLS, which is globally wellposed, Colliander et al. (to appear),
Ryckman and Visan (2007), and Visan (2006).

Let therefore w be the unique strong global solution to the energy-critical
equation (1.5) with initial data w, = i, at time 7 =0. By the main results in
Colliander et al. (to appear), Ryckman and Visan (2007), and Visan (2006), we know
that such a w exists and moreover,

1wl gmny < C(lluollar)- (4.5)

Furthermore, by Lemma 3.11, we also have

[wlls0rxrry < C(”“o”ﬁ;)”“o » < C(E, M).
By time reversal symmetry it suffices to solve the problem forward in time. By
(4.5), we can subdivide IR, into J = J(E, ) subintervals I, = [¢,, t;,,] such that

Il ~n (4.6)

for some small 5 to be specified later.

We are only interested in those subintervals /; that have a nonempty intersection
with [0, 7]. We may assume (renumbering, if necessary) that there exists J' < J such
that for any 0 < j < J' — 1, [0, T|N I; # @. Thus, we can write

J -1

[0, 71= U ([0, TI N 1;).

j=0

The nonlinear evolution w being small on the interval /; implies that the free
evolution e"(”’/)Aw(tj) 1s small on 7 2 Indeed, this follows from Strichartz, Sobolev
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embedding, and (4.6):

4
n=2 w) “ 2(n+2)
L2 (xR

||ei(l71_/)Aw(l‘j) ||Xl(1j) < ||UJ||X1([/) + ||V(|u)

4
< w1, + ClIVwl| 202 [[w]’ EZM
Ly, (I/X]R”) L. (I xIR")

nt2

< f1+C||w||X1(,) <n+Cnr2,

where C is an absolute constant that depends on the Strichartz constant. Thus,
taking # sufficiently small, for any 0 < j < J’ — 1, we obtain

||e’(’ DAhw(t, Dl < 2. 4.7

X =

Next, we use (4.6) and (4.7) to derive estimates on u. On the interval I, recalling
that u(0) = w(0) = u,, we use Lemma 2.5 to estimate

I]( +1
il < ||e”Au0||X1<IO> +C|10|1 Sl + Cllul,
XI(I) + C”u”)”(li] )"

Assuming 5 and T are sufficiently small, a standard continuity argument then yields

llull 1) < 41 (4.8)

Thus, (3.20) holds on I := I, for L := 4Cy. Moreover, in the previous subsection we
proved that (3.21) holds with E, := C(E, M). Also, as (3.22) holds with E’ := 0, we
are in the position to apply the stability result Lemma 3.8 provided the error, which
in this case is the first nonlinearity, is sufficiently small. As by Hélder and (4.8),

l (o 2)171

(n-2)p
lul2t S T g, (4.9)

||Ve||N0(10><]R”) Xl(l) ~

we see that by choosing T sufficiently small (depending only on the energy and the
mass of the initial data), we get

”Ve”NO(IOXIR") <&,
where € = ¢(E, M) is a small constant to be chosen later. Thus, taking ¢ sufficiently
small, the hypotheses of Lemma 3.8 are satisfied, which implies that the conclusion
holds. In particular,

llu — wlls gy xmmy < C(E, M)e® (4.10)

for a small positive constant ¢ that depends only on the dimension 7.
By Strichartz, (4.10) implies

llu(ty) — w(t) |l < CE, M)e’, (4.11)
|5 () = w(t )| 4., < CE. M)e”. (4.12)
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Using (4.7), (4.11), (4.12), and Strichartz, we estimate

p1(n=2)
7

el
Xy

n ” ei(t—tl)A(u(tl) — w(tl))”

+C|n "

”u”XI(Il) = ”ei(t_flmu(tl)”

X'(n) X'(I)

< ||ei(t—t])Aw(tl)”

X'(1) x'(1y)

-2) +1
lullfih + Cllal

X1(1y)

+or-"s

X1(1y)

. ) nt2
< 2+ C(E, M)e® + CT= "™ [u] 2! + Clluli;

X'(1y) x\n)”

A standard continuity argument then yields

lullirr,) < 4n,

provided ¢ is chosen sufficiently small depending on E and M, which amounts to
taking T sufficiently small depending on E and M. Thus (4.9) holds with [, replaced
by I, and we are again in the position to apply Lemma 3.8 on I := I, to obtain

[l — w”sl(m < C(E, M)s
By induction, for every 0 < j < J’ — 1 we obtain

||"‘||X1(1) <4, (4.13)

provided e (and hence T) is sufficiently small depending on the energy and the mass
of the initial data. Adding (4.13) over all 0 < j < J’ — 1 and recalling that J' < J =
J(E, 1), we get

lall 0.7y S 49 < C(E). (4.14)

Next, we show that (4.14) implies S'-control over the solution u on the slab
[0, T] x IR™. This type of argument will appear repeatedly in Section 5. However
each time, the hypotheses will be slightly different; this is why we choose not to
encapsulate it into a lemma.

By Strichartz, Lemma 2.5, (4.1), (4.14), and recalling that T = T(E, M), we
obtain

0l 1+p
” ||Xl 0 T])

el o ey iy + ' B SCEM).  (419)

Similarly,

1 ne)

pt+T

”u”SO([O,T]le”) S ||“|| 1o, T])”“”xo([o 7))

(o, T)”u”XO [0.17)

S M2+ C(E, M)l 5 g0, 1l 50071

+ IIMII”’ 0.1 1l 000, 71 - (4.16)
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Subdividing [0, 7] into N = N(E, M, J) subintervals J, such that
||“||5(1(/k) ~9
for some small constant § > 0, the computations that lead to (4.16) now yield
lutlls00s ey S M2 + CCE, MYS™ s ey + 077 100 ey

Choosing ¢ sufficiently small depending on E and M, we obtain

llll 300, xmny < C(E, M)
on every subinterval J,. Adding these bounds over all subintervals J,, we get

llull 5000, 7yxrry < C(E, M). (4.17)
Collecting (4.15) and (4.17), we obtain
lwlls o,y < C(E, M).

This concludes the proof of Theorem 1.1.

5. Scattering Results

In this section we prove Theorem 1.3. As before we shall abbreviate the energy E(u)
as E, and the mass M(u) as M. The key ingredient is a good spacet