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Abstract— In this paper, we sketch recent results for syn-
chronization in a network of identical ODE models which are
diffusively interconnected. In particular, we provide estimates
of convergence of the difference in states between components,
in the cases of line, complete, and star graphs, and Cartesian
products of such graphs.

I. INTRODUCTION

The analysis of synchrony in networks of identical compo-
nents is a long-standing problem in different fields of science
and engineering as well as in mathematics.

We will restrict attention to interconnections given by dif-
fusion, where each pair of “adjacent” components exchange
information and adjust in the direction of the difference
with each other. Our approach is based on the use of
logarithmic norms (also called matrix measures), often called
the “contraction” approach.

The proof of synchronization results using contraction-
based techniques is in itself not new, though most results
restrict to measures derived from L2 or weighted L2 norms,
see for example [1], [2], [3], [4], [5].

We base our approach on contraction theory, using matrix
measures derived from norms that are not induced by inner
products (L2 and weighted L2).

II. SYNCHRONIZATION IN A SYSTEM OF ODES

We will use the following concepts and notations through
out this paper:
• For a fixed convex subset of Rn, say V , F̃ : V N ×

[0,∞)→ RnN is a function of the form:

F̃ (x, t) =
(
F (x1, t)

T , . . . , F (xN , t)
T
)T
,

where x =
(
xT1 , . . . , x

T
N

)T
, with xi ∈ V for each i, and

F (·, t) := Ft : V → Rn is a C1 function.
• For any x ∈ V N we define ‖x‖p,Q as follows:

‖x‖p,Q =
∥∥∥(‖Qx1‖p, · · · , ‖QxN‖p)T

∥∥∥
p
,

for any positive diagonal matrix Q = diag (q1, . . . , qn)
and 1 ≤ p ≤ ∞.
When N = 1, we simply have a norm in Rn:

‖x‖p,Q := ‖Qx‖p.
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• D = diag (d1, . . . , dn) with di ≥ 0, and dj > 0 for
some j, which we call the diffusion matrix.

• L ∈ RN×N is a symmetric matrix and L1 = 0,
where 1 = (1, . . . , 1)T . We think of L as the Laplacian
of a graph that describes the interconnections among
component subsystems.

• ⊗ denotes the Kronecker product of two matrices.

Definition 1: For any arbitrary graph G with the associ-
ated (graph) Laplacian matrix L, any diagonal matrix D, and
any Ft : V × [0,∞) → Rn, the associated G−compartment
system, denoted by (F,G, D), is defined by

ẋ(t) = F̃ (x(t), t)− (L ⊗D)x(t), (1)

where x, F̃ , and D are as defined above.
We say that a G−compartment system synchronizes, if for

any solution x =
(
xT1 , . . . , x

T
N

)T
of (1), (xi − xj)(t) → 0

as t→∞.
In the following general theorem, which is proved in [6],

we present a sufficient condition on F,D, and G that guar-
antees synchrony of the associated G−compartment system.

Recall that a directed incidence matrix of a graph with N
nodes and m edges, is an N ×m matrix E which is defined
as follows, for any fixed ordering of nodes and edges: The
(i, j)−entry of E is 0 if vertex i and edge ej are not incident,
and otherwise, it is 1 if ej originates at vertex i, and −1 if
ej terminates at vertex i.

Recall that for any matrix A ∈ Rn×n and any given norm
‖ · ‖ on Rn, the logarithmic norm of A induced by the norm
‖ · ‖ is defined by

M [A] = lim
h→0+

sup
x6=0∈Rn

1

h

(
‖(I + hA)x‖
‖x‖

− 1

)
.

In this paper, by Mp,Q[A], we mean the logarithmic norm
of A induced by a Q−weighted Lp norm, ‖ · ‖p,Q.

Theorem 1: Let (F,G, D) be a G−compartment system,
where G is an arbitrary graph of N nodes and m edges. Let
E be a directed incidence matrix of G, and pick any m×m
matrix K satisfying ETL = KET . Denote:

c := sup
(w,t)

M [J(w, t)−K ⊗D] , (2)

where M is the logarithmic norm induced by an arbitrary
norm on Rmn, ‖ · ‖, and for w =

(
wT1 , . . . , w

T
m

)T
, J(w, t)

is defined as follows:

J(w, t) = diag (JF (w1, t), . . . , JF (wm, t)) ,
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and JF (·, t) denotes the Jacobian of F with respect to the
first variable. Then∥∥(ET ⊗ I)x(t)

∥∥ ≤ ect
∥∥(ET ⊗ I)x(0)

∥∥ ,
where ‖ · ‖ is the given norm on Rmn. In particular, when
c < 0, the system synchronizes, i.e., for any pair (i, j), (xi−
xj)(t)→ 0 as t→∞.
See [6] for a proof.

Note that
(
ET ⊗ I

)
x is a column vector whose entries

are the differences xi − xj , for each edge e = {i, j} in G.
For instance, for a linear graph of 3 nodes and the incidence

matrix E =

 −1 0
1 −1
0 1

,
(
ET ⊗ I

)
x =

(
x2 − x1
x3 − x2

)
.

The results in the following sections, (Proposition 1 and
Proposition 2) are direct applications of Theorem 1.

We next specialize to the linear case, when F (x, t) =
A(t)x.

Theorem 2: Consider a G−compartment system,
(F,G, D), and suppose that F (x, t) = A(t)x, i.e.,

ẋ(t) = (I ⊗A(t)− L⊗D)x(t).

For a given arbitrary norm on Rn, ‖ · ‖, suppose that

sup
t
M [A(t)− λ2D] < 0,

where λ2 is the smallest nonzero eigenvalue of the Laplacian
matrix L and M is the logarithmic norm induced by ‖ · ‖.
Then, for any i, j ∈ {1, . . . , N}, (xi − xj)(t) → 0,
exponentially as t→∞.
See [6] for a proof.

For L2 norms, this linear result can also be interpreted in
terms of Lyapunov exponents or characterized using Nyquist
plots, see for example [7], [8].

While the results for measures based on Euclidean norm
are quite general, in the nonlinear case and for Lp norms,
p 6= 2, we only have special cases to discuss, depending
on the graph structure. We present sufficient conditions for
synchronization for some special graphs (linear, complete,
star), and compositions of them (Cartesian product graphs).
See Table I and Table II for a summary of the results that
will be stated in this section and proved in [6].

A. Linear Graphs

In this section, we study a G−compartmental system,
where G is a linear graph of N nodes.

Assuming x0 = x1, xN+1 = xN , the following system
of ODEs describes the evolution of the individual agent xi,
for i = 1, . . . , N :

ẋi = F (xi, t) +D(xi−1 − xi + xi+1 − xi). (3)

Proposition 1: Let (x1, · · · , xN ) be a solution of (3), and
for 1 ≤ p ≤ ∞ and a positive diagonal matrix Q, let

c = sup
(x,t)

Mp,Q

[
JF (x, t)− 4 sin2 (π/2N)D

]
. (4)

Then
‖e(t)‖p,Qp⊗Q ≤ ect‖e(0)‖p,Qp⊗Q, (5)

where e = (x1 − x2, . . . , xN−1 − xN )
T denotes the vector

of all edges of the linear graph, and ‖ · ‖p,Qp⊗Q denotes the
weighted Lp norm with the weight Qp ⊗ Q, where for any
1 ≤ p ≤ ∞,

Qp = diag
(
p

2−p
p

1 , . . . , p
2−p
p

N−1

)
and for 1 ≤ k ≤ N − 1, pk = sin(kπ/N). In
addition, 4 sin2 (π/2N) is the smallest nonzero eigen-
value of the Laplacian matrix of G. Note that, Q∞ =
diag (1/p1, . . . , 1/pN−1).
To see a proof of Proposition 1 and how c in Proposition 1
is related to c in Theorem 1, see [6].

The significance of Proposition 1 is as follows: since the
numbers sin(kπ/N) are nonzero, we have, when c < 0,
exponential convergence to uniform solutions in a weighted
Lp norm, the weights being specified in each compartment by
the matrix Q and the relative weights among compartments
being weighted by the functions sin(kπ/N).

Remark 1: Under the conditions of Proposition 1, the
following inequality holds:

N−1∑
i=1

‖ei(t)‖p,Q ≤ αect
N−1∑
i=1

‖ei(0)‖p,Q,

where α =
maxk{(Qp)k}
mink{(Qp)k}

(N − 1)1−1/p > 0, and (Qp)k is

the kth diagonal entry of Qp.

B. Complete Graphs

Now consider a G−compartment system, where G is a
complete graph of N nodes.

The following system of ODEs describes the evolution of
the interconnected agents xi’s:

ẋi = F (xi, t) +D

N∑
j=1

(xj − xi) (6)

Proposition 2: Let ‖ · ‖ be an arbitrary norm on Rn.
Suppose (x1, . . . , xm) is a solution of Equation (6) and let

c := sup
(x,t)

M [JF (x, t)−ND]

where M is the logarithmic norm induced by ‖ · ‖. Then
m∑
i=1

‖ei(t)‖ ≤ ect
m∑
i=1

‖ei(0)‖,

where ei, for i = 1, . . . ,m are the edges of G, meaning the
differences xi(t)− xj(t) for i < j.

In particular, when c < 0, (6) synchronizes.
To prove Proposition 2, we need the following lemma (see

[6] for a proof).
Lemma 1: Let A be an mn×mn block diagonal matrix

with n × n matrices A1, . . . , Am on its diagonal. Let ‖ · ‖
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graph second eigenvalue, λ2 synchronization condition
complete

N M [JF − λ2D] < 0

line
4 sin2(π/2N) Mp,Q [JF − λ2D] < 0

star
1 M [JF − λ2D] < 0

TABLE I: Sufficient conditions for synchronization in complete, line and star graphs of N nodes. If no subscript is used in
M , the result has been proved for arbitrary norms.

graph second eigenvalue, λ2 synchronization condition

hypercube Mp,Q[JF − λ2D] < 0

4 min
1≤i≤K

{
sin

2
(π/2Ni)

}

Rook min{N1, . . . , NK} M [JF − λ2D] < 0

TABLE II: Sufficient conditions for synchronization in cartesian products of K line and complete graphs. If no subscript is
used in M , the result has been proved for arbitrary norms.

be an arbitrary norm on Rn and define ‖ · ‖∗ on Rmn as
follows. For any e =

(
eT1 , · · · , eTm

)T
with ei ∈ Rn, and any

1 ≤ p ≤ ∞, ‖e‖∗ :=
∥∥∥(‖e1‖, · · · , ‖em‖)T

∥∥∥
p
. Then

M∗[A] ≤ max {M [A1], . . . ,M [Am]} ,

where M and M∗ are the logarithmic norms induced by ‖ ·‖
and ‖ · ‖∗ respectively.

Proof of Proposition 2 The following N × N matrix
indicates the (graph) Laplacian matrix of a complete graph
of N nodes,

L =


N − 1 −1 . . . −1
−1 N − 1 . . . −1

. . .
−1 . . . −1 N − 1

 ,

with λ1 = 0 and λ2 = N . Let E be an incidence matrix of

G. We first show that ETEET = NET . For any orientation
of G, ET is an

(
N
2

)
×N matrix such that its i−th row looks

like (εi1, . . . , εiN ), where for exactly one j, εij = 1, for
exactly one j, εij = −1, and for the rest of j’s, εij = 0.
Observe that for any row i,

∑
j εij = 0, and(

ETL
)
(ij)

=
(
ET
)
ri

(L)cj ,

where (A)(ij) denotes the (i, j)−th entry of matrix A, and
(A)ri and (A)ci denote the ith row and ith column of A,
respectively. Hence,

(
ETL

)
(ij)

= (εi1, . . . , εiN )


−1

...
N − 1

...
−1

← jth
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= −εi1 − . . .+ (N − 1)εij − . . .− εiN
= Nεij −

∑
k

εik = Nεij .

This proves ETL = ETEET = NET . Thus we may apply
Theorem 1 with K = NI . Then J := J(w, t)−K⊗D can
be written as follows:

J =

 JF (w1, t)−ND
. . .

JF (wm, t)−ND

 .

For u = (u1, . . . , um)T , with ui ∈ Rn, let ‖u‖∗ :=∥∥∥(‖u1‖, . . . , ‖um|‖)T
∥∥∥
1
, where ‖ · ‖1 is L1 norm on Rm,

and let M∗ be the logarithmic norm induced by ‖ · ‖∗. Then
by the definition of M∗ and Lemma 1,

M∗[J(w, t)−K ⊗D] ≤ max
i
{M [JF (wi, t)−ND]} .

Therefore, by taking sup over all possible w’s in both sides
of the above inequality, we get:

sup
w
M∗[J(w, t)−K ⊗D] ≤ sup

(x,t)

M [JF (x, t)−ND] = c.

Applying Theorem 1, we conclude the desired result.

C. Star Graphs

Now consider a G−compartment system, where G is a star
graph of N + 1 nodes.

The following system of ODEs describe the evolution of
the xi’s:

ẋi = F (xi, t) +D (x0 − xi) , i 6= 0

ẋ0 = F (x0, t) +D
∑
i 6=0

(xi − x0) (7)

Proposition 3: Let (x0, . . . , xN ) be a solution of (7) and

c := sup
(x,t)

M [JF (x, t)−D],

where M is the logarithmic norm induced by an arbitrary
norm ‖ · ‖ on Rn. Then for any i ∈ {1, . . . , N},

‖(xi − x0)(t)‖ ≤ (1 + αit)e
ct ‖(xi − x0)(0)‖

where αi =
∑
j 6=i,0

‖(xj − xi)(0)‖.

In particular, when c < 0, for any i = 1, . . . , N , (xi −
x0)(t)→ 0 exponentially as t→∞.
See [6] for a proof.

Note that the smallest non-zero eigenvalue of the Lapla-
cian matrix of G is 1.

Remark 2: Under the conditions of Proposition 3, the
following inequality holds:∑

i6=0

‖(xi − x0)(t)‖ ≤ Pect
∑
i 6=0

‖(xi − x0)(0)‖ (8)

where P = 1 + 2(N − 1) t
∑
i 6=0

‖(xi − x0)(0)‖.

D. Cartesian products

For k = 1, . . . ,K, let Gk = (Vk, Ek) be an arbitrary
graph, with |Vk| = Nk and Laplacian matrix LGk

.
Consider a system consisting of N = ΠK

k=1Nk compart-
ments, where we denote state variables as xi1,...,iK ∈ Rn,
ij = 1, . . . , Nj , which are interconnected by a Cartesian
product G = G1 × . . . × GK of the K graphs Gi. The fol-
lowing system of ODEs describe the evolution of xi1,...,iK ’s:

ẋ = F̃ (x, t)− L⊗Dx (9)

where x = (xi1,...,iK ) is the vector of all N compartments,
F̃ (x, t) = (F (xi1,...,iK , t)), L is defined as follows:∑

i

INK
⊗ . . .⊗ LGi

⊗ . . .⊗ IN1
,

and the n× n matrix D is the diffusion matrix.
Proposition 4: Given graphs Gk, k = 1, . . . ,K as above,

suppose that for each k, there are a norm ‖ · ‖(k) on Rn, a
real nonnegative number λ(k), and a polynomial P(k)(z, t)
on R2

≥0, with the property that for each z, P(k)(z, 0) ≥ 1,
such that for every solution x of (9),∑

e∈Ek

‖e(t)‖(k) ≤ P(k)e
ckt
∑
e∈Ek

‖e(0)‖(k) (10)

holds, where

P(k) = P(k)

(∑
e∈Ek

‖e(0)‖(k) , t

)
and ck := sup

(x,t)

M(k)

[
JF (x, t)− λ(k)D

]
, and M(k) is the

logarithmic norm induced by ‖ · ‖(k). Then for any norm
‖ · ‖ on Rn, there exists a polynomial P (z, t) on R2

≥0, with
the property that for each z, P (z, 0) ≥ 1, such that∑

e∈E
‖e(t)‖ ≤ P

(∑
e∈E
‖e(0)‖ , t

)
ect
∑
e∈E
‖e(0)‖ ,

where c := max{c1, . . . , cK}, and E is the set of the edges
of G. Observe that if all ci < 0, then also c < 0, and this
guarantees synchronization, as all e(t)→ 0.

Note that for K = 1, Remark 1, Proposition 2, and Re-
mark 2 show that (10) holds when Gk is a line, complete or
star graph, for P(k)(z, t) = α, 1, 1+2(N−1)tz, respectively.
Therefore, for a hypercube (cartesian product of K line
graphs) with N1 × . . . × NK nodes, if for given norm on
Rn, ‖ · ‖, and λ2 = 4 mini

{
sin2(π/2Ni)

}
,

sup
(x,t)

M [JF (x, t)− λ2D] < 0,

where M is the logarithmic norm induced by ‖ · ‖, then the
system synchronizes. See Table II.

Also, for a Rook graph (cartesian product of K complete
graphs) of N1× . . .×NK nodes, if for any given norm, and
λ2 = mini {Ni},

sup
(x,t)

M [JF (x, t)− λ2D] < 0,
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then the system synchronizes. See Table II.
As an application of Cartesian products, we specifically

study the Cartesian product of two linear graphs, i.e. a grid
graph, as follows:

Consider a network of N1 × N2 compartments that are
connected to each other by a 2-D, N1 × N2 lattice (grid)
graph G = (V, E), where

V = {xij , i = 1, . . . , N1, j = 1, . . . , N2}

is the set of all vertices and E is the set of all edges of G.
The following system of ODEs describes the evolution of

the xij’s: for any i = 1, . . . , N1, and j = 1, . . . , N2

ẋi,j = F (xij , t) +D (xi−1,j − 2xi,j + xi+1,j)

+D (xi,j−1 − 2xi,j + xi,j+1) ,
(11)

assuming Neumann boundary conditions, i.e. xi,0 = xi,1,
xi,N2

= xi,N2+1, etc.
Proposition 5: Let x = {xij} be a solution of Equation

(11) and c = max{c1, c2}, where for i = 1, 2,

ci := sup
(x,t)

Mp,Q

[
JF (x, t)− 4 sin2 (π/2Ni)D

]
,

and 1 ≤ p ≤ ∞. Then, there exist positive constants α ≥ 1,
and β such that∑

e∈E
‖e(t)‖p,Q ≤ (α+ βt) ect

∑
e∈E
‖e(0)‖p,Q. (12)

In particular, when c < 0, the system (11) synchronizes,
i.e., for all i, j, k, l

(xij − xkl)(t)→ 0, exponentially as t→∞.
See [6] for a proof.

One can get the analogous result for the Cartesian products
of K ≥ 2 linear graphs.

III. AN EXAMPLE

Goodwin Oscillator

In 1965, Brian Goodwin proposed a differential equation
model, that describes the generic model of an oscillating
autoregulatory gene, and studied its oscillatory behavior [9].
The following systems of ODEs is a variant of Goodwin’s
model [10]:

dx

dt
=

a

k + z(t)
− bx(t)

dy

dt
= αx(t)− βy(t)

dz

dt
= γy(t)− δz

kM + z(t)
.

(13)

The model, sketched in Fig. 1a, in the original paper rep-
resented a single gene with mRNA, X , which is translated
into an enzyme, Y , which in turn, catalyses production of a
metabolite, Z. Finally, the metabolite inhibits the expression
of the original gene. However the model is quite generic.

Fig. 1b shows the oscillatory solutions of (13) for 6
different initial conditions for the following parameter values

from [11]:

a = 150, k = 1, b = α = β = γ = 0.2, δ = 15, KM = 1.

Fig. 1c shows the solutions of the same system (6 compart-
ments with the same initial conditions as in Fig. 1b) that
are interconnected diffusively by a linear graph and they all
synchronize. Note that only X is interconnected to other X’s
in the graph, i.e. D = diag (d, 0, 0). The following system
of ODEs describes the evolution of compartments:

For each compartment i = 1, . . . , N (here N = 6):

dxi
dt

=
a

k + zi(t)
− b xi(t) + d (xi−1 − 2xi + xi+1)

dyi
dt

= α xi(t)− β yi(t)
dzi
dt

= γ y(t)− δzi
kM + zi(t)

assuming x0 = x1 and xN = xN+1.
Fig. 1d shows the solutions of the same system (6 com-

partments with the same initial conditions as in Fig. 1b) that
are interconnected diffusively by a complete graph, using
again D = diag (d, 0, 0).

Comparing Fig. 1b and Fig. 1d shows that the subsystems
synchronize faster when they are connected by a complete
graph.

IV. DISCUSSION

In this conference paper, we established new results for
synchronization in a network of identical ODE models which
are diffusively interconnected. We provided estimates of
convergence of the difference in states between components,
in the cases of line, complete, and star graphs, and Cartesian
products of such graphs. A journal version will provide more
details and proofs.

In [12], [6], we also provide analogous results for con-
vergence to uniform solutions in reaction-diffusion partial
differential equations:

u̇ = F (u, t) +D∆u. (14)

These results require the use of techniques from nonlinear
functional analysis for normed spaces, in contrast to tools
appropriate for Hilbert spaces. An example of one such a
result is as follows.

Theorem 3: Let u(ω, t) be a solution of (14), subject to
Neumann boundary conditions, defined for all t ∈ [0, T ) for
some 0 < T ≤ ∞, and ω ∈ (0, L). In addition, assume that
u(·, t) ∈ C3(Ω), for all t ∈ [0, T ). Let

c = sup
(x,t)

M1,Q,φ

[
JFt(x)− π2

L2
D

]
,

where M1,Q,φ is the logarithmic norm induced by the
following norm:

‖ · ‖1,Q,φ := ‖sin(πω/L)(·)‖1,Q .
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(a) a single gene

(b) 6 isolated compartments

(c) Linear interconnection of mRNA, d = 1, slow
synchronization

(d) Complete interconnection of mRNA, d = 1, fast
synchronization

Fig. 1: Goodwin Oscillator

Then for all t ∈ [0, T ):∥∥∥∥ ∂u∂ω (·, t)
∥∥∥∥
1,Q,φ

≤ ect
∥∥∥∥ ∂u∂ω (·, 0)

∥∥∥∥
1,Q,φ

.

Note that −π2/L2 is equal to the second Neumann eigen-
value of the Laplacian operator on (0, L).

The significance of Theorem 3 lies in the fact that
sin(πω/L) is nonzero everywhere in the domain (except at
the boundary). In that sense, we have exponential conver-
gence to uniform solutions in a weighted L1 norm.
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