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Abstract Finding the conditions that foster synchronization in networked nonlinear
systems is critical to understanding a wide range of biological and mechanical sys-
tems. However, the conditions proved in the literature for synchronization in nonlinear
systems with linear coupling, such as has been used to model neuronal networks, are
in general not strict enough to accurately determine the system behavior. We leverage
contraction theory to derive new sufficient conditions for cluster synchronization in
terms of the network structure, for a network where the intrinsic nonlinear dynam-
ics of each node may differ. Our result requires that network connections satisfy a
cluster-input-equivalence condition, and we explore the influence of this requirement
on network dynamics. For application to networks of nodes with FitzHugh–Nagumo
dynamics, we show that our new sufficient condition is tighter than those found in
previous analyses that used smooth or nonsmooth Lyapunov functions. Improving the
analytical conditions for when cluster synchronization will occur based on network
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configuration is a significant step toward facilitating understanding and control of
complex networked systems.

Keywords Cluster synchronization · Contraction theory for stability · Diffusively
coupled nonlinear networks · Neuronal oscillators

1 Introduction

Synchronization has been observed and studied in diverse fields. Its presence has been
characterized in symmetric networks of identical mechanical systems or identical bio-
logical systems, as well as those with differing types of individual components and
nonuniform coupling (Pikovsky et al. 2003). The role of synchronization has been
studied in a multitude of both natural and engineered settings including collective
motion (Sepulchre et al. 2008), power-grid networks (Motter et al. 2013), robotics (Nair
and Leonard 2008), sensor networks (Sivrikaya and Yener 2004), circadian rhythms
(Winfree 1967), bioluminescence in fireflies (Smith 1935), pacemaker cells in the heart
(Mirollo and Strogatz 1990), neuronal ensembles (ChowandKopell 2000), and numer-
ous others. In the human brain, synchronization at the neuronal or regional level can
be beneficial, allowing for production of a vast range of behaviors (Dumas et al. 2010;
MacLeod and Laurent 1996), or detrimental, causing disorders such as Parkinson’s
disease (Chen et al. 2007) and epilepsy (Lehnertz et al. 2009). Applications for con-
trol of neural dynamics may involve regulating patterns of synchronized phenomena
among nodes or subsystems that have different intrinsic dynamics and are connected
in an arbitrary network (Abrams et al. 2016; Wilson and Moehlis 2015). Most gener-
ally, nodes can be agents in a multi-agent system, compartments in a compartmental
system, or other units that interact with one another in a pairwise framework. Charac-
terizing the emergence and persistence of synchronization in a system with multiple
heterogeneous nodes is the first step toward effective control of desired behavior.

Heterogeneous nodes and nonuniform coupling structure in a network often lead
to complex patterns of synchronization. Under certain conditions, it is possible to
partition the network into clusters of nodes that are synchronized within clusters but
not across clusters. In a cluster synchronized network, nodes in the same cluster will
have similar behavior after a transient. The cluster synchronized network can thus be
reduced to a network where each node corresponds to a cluster, commonly referred
to as the quotient network (Chung et al. 2007; Russo and Slotine 2010; Schaub et al.
2016). The simplified dynamics represent a powerful tool for facilitating analysis of
the dynamics of cluster synchronized systems.

Cluster synchronization has been defined in various ways in the literature. Accord-
ing to one commondefinition for phase oscillators, clusters are subgroups of oscillators
that share common phases (e.g., Brown et al. 2003; Orosz et al. 2009; Belykh et al.
2015; Tiberi et al. 2017). Another definition is based on approximate cluster synchro-
nization, wherein nodes within a given cluster can have slightly different behaviors
(Sorrentino and Pecora 2016; Pham and Slotine 2007; Favaretto et al. 2017a, b). In
the present work, we define cluster synchronization as convergence to an invariant
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manifold, called the cluster synchronization manifold, on which the states of all nodes
in a cluster evolve identically (Belykh et al. 2008; Sorrentino and Ott 2007).

A necessary condition for cluster synchronization is the existence of an invariant
manifold. In this work, we assume “cluster-input-equivalence”, which ensures exis-
tence of such a manifold. Cluster-input-equivalence was proposed by Stewart et al.
(2003), Golubitsky et al. (2005), under the name “balanced equivalence”, and by
Belykh et al. (2008) it is used under the name “cluster partition manifold” (Eq. 13).
Subsequently this condition was used to show existence of an invariant manifold for
cluster synchronization (Ferreira and Arcak 2013; Schaub et al. 2016; Sorrentino et al.
2016).

Another important problem is the establishment of sufficient conditions that guaran-
tee stability of a cluster synchronization manifold. The problem has been well studied
for networks where the dynamics can be described by reduced phase oscillators, e.g.,
Brown et al. (2003), Orosz et al. (2009). The problem has also been studied for net-
works of more general nonlinear dynamics. For example, Lu et al. (2010), Wang et al.
(2009), and Fiore et al. (2017) have explored conditions that rely on intra-cluster
network structure. Specialized network graphs have been considered in Pecora et al.
(2014). Xia and Cao (2011) have explored time-delay and negative coupling as mech-
anisms to realize cluster synchronization in a network with homogeneous dynamics.

In the present paper, we propose a new sufficient condition for cluster synchroniza-
tion that applies to general network structure and heterogeneous nonlinear dynamics.
The method leverages contraction theory, which has been used to analyze the stability
of invariant dynamics, including cluster synchronization (Pham and Slotine 2007).
Here, we use contraction theory to find a sufficient condition for cluster synchroniza-
tion that incorporates a novel measure of connectivity between clusters not found in
previous work on the subject.

Contraction theory is a powerful tool for understanding synchronization phenomena
in networked systems. The proper tool for characterizing contractivity for nonlin-
ear systems is provided by the logarithmic norms, or matrix measures (Desoer and
Vidyasagar 1975), of the Jacobian of the vector field, evaluated at all possible states.
This idea is a classical one, and can be traced back at least to work of Lewis (1949).
Dahlquist’s 1958 thesis under Hörmander used matrix measures to show contractiv-
ity of differential equations, and more generally of differential inequalities, the latter
applied to the analysis of convergence of numerical schemes for solving differential
equations (Dahlquist 1958). Several authors have independently rediscovered the basic
ideas. For example, in the 1960s, Demidovič (1961, 1967) established basic conver-
gence results with respect to Euclidean norms, as did Hartman (1961) and Yoshizawa
(1966, 1975). In control theory, the field attracted much attention after the work of
Lohmiller and Slotine (1998). We refer the reader especially to the careful histori-
cal analysis given in Jouffroy (2005). Other useful historical references are Pavlov
et al. (2004) and the survey Soderlind (2006). An introductory tutorial to basic results
in contraction theory for nonlinear control systems is given by Aminzare and Sontag
(2014a). Results on synchronization using contraction-based techniques are described,
for example, in Russo and Slotine (2010), Arcak (2011), Lohmiller and Slotine (2005),
Russo and Bernardo (2009), Wang and Slotine (2005), Aminzare et al. (2014).
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The main contributions of the present paper are as follows. We extend contrac-
tion theory to a setting where the nodal dynamics may have heterogeneous intrinsic
dynamics and the network satisfies the cluster-input-equivalence condition. Using this
extension of contraction theory, we prove new sufficient conditions for cluster syn-
chronization in a network of heterogeneous nodal dynamics. We improve upon our
earlier analysis of synchronization in networks of homogeneous FitzHugh–Nagumo
(FN) oscillators (Davison et al. 2016), and show that the proposed result yields a tighter
bound on the algebraic connectivity of the associated undirected graph. The bound is
a significant advance over previous results because it incorporates terms that reflect
inter- and intra- cluster network structure.

The paper proceeds as follows. In Sect. 2, we review relevant concepts and results
from the contraction theory literature. In Sect. 3, we present our main result, an exten-
sion of the existing theory to a cluster synchronized setting. In Sect. 4, we consider
networks of neuronal oscillators, modeled by FitzHugh–Nagumo and Hindmarsh–
Rose dynamics, and demonstrate how the proposed approach provides sufficient
conditions for cluster synchronization. We conclude in Sect. 5.

2 A Review of Contraction Theory

In what follows, we review notations, definitions, and main results in contraction
theory that will be applied in later sections.

Definition 1 (Logarithmic norm, Soderlind 2006) For any matrix A ∈ R
n×n and any

given norm ‖ · ‖ on R
n , the logarithmic norm (also called the matrix measure) of A

induced by the norm ‖ · ‖ is defined by

μ[A] = lim
h→0+ sup

x �=0∈Rn

1

h

(‖(I + hA)x‖
‖x‖ − 1

)
, (1)

where I is the identity matrix of size n.

Notation 1 For any 1 ≤ p ≤ ∞ and any n × n positive definite matrix Q, let ‖ · ‖p

denote the L p norm on R
n, and ‖ · ‖p,Q denote the Q−weighted L p norm on R

n

defined by ‖x‖p,Q := ‖Qx‖p. Byμp[A], we mean the logarithmic norm of A induced
by ‖ · ‖p and by μp,Q[A], we mean the logarithmic norm of A induced by ‖ · ‖p,Q.
Note that μp,Q[A] = μp[QAQ−1].
Notation 2 For any matrix A, denote A positive semidefinite as A ≥ 0.

Remark 1 In Table 1, the algebraic expression of logarithmic norms induced by the
L p norm for p = 1, 2, and ∞ are shown. For proofs, see for instance (Desoer and
Vidyasagar 1975).

Definition 2 (Contraction) Consider the following nonlinear dynamical system on
V × [0,∞], where V is a convex subset of Rn . Consider appropriate conditions on
vector field G (e.g., G(x, t) Lipschitz on x and continuous on (x, t)) that guarantee
existence and uniqueness of solutions of
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Table 1 Standard matrix measures for a real n × n matrix, A = [ai j ]

Vector norm, ‖ · ‖ Induced matrix measure, M[A]

‖x‖1 =
n∑

i=1

|xi | μ1[A] = max
j

⎛
⎝a j j +

∑
i �= j

|ai j |
⎞
⎠

‖x‖2 =
⎛
⎝ n∑
i=1

|xi |2
⎞
⎠

1
2

μ2[A] = max
λ∈spec 1

2 (A+AT )

λ

‖x‖∞ = max
1≤i≤n

|xi | μ∞[A] = max
i

⎛
⎝aii +

∑
i �= j

|ai j |
⎞
⎠

ẋ(t) = G(x(t), t). (2)

Equation (2) is contractive if there exist c < 0 and a norm ‖ · ‖ on R
n such that, for

any two solutions x and y of Eq. (2), the following inequality holds for any t ≥ 0:

‖x(t) − y(t)‖ ≤ ect‖x(0) − y(0)‖. (3)

Proposition 1 (Theorem 1, Aminzare and Sontag 2014a)
Consider Eq. (2) and assume that G is a continuously differentiable function on its

first variable. Let c := sup(x,t) μ[JG(x, t)], where μ is the logarithmic norm induced
by an arbitrary norm on Rn, and JG is the Jacobian of G. Then for any two solutions
x and y of Eq. (2), and t ≥ 0,

‖x(t) − y(t)‖ ≤ ect‖x(0) − y(0)‖.

In particular, when c < 0, Eq. (2) satisfies Eq. (3) and is contractive.

Throughout the paper, we denote the Jacobian of the vector field f (x, t) evaluated
at (x, t) as J f (x, t), i.e., J f (x, t) = ∂ f

∂x (x, t).
Weconsider a networkof N nodes,with states {X1, . . . , XN } and intrinsic dynamics

Fi :

Ẋ i (t) = Fi
(
Xi (t), t

)
.

Here, Xi and Fi have dimension n ≥ 1. For a fixed convex subset V ⊂ R
n , Fi : V ×

[0,∞) → R
n , defined by Fi = Fi (z, t), is Lipschitz on z and continuous on (z, t).We

also assume that the nodes are diffusively connected through an undirected weighted
graph G = (V, E) and describe the dynamics of the network as follows:

Ẋ i (t) = Fi
(
Xi (t), t

)
+
∑
j∈N i

γ i j D
(
X j (t) − Xi (t)

)
i = 1, . . . , N . (4)

123



J Nonlinear Sci

The indices in N i represent the neighbors of node i . Without loss of generality1,
we can assume that the diffusion matrix D is a nonzero diagonal matrix of size n,
D = diag (d1, . . . , dn), where di ≥ 0. The positive constants γ i j represent the edge
weights of G. The products of the elements in D and the edge weights γ i j represent
the coupling strengths between the nodes. This allows representation of all possible
diffusive coupling structures by manipulation of the diagonal elements of D and the
edge weights.

Let L = (Li j ) be the Laplacian matrix of G:

Li j =

⎧⎪⎪⎨
⎪⎪⎩

∑
k∈N i γ ik i = j,

−γ i j i �= j, j ∈ N i ,

0 otherwise.

(5)

We denote the eigenvalues ofL as 0 = λ(1) ≤ λ(2) ≤ · · · ≤ λ(N ). The second smallest
eigenvalue, λ(2), is called the algebraic connectivity of the graph. This number helps
to quantify “how connected” the graph is. The number of the zero eigenvalues is equal
to the number of connected components of G.

Using the notation of the Laplacian matrix, Eq. (4) can be written in closed form:

Ẋ(t) = F(X (t), t) − (L ⊗ D)X (t), (6)

where X =
(
X1T , . . . , XN T

)T
, F =

(
F1T , . . . , FN T

)T
, and ⊗ represents the

Kronecker product.

Definition 3 (Complete synchronization) Let

S1 :=
{
X ∈ R

nN
∣∣ X1 = · · · = XN , Xi ∈ R

n
}

.

The dynamics given in Eq. (4) synchronize completely if any solution of Eq. (4) con-
verges to S1 in an appropriate norm. In other words, let X be a solution of Eq. (4).
Then there exists a solution X̄ ∈ S1 such that, in an appropriate norm,

X (t) − X̄(t) → 0 as t → ∞.

S1 is called the synchronization manifold.

We will use synchronization and complete synchronization alternatively.

Definition 4 (Cluster synchronization) For any 1 ≤ K ≤ N and any 1 ≤
c1, . . . , cK ≤ N such that c1 + · · · + cK = N , let

SK :=
{
X ∈ R

nN
∣∣ X1 = · · · = Xc1 , . . . , XN−cK+1 = · · · = XN , Xi ∈ R

n
}

.

1 If D is not diagonal, an appropriate change of coordinate can render it diagonal.
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The dynamics given in Eq. (4) synchronize in clusters if there exists 1 ≤ K ≤ N such
that all solutions of Eq. (4) converge toSK in an appropriate norm.

SK is called the K−cluster synchronization manifold.

The 1−cluster synchronization manifold is the same as the synchronization mani-
fold (Definition 3).

In the following two propositions, we consider Eq. (4) with homogeneous Fi = F ,
and state two sufficient conditions that guarantee that Eq. (4) synchronizes.

Proposition 2 (Proposition 1, Aminzare and Sontag 2014b) Consider Eq. (4) with
homogeneous Fi = F. Assume that there exists a norm on R

n such that

sup
(x,t)

μ[JF (x, t)] < 0. (7)

Then Eq. (4) synchronizes.

In Russo and Slotine (2010), Proposition 2 has been generalized2 to Fi with het-
erogeneous elements. The work shows that, under some conditions on the weights
of the interconnected graph, if each node has contractive dynamics, then Eq. (4) syn-
chronizes in clusters. In Sect. 4, we provide an example (with FitzHugh–Nagumo and
Hindmarsh–Rose oscillators) that synchronizes in clusters and supports our theory
derived in the next section but does not satisfy the condition provided in Russo and
Slotine (2010).

Note that the sufficient condition provided in Proposition 2 depends only on the
dynamics of each isolated node, namely JF . The next proposition from Arcak (2011)
provides a sufficient condition for complete synchronization less restrictive than
Eq. (7), which depends on JF , the diffusion matrix D, and the graph G. It is based on
the weighted L2 norms. For some special graphs, the result has been generalized to
weighted L p norms (Aminzare and Sontag 2014b).

Proposition 3 (Theorem 4 (modified), Arcak 2011) Consider Eq. (4) with homo-
geneous Fi = F. Assume that there exists a positive definite matrix P such that
P2D + DP2 is also positive definite, and let

c := sup
(x,t)∈V×[0,∞)

μ2,P

[
JF (x, t) − λ(2)D

]
.

Then for any solution X of Eq. (4) that remains in V N , there exists a solution X̄ such
that

‖X (t) − X̄(t)‖2,IN⊗P2 ≤ ect‖X (0) − X̄(0)‖2,IN⊗P2 .

Moreover, if c < 0, then Eq. (4) synchronizes, i.e., for any pair i, j ∈ {1, . . . , N },

Xi (t) − X j (t) → 0 as t → ∞.

2 The statement of Theorem 3 in Russo and Slotine (2010) is correct; however, the proof needs revision to
be complete.
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In the following section, we present the main result of this work – we general-
ize Proposition 3 to heterogeneous Fi and provide sufficient conditions for cluster
synchronization.

3 Main Result: Cluster Synchronization

In this section, we provide sufficient conditions on heterogeneous intrinsic dynamics
Fi , the graph G, and the diffusion matrix D, that guarantee cluster synchronization of
the network described in Eq. (4).

Assumption 1 In the network described by Eq. (4), we assume that

1. There exist K ≤ N and c1, . . . , cK ≥ 2, such that c1 + · · · + cK = N , and

Fi1 = · · · = Fic1 =: FC1, . . . , FiN−cK +1 = · · · = FiN =: FCK ,

where {i1, . . . , iN } is a permutation of {1, . . . , N }. Without loss of generality, we
can assume:

F1 = · · · = Fc1 =: FC1 , . . . , FN−cK+1 = · · · = FN =: FCK .

LetC1, . . . ,CK denote K clusters of nodes. The nodes in clusterC1 are defined by
X1, . . . , Xc1 and they all have dynamics FC1 , the nodes in cluster C2 are defined
by Xc1+1, . . . , Xc1+c2 and they all have dynamics FC2 , etc. For ease of notation
in our calculations, we let

X1
C1

= X1, . . . , Xc1
C1

= Xc1 ,

X1
C2

= Xc1+1, . . . , Xc2
C2

= Xc1+c2 ,

...

X1
CK

= XN−cK+1, . . . , XcK
CK

= XN .

(8)

2. The cluster-input-equivalence condition, defined by Belykh et al. (2008), holds.
This implies that the following edge weight sums are equal: for any two nodes
Xi
Cr

, X j
Cr
, (i, j) ∈ Cr ,

ηCrCs :=
∑

k∈N i
C s

γ ik =
∑

k∈N j
C s

γ jk, (9)

whereN i
Cs

denotes the indices of the neighbors of node i which are in cluster Cs .

Assumption 1 ensures that the K−cluster synchronization manifold is invariant,
which is a necessary condition for cluster synchronization.

Next we provide sufficient conditions to show thatSK is (globally) stable, i.e., any
solution of Eq. (4) converges toSK .
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Recall that the network graph is G = (V, E). Denote the subgraph for the nodes in
Cr by GCr = (VCr , ECr ). The set VCr consists of all the nodes in Cr and the set ECr

consists of all edges that have both end points in VCr . Then

G =
(

K⋃
r=1

GCr

)⋃
Ḡ,

where Ḡ = (V, E \ ∪r ECr ) is the graph describing connections among the clusters
Cr .

Let LCr denote the Laplacian matrix of GCr with eigenvalues 0 = λ
(1)
Cr

≤ λ
(2)
Cr

≤
· · · ≤ λ

(cr )
Cr

and L̄ denote the Laplacian matrix of Ḡ with eigenvalues 0 = λ̄(1) ≤
λ̄(2) ≤ · · · ≤ λ̄(N ). In the special case of K = 1, we set λ̄(2) = 0. Then L, the
Laplacian matrix of G can be written as follows:

L = LC + L̄, (10)

where LC is a block diagonal matrix with the form:

LC =
⎛
⎜⎝
LC1

. . .

LCK

⎞
⎟⎠ . (11)

With these definitions, Eq. (6) can be written as

Ẋ(t) = F(X (t), t) − (LC ⊗ D)X (t) − (L̄ ⊗ D)X (t). (12)

Theorem 1 Consider Eq. (4), or equivalently Eq. (12), with Assumption 1, and let

μ := max
r=1,...,K

sup
(x,t)∈V×[0,∞)

μ2,P

[
JFC r

(x, t) −
(
λ

(2)
Cr

+ λ̄(2)
)
D
]
, (13)

where P ∈ R
n×n is a positive definite matrix chosen such that P2D+DP2 is positive

semidefinite. Then, for any solution X of Eq. (4) that remains in V N , there exists X̄(t)
such that

‖X (t) − X̄(t)‖2,P ≤ eμt‖X (0) − X̄(0)‖2,P , (14)

where P = IN ⊗ P2 and ‖ · ‖2,P is a P-weighted L2 norm on R
nN , defined by

‖x‖2,P :=
∥∥∥∥
(∥∥∥P2x1

∥∥∥
2
, . . . ,

∥∥∥P2xN
∥∥∥
2

)T ∥∥∥∥
2
,

for any x =
(
x1

T
, . . . , xN

T
)T ∈ R

nN . In particular, if μ < 0, then for any pair of

nodes i, j ∈ Cr , Xi
Cr

and X j
Cr

satisfy

Xi
Cr

(t) − X j
Cr

(t) → 0 as t → ∞.
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Remark 2 Theorem 1 provides a sufficient condition for cluster synchronization that
depends on the dynamics of each isolated cluster JFC r

, the diffusion matrix D, the

structure λ
(2)
Cr

of each subgraph GCr describing connections among the nodes in cluster

Cr , and the structure λ̄(2) of the subgraph Ḡ describing connections among the clusters.
Proposition 3 is a special case of Theorem 1 when K = 1 and λ̄(2) = 0. One can still
apply Proposition 3 to K > 1 clusters to show cluster synchronization. However,
Theorem 1 provides a less restrictive sufficient condition for cluster synchronization
because it makes use of coupling structure both within and between clusters.

Remark 3 Theorem 1 provides a sufficient condition for the cluster synchronization
manifold to be globally attractive. However, this result can be made less conservative
by restricting the domain over which we take the supremum in Eq. (13). In particular,
if we take the supremum over a neighborhood around the cluster synchronization
manifold, it should give us a condition for the manifold to be only locally attractive.

Remark 4 For systems that satisfy μ < 0, the rate of convergence to the K−cluster
synchronization manifold can be approximated byμ. In addition to the dependence on
the dynamics in each cluster JFC r

and the diffusion matrix D, the rate of convergence

depends on the structure of the coupling within (λ(2)
Cr
) and between (λ̄(2)) clusters.

In the proof of Theorem 1, we need the following key lemmas. We first state the
Courant-Fischer minimax Theorem (Horn and Johnson 1991).

Lemma 1 Let L be a positive semidefinite matrix in R
l×l . Let λ(1) ≤ · · · ≤ λ(l) be

l eigenvalues with e1, . . . , el corresponding normalized orthogonal eigenvectors. For
any v ∈ R

l , if vT e j = 0 for 1 ≤ j ≤ k − 1, 1 ≤ k ≤ l, then

vT Lv ≥ λ(k)vT v.

Lemma 2 (Lemma 3, Aminzare and Sontag 2014a) Suppose that P is a positive
definite matrix and A is an arbitrary matrix. If μ2,P [A] = μ, then P2A + AT P2 ≤
2μP2.

Proof of Theorem 1 Let w := X − X̄ , where

X =
(
X1
C1

T
, . . . , Xc1

C1

T
, . . . , X1

CK

T
, . . . , XcK

CK

T
)T

,

is a solution of (4) and

X̄ =
((
1c1 ⊗ x1

)T
, . . . ,

(
1cK ⊗ xK

)T )T
,

with xr := 1
cr

∑cr
i=1 X

i
Cr

and 1cr ∈ R
cr is a vector of ones. Let w = (

wT
1 , . . . , wT

K

)T
,

where wr :=
(
(X1

Cr
− xr )T , . . . , (Xcr

Cr
− xr )T

)T ∈ R
cr n , and define

�(w) := 1

2
wTPw = 1

2

K∑
r=1

wT
r

(
Icr ⊗ P2

)
wr .
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Since �(w) = 1

2
‖Pw‖22, to prove (14), it suffices to show that

d

dt
�(w) ≤ 2μ�(w).

Let

F(X, t) =
(
FT
C1

(X1
C1

, t), . . . , FT
C1

(Xc1
C1

, t), . . . , FT
CK

(X1
CK

, t), . . . , FT
CK

(XcK
CK

, t)
)T

,

and

F̄(X, t) =
((
1c1 ⊗ y1

)T
, . . . ,

(
1cK ⊗ yK

)T )T where yr = 1

cr

cr∑
i=1

FCr (X
i
Cr

, t).

Standard calculations show that the derivative of � is as follows:

d�

dt
(w) = wTP (F(X, t) − F̄(X, t)

)− wTP(LC ⊗ D)w − wTP(L̄ ⊗ D)w

= wTP (F(X, t) − F(X̄ , t)
)+ wTP (F(X̄ , t) − F̄(X, t)

)
− wTP(LC ⊗ D)w − wTP(L̄ ⊗ D)w

= wTP (F(X, t) − F(X̄ , t)
)− wTP(LC ⊗ D)w − wTP(L̄ ⊗ D)w .

(15)
In the second equation, we added and subtracted wTPF(X̄ , t), where F(X̄ , t) is
written as

F(X̄ , t) =
((
1c1 ⊗ FC1(x1, t)

)T
, . . . ,

(
1cK ⊗ FCK (xK , t)

)T )T
.

The last equality holds because wT
r (1cr ⊗ In) = 0 implies that

wTP (F(X̄ , t) − F̄(X, t)
) =

K∑
r=1

wT
r

(
Icr ⊗ P2

) (
1cr ⊗

(
FT
Cr

(xr , t) − yTr
))

=
K∑

r=1

wT
r

(
1cr ⊗ P2

(
FT
Cr

(xr , t) − yTr
))

=
K∑

r=1

wT
r

(
1cr ⊗ In

)
P2
(
FT
Cr

(xr , t) − yTr
)

= 0.

Step 1. We show that

− wTP(LC ⊗ D)w ≤ −
K∑

r=1

λ
(2)
Cr

wT
r

(
Icr ⊗ P2D

)
wr . (16)
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Since P2D + DP2 is positive semidefinite, Cholesky decomposition yields an upper
triangular matrix M such that P2D + DP2 = 2MT M . For any r = 1, . . . , K ,

−wT
r

(
Icr ⊗ P2

)
(LCr ⊗ D)wr = −wT

r

(
LCr ⊗ P2D

)
wr

= − 1

2
wT
r

(
LCr ⊗

(
P2D + DP2

))
wr

= −wT
r

(
LCr ⊗

(
MT M

))
wr

= −wT
r

(
Icr ⊗ MT

) (LCr ⊗ In
) (

Icr ⊗ M
)
wr

≤ − λ
(2)
Cr

(
(Icr ⊗ M)wr

)T
(Icr ⊗ M)wr

= − λ
(2)
Cr

wT
r

(
Icr ⊗ MT M

)
wr

= − λ
(2)
Cr

wT
r

(
Icr ⊗ P2D

)
wr .

Note that the inequality holds by Lemma 1. To apply Lemma 1, we need to show that

((
Icr ⊗ M

)
wr
)T

(1cr ⊗ In) = 0.

By definition of wr , wT
r 1ncr = 0 and hence

((
Icr ⊗ M

)
wr
)T

(1cr ⊗ In) = wT
r

(
Icr ⊗ MT

)
(1cr ⊗ In) = wT

r

(
1cr ⊗ MT

)

=
cr∑
i=1

(Xi
Cr

− xr )
T MT =

(
cr∑
i=1

(Xi
Cr

− xr )
T

)
MT = 0.

Both P and LC are block diagonal with blocks of same sizes, c1, . . . , cK , so we
have:

−wTP(LC ⊗ D)w = −
K∑

r=1

wT
r

(
Icr ⊗ P2) (LC r ⊗ D)wr ≤ −

K∑
r=1

λ
(2)
C r

wT
r

(
Icr ⊗ P2D

)
wr .

Step 2. We show that

− wTP(L̄ ⊗ D)w ≤ −
K∑

r=1

λ̄(2)wT
r

(
Icr ⊗ P2D

)
wr . (17)

The proof is analogous to the previous step.

−wTP(L̄ ⊗ D)w = −wT
(
IN ⊗ P2

)
(L̄ ⊗ D)w

= −wT
(
L̄ ⊗ P2D

)
w
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= − 1

2
wT

(
L̄ ⊗

(
P2D + DP2

))
w

= −wT
(
L̄ ⊗ MT M

)
w

= −wT
(
IN ⊗ MT

) (L̄ ⊗ In
)
(IN ⊗ M)w

≤ − λ̄(2)wT
(
IN ⊗ MT

)
(IN ⊗ M) w

= − λ̄(2)wT
(
IN ⊗ MT M

)
w

= − λ̄(2)wT
(
IN ⊗ P2D

)
w

= −
K∑

r=1

λ̄(2)wT
r

(
Icr ⊗ P2D

)
wr .

Step 3. We show that

wTP(F(X, t) − F(X̄ , t)) =
K∑

r=1

cr∑
i=1

∫ 1

0
(Xi

Cr
− xr )

T P2 JFC r

(
xr + τ(Xi

Cr
− xr )

)

×(Xi
Cr

− xr ) dτ. (18)

Note that wTP(F(X, t) − F(X̄ , t)) = ∑K
r=1 wT

r

(
Icr ⊗ P2

) F̃r (XCr ) , where

F̃r (XCr ) =
(
FT
Cr

(X1
Cr

, t) − FT
Cr

(xr , t), . . . , F
T
Cr

(Xcr
Cr

, t) − FT
Cr

(xr , t)
)T

.

By the Mean Value Theorem for integrals, for any r = 1, . . . , K ,

wT
r

(
Icr ⊗ P2

)
F̃r (XCr ) =

cr∑
i=1

(Xi
Cr

− xr )
T P2

(
FCr (X

i
Cr

, t) − FCr (xr , t)
)

=
cr∑
i=1

∫ 1

0
(Xi

Cr
− xr )

T P2 JFC r

(
xr + τ(Xi

Cr
− xr )

)

× (Xi
Cr

− xr ) dτ.

Adding over r , r = 1, . . . , K , we obtain Eq. (18).
Note that the sum of the left-hand side of Eqs. (16)–(18), is equal to d�

dt . Combining
Steps 1–3, we have shown that

d�

dt
≤

K∑
r=1

φr ,
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where for any r = 1, . . . , K ,

φr := wT
r

(
Icr ⊗ P2

)
F̃r (XCr ) − wT

r

(
Icr ⊗ P2

) (
Icr ⊗ λ

(2)
Cr

D
)

wr

− wT
r

(
Icr ⊗ P2

) (
Icr ⊗ λ̄(2)D

)
wr

=
cr∑
i=1

∫ 1

0
(Xi

Cr
− xr )

T P2
[
JFC r

(
xr + τ(Xi

Cr
− xr )

)
− λ

(2)
Cr

D − λ̄(2)D
]

(Xi
Cr

− xr ) dτ

≤
cr∑
i=1

2μ

2

∫ 1

0
(Xi

Cr
− xr )

T P2(Xi
Cr

− xr ) dτ

= 2μ

2
wT
r

(
Icr ⊗ P2

)
wr .

(19)

The inequality holds by applying Lemma 2 to Eq. (13): we obtain, for any r =
1, . . . , K , and any (x, t) ∈ V × [0,∞),

P2
[
JFC r

(x, t) −
(
λ

(2)
Cr

+ λ̄(2)
)
D
]

+
[
J TFC r

(x, t) −
(
λ

(2)
Cr

+ λ̄(2)
)
D
]
P2 ≤ 2μP2.

Summing both sides of Eq. (19) over r , for r = 1, . . . , K , we obtain the desired result,
d�
dt (w) ≤ 2μ�(w). �

4 Applications and Numerical Examples

In this section, we apply Theorem 1 to two types of nonlinear neuronal oscillator
dynamics: FitzHugh–Nagumo dynamics and Hindmarsh–Rose dynamics. We then
present numerical simulations for heterogeneousnetworks that includenodal dynamics
of both types. In a second numerical example we show partial cluster synchronization,
which results when γ takes an intermediate value below the bound.

4.1 Application to Networks Of Heterogeneous FitzHugh–Nagumo Neuronal
Oscillators

Here, we apply Theorem 1 to a network of N FitzHugh–Nagumo (FN) neuronal
oscillators with graph G. Let (yi , zi )T ∈ R

2 be the state of oscillator i and I i be the
external input to oscillator i , for i = 1, . . . , N . yi and zi represent the membrane
potential and the recovery variable, respectively. The input current for oscillator i is
I i . The FN dynamics are

ẏi = f i (yi ) − zi + I i + γ
∑
j∈N i

γ i j (y j − yi ),

żi = εi (yi − bi zi ),

(20)
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where f i is a cubic function, f i (y) = y − y3

3 − ai , γ > 0, ai > 0, 0 < bi < 1,
0 < εi � 1 are constant, and N i denotes the set of all the neighbors of node i
in the network. In the FN model, εi represents the time-scale separation between
yi and zi , which affects oscillation frequency. The model parameter bi controls
the shape of the spike by changing the ratio of the duration of the spike to the
refractory period. Using the notation of Theorem 1, n = 2, Xi = (yi , zi )T ,

Fi (Xi , t) = (
f i (yi ) − zi + I i , εi (yi − bi zi )

)T
, D = diag (γ, 0) is the diffusion

matrix, and the γ i j are the edge weights on the graph G.
Assume that there exist K ≥ 1 clusters C1, . . . ,CK of FN oscillators such that

ai = aCr , b
i = bCr , εi = εCr , and I i = ICr for all FN oscillators i ∈ Cr and all

clusters r = 1, . . . , K .
In what follows we show that, for K = 1 cluster, if γ λ(2) > 1, then Eq. (20)

synchronizes, and, more generally, if K > 1, and for all r = 1, . . . , K , εCr = ε,

and γ
(
λ

(2)
Cr

+ λ̄(2)
)

> 1, then Eq. (20) converges to its K -cluster synchronization

manifold.

Corollary 1 Consider Eq. (20), with Assumption 1. For all r = 1, . . . , K, let

γ >
1 + αr

λ
(2)
Cr

+ λ̄(2)
,

where αr = (εC r p−1/p)
2

4bC r εC r
and p > 0 constant. Then for any pair of FN oscillators

{(yi , zi )T , (y j , z j )T } such that (i, j) ∈ Cr ,

yi (t) − y j (t) → 0, zi (t) − z j (t) → 0, as t → ∞.

In particular, if p = maxr 1√
εC r

, then αr is minimized.

Proof To apply Theorem 1, we find a positive definite matrix P such that P2D+DP2

is positive semidefinite and

μ := max
r

sup
(y,z)T ∈R2

μ2,P

[
JFC r

(y, z) −
(
λ

(2)
Cr

+ λ̄(2)
)
D
]

< 0.

Let P = diag (1, p) so that P2D+DP2 = diag (2γ, 0),which is positive semidefinite.
Then

μ2,P

[
JFC r

(y, z) −
(
λ

(2)
Cr

+ λ̄(2)
)
D
]

= μ2

[
P
(
JFC r

(y, z) −
(
λ

(2)
Cr

+ λ̄(2)
)
D
)
P−1

]

= λmax

[(
1 − y2 − γ λ

(2)
Cr

− γ λ̄(2) εC r p
2 − 1

2p
εC r p
2 − 1

2p −bCr εCr

)]
.

(21)

To see this recall that μ2,P [A] = μ2[PAP−1], and, by Remark 1, μ2[A] =
λmax

[
A+AT

2

]
, where λmax[B] denotes the largest eigenvalue of B. Note that the
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matrix shown in the second line, call it B, is the symmetric part of P
(
JFC r

(y, z)−(
λ

(2)
Cr

+ λ̄(2)
)
D
)
P−1. Standard calculations show that if γ > 1+αr

λ
(2)
C r

+λ̄(2)
≥ 1

λ
(2)
C r

+λ̄(2)

then the trace and the determinant of B satisfy

Tr[B] = 1 − y2 − γ λ
(2)
Cr

− γ λ̄(2) − bCr εCr < 0,

Det[B] = −bCr εCr

(
1 − y2 − γ λ

(2)
Cr

− γ λ̄(2) + αr

)
> 0.

Therefore, λmax[B] < 0 and Theorem 1 yields the desired result. �
In Corollary 1, the parameter γ can be interpreted as the diffusion matrix, D,

that represents the overall strength of graph coupling. For a system of Fitzhugh–
Nagumo oscillators, the sufficient condition depends on a parameter, ε, that controls
the frequency of oscillations through the time-scale separation between the voltage
variable and gating variable. In general, as the value of ε for a given cluster is increased,
the value of γ needed to guarantee synchronization in that cluster is also increased.
Furthermore, for values of ε in a biologically relevant range (0.02, 0.2), increasing
the minimum ε over all clusters also increases the value of γ required for cluster
synchronization. This indicates that systems with a lower frequency of oscillation
synchronize more rapidly than those with higher oscillation frequencies. The other
parameter that influences the sufficient condition for cluster synchronization is b that
controls the ratio of the time over which the neuron is spiking to the refractory period.
As this parameter is increased (for biologically realistic results, it is required to stay
in the range (0, 1)), a smaller overall graph coupling is required to guarantee cluster
synchronization for the entire network.

Remark 5 In Corollary 1:

1. If we assume that, for all r = 1, . . . , K , εCr = ε, then αr = 0 and we obtain a
smaller lower bound for γ , namely

γ >
1

λ
(2)
Ci

+ λ̄(2)
.

2. Nondiagonal P does not give a smaller lower bound for γ . If P is not diagonal,
the condition for positive determinant is quadratic in terms of γ . This contradicts
the positiveness of γ and so cannot be used to improve the bound for diagonal P .

3. Theorem 1 does not require constant system parameters, so it can be used to
derive an analogous condition for a network of FN oscillators with time-varying
parameters.

Remark 6 In the previous work (Davison et al. 2016), we showed that for K = 1,

if γ ≥ 1+ε+β2/3

λ
(2)
C 1

, where β is the ultimate bound for the y variable, then Eq. (20)

synchronizes. By Corollary 1 we have found a smaller lower bound for γ , γ > 1
λ

(2)
C 1

,

that guarantees synchronization.
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4.2 Application to Networks Of Heterogeneous Hindmarsh–Rose Neuronal
Oscillators

Here, we apply Theorem 1 to a network of N two-dimensional modified Hindmarsh–
Rose (HR) neuronal oscillators with graph G. Let (yi , zi )T ∈ R

2 be the state of
oscillator i for i = 1, . . . , N . yi and zi represent themembrane potential and the recov-
ery variable, respectively. The input current for oscillator i is I i . The two-dimensional
HR dynamics are

ẏi = gi (yi ) + zi + I i + γ
∑
j∈N i

γ i j (y j − yi ),

żi = δi (1 − 5yi
2 − zi ),

(22)

where gi (y) = −yi
3 + ci yi

2
, γ, ci > 0, 0 < δi � 1 is a parameter that determines

the time-scale separation between the fast and slow dynamics, and N i denotes the
set of all the neighbors of node i in the network. Using the notation of Theorem 1,

n = 2, Xi = (yi , zi )T , Fi (Xi , t) =
(
gi (yi ) + zi + I i , δi (1 − 5yi

2 − zi )
)T

, D =
diag (γ, 0) is the diffusion matrix, and the γ i j are the edge weights on the graph G.

Assume there exist K ≥ 1 clustersC1, . . . ,CK ofHRoscillators such that ci = cCr ,
δi = δCr , and I i = ICr for all HR oscillators i ∈ Cr and all clusters r = 1, . . . , K .

Corollary 2 Consider Eq. (22), under Assumption 1. For all r = 1, . . . , K, let

γ >
1

λ
(2)
Ci

+ λ̄(2)
max

{
−(2cCi − 5)2

4(25δCi p
2 − 3)

+ 1

4δCi p
,
c2Ci

3
− δCi

}
, (23)

where p is a constant that satisfies 0 < p <
√

3
25δC i

. Then for any pair of HR

oscillators {(yi , zi )T , (y j , z j )T } such that (i, j) ∈ Cr ,

yi (t) − y j (t) → 0, zi (t) − z j (t) → 0, as t → ∞.

In particular, if p = maxr 3
5δC r (5+|2cC r −5|) , then the first argument of themax operator

in Eq. (23) is minimized and takes value (5+|2cC r −5|)2
12 .

Proof To apply Theorem 1, we find a positive definite matrix P such that P2D+DP2

is positive semidefinite and

μ := max
r

sup
(y,z)T ∈R2

μ2,P

[
JFC r

(y, z) −
(
λ

(2)
Cr

+ λ̄(2)
)
D
]

< 0.
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Let P = diag (1, p) so that P2D+DP2 = diag (2γ, 0),which is positive semidefinite.
Then

μ2,P

[
JFC r

(y, z) −
(
λ

(2)
Cr

+ λ̄(2)
)
D
]

= μ2

[
P
(
JFC r

(y, z) −
(
λ

(2)
Cr

+ λ̄(2)
)
D
)
P−1

]

= λmax

[(
−3y2 + 2cCr y − γ λ

(2)
Cr

− γ λ̄(2) 1
2p − 5δCr py

1
2p − 5δCr py −δCr

)]
.

(24)

We denote this matrix as C.
If γ (λ

(2)
Cr

+ λ̄(2)) >
c2C r
3 − δCr , then we have

γ
(
λ

(2)
Cr

+ λ̄(2)
)

+ δCr >
c2Cr

3
>

c2Cr

3
− 3

(
y − cCr

3

)2 = −3y2 + 2cCr y.

Therefore, the trace of C satisfies

Tr[C] = −3y2 + 2cCr y − γ λ
(2)
Cr

− γ λ̄(2) − δCr < 0.

Further, if γ (λ
(2)
Cr

+ λ̄(2)) >
−(2cC r −5)2

4(25δC r p
2−3)

+ 1
4δC r p

, then, under the condition that

p2 < 3
25δC r

, the determinant of C satisfies

Det[C] = −δCr

(
−3y2 + 2cCr y − γ λ

(2)
Cr

− γ λ̄(2)
)

−
(

1

2p
− 5δCr py

)2

> 0.

Therefore, λmax[C] < 0 and Theorem 1 yields the desired result. �

4.3 Numerical Examples

Example 1 In this example, we consider the network of 17 neuronal oscillators shown
in the left panel of Fig. 1. This network can be grouped into three different clusters
based on the individual nodal dynamics:

(i) ClusterC1 (orange circles): six FN oscillators; aC 1
= 0.5, bC 1

= 0.1, IC 1
= −2,

and εC 1
= 0.08;

(ii) Cluster C2 (green squares): seven HR oscillators; cC 2
= 2, IC 2

= 2, and δC 2
=

0.02;
(iii) Cluster C3 (blue triangles): four HR oscillators; cC 3

= 3, IC 3
= 4, and δC 3

=
0.01.

The second smallest eigenvalues of the Laplacian of the three intra-cluster sub-
graphs and the inter-cluster subgraph are λ

(2)
C1

= 1.83, λ
(2)
C2

= λ
(2)
C3

= 2, and

λ̄(2) = 0.262, respectively. It follows directly fromCorollaries 1 and 2 that the clusters
will synchronize if γ satisfies the following inequality:
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Fig. 1 Cluster synchronization in a network of 17 heterogeneous neuronal oscillators shown on the left:
six FitzHugh–Nagumo oscillators (orange circles) with aC 1

= 0.5, bC 1
= 0.1, IC 1

= −2, εC 1
= 0.08,

seven Hindmarsh–Rose oscillators (green squares) with cC 2
= 2, IC 2

= 2, δC 2
= 0.02, and four

Hindmarsh–Rose oscillators (blue triangles) with cC 3
= 3, IC 3

= 4, δC 3
= 0.01. The states converge to

the 3-cluster synchronization manifold for γ = 4.7 (Color figure online)

γ > max
p∈(0,

√
6)

⎧⎨
⎩
1 + 31.25( p

12.5 − 1
p )2

λ
(2)
C1

+ λ̄(2)
,

12.5
p − 1

2p2−12

λ
(2)
C2

+ λ̄(2)
,

1.3133

λ
(2)
C2

+ λ̄(2)
,

25
p − 1

p2−12

λ
(2)
C3

+ λ̄(2)
,

2.99

λ
(2)
C3

+ λ̄(2)

⎫⎬
⎭ . (25)

For p = 2.4, γ > 4.6 provides a sufficient condition for cluster synchronization. As
shown in Fig. 1, the network indeed stabilizes to three synchronized clusters when
γ = 4.7.

Example 2 In this example, we consider a large network of 200 FN oscillators illus-
trated in the left panel of Fig. 2. The network is obtained through interconnection of
two clusters:

(i) ClusterC1 (magenta squares):A complete graph of 100FNoscillators;aC1 = 0.9,
bC1 = 0.5, IC1 = 2.0, and εC1 = 0.08;

(ii) Cluster C2 (green triangles): A star graph of 100 FN oscillators; aC2 = 0.7,
bC2 = 0.8, IC2 = 0.3, and εC2 = 0.08.

Each node in the first cluster is connected to a unique node in the second cluster with
coupling strength 0.25. Note that the cluster-input-equivalence condition holds in this
case. For this network λ

(2)
C1

= 100, λ
(2)
C2

= 1 and λ̄(2) = 0. By choosing γ = 0.02

such that γ > 1/
(
λ

(2)
C1

+ λ̄(2)
)
but γ < 1/

(
λ

(2)
C2

+ λ̄(2)
)
we do not obey the sufficient

condition. However, numerical simulation (Fig. 2) shows that the magenta cluster (C1)
synchronizes nevertheless as suggested by the fact that γ > 1/

(
λ

(2)
C1

+λ̄(2)
)
is satisfied.

Our future work will explore more along this direction.
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Fig. 2 Synchronization of only one (magenta) of two clusters in a large network of heterogeneous FN
oscillators when the coupling strength takes an intermediate value. There are 100 oscillators in one cluster
connected through a star graph (green triangles) and 100 oscillators in a second cluster connected through
a complete graph (magenta squares). The network on the left illustrates the connections between clusters
(in gray) in the case of 5 oscillators in each cluster (Color figure online)

5 Conclusion

In this paper, we consider the patterns of synchronization that emerge in networks
where individual nodes may have different intrinsic nonlinear dynamics. We leverage
the cluster-input-equivalence condition, developed by Stewart et al. (2003), Belykh
et al. (2008) and extended with a useful graph-theoretical perspective in Schaub et al.
(2016), to provide a starting framework for proving sufficient conditions for synchro-
nization within clusters based on properties of the nodes and network structure. By
adopting an approach based on contraction theory (Aminzare 2015), our work proves a
new sufficient condition for cluster synchronization, and provides its characterization
in terms of the intra-cluster network structure and the inter-cluster network structure.
The inter-cluster network structure has not been explicitly used in previous works
on finding sufficient conditions for cluster synchronization; our work improves on
sufficient conditions by incorporating significantly more information about network
structure.

Another key contribution of our work is an improvement on previous sufficient
conditions for cluster synchronization (Davison et al. 2016) in networkswith heteroge-
neous intrinsic dynamics.We have detailed an approach to finding sufficient conditions
for synchronization independent of nonlinear model and network structure. However,
the strict requirements imposed by studying complete synchronization within clusters
that manifest in the cluster-input-equivalence condition limit the amount of hetero-
geneity in the nodal dynamics and asymmetry in the network that can be addressed.
Future generalizations of our results should include relaxations of the complete syn-
chronization requirement which would allow for more complex and realistic network
configurations. A concrete first relaxation would be to combine the robustness result
for contracting systems, as in Pham and Slotine (2007), with the results from this work
to study a system perturbed from a cluster-input-equivalence state by Brownian noise.
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Demidovič, B.P.: Lektsii po matematicheskoi teorii ustoichivosti. Izdat. Nauka, Moscow (1967)
Desoer, C.A., Vidyasagar, M.: Feedback Systems: Input-Output Properties. Electrical Science. Academic

Press [Harcourt Brace Jovanovich, Publishers], New York (1975)
Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., Garnero, L.: Inter-brain synchronization during social

interaction. PLoS ONE 5(8), 1–10 (2010)
Favaretto, C., Bassett, D.S., Cenedese, A., Pasqualetti, F.: Bode meets kuramoto: synchronized clusters in

oscillatory networks. In: Proceedings of American Control Conference (ACC), pp. 2799–2804 (2017a)
Favaretto, C., Cenedese, A., Pasqualetti, F.: Cluster Synchronization in Networks of Kuramoto Oscillators.

In: Proceedings of the IFAC 2017 World Congress, pp. 2485–2490 (2017b)
Ferreira,A.S.R.,Arcak,M.:Agraphpartitioning approach topredictingpatterns in lateral inhibition systems.

SIAM J. Appl. Dyn. Syst. 12(4), 2012–2031 (2013)
Fiore,D.,Russo,G., diBernardo,M.:Exploiting nodes symmetries to control synchronization and consensus

patterns in multiagent systems. IEEE Control Syst. Lett. 1(2), 364–369 (2017)

123



J Nonlinear Sci

Golubitsky, M., Stewart, I., Török, A.: Patterns of synchrony in coupled cell networks with multiple arrows.
SIAM J. Appl. Dyn. Syst. 4(1), 78–100 (2005)

Hartman, P.: On stability in the large for systems of ordinary differential equations. Can. J. Math. 13,
480–492 (1961)

Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)
Jouffroy, J.: Some ancestors of contraction analysis. In: Proceedings of the 44th IEEE Conference on

Decision and Control 2005 and European Control Conference 2005, pp. 5450–5455 (Dec 2005)
Lehnertz, K., Bialonski, S., Horstmann, M.-T., Krug, D., Rothkegel, A., Staniek, M., Wagner, T.: Synchro-

nization phenomena in human epileptic brain networks. J. Neurosci. Methods 183(1), 42–48 (2009)
Lewis, D.C.: Metric properties of differential equations. Am. J. Math. 71, 294–312 (1949)
Lohmiller, W., Slotine, J.-J.E.: On contraction analysis for non-linear systems. Automatica 34(6), 683–696

(1998)
Lohmiller, W., Slotine, J.: Contraction analysis of nonlinear distributed systems. Int. J. Control 78, 678–688

(2005)
Lu, W., Liu, B., Chen, T.: Cluster synchronization in networks of coupled nonidentical dynamical systems.

Chaos 20(1), 013120 (2010)
MacLeod, K., Laurent, G.: Distinct mechanisms for synchronization and temporal patterning of odor-

encoding neural assemblies. Science 274(5289), 976–979 (1996)
Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math.

50(6), 1645–1662 (1990)
Motter, A.E., Myers, S.A., Anghel, M., Nishikawa, T.: Spontaneous synchrony in power-grid networks.

Nature Phys. 9, 191–197 (2013)
Nair, S., Leonard, N.E.: Stable synchronization of mechanical system networks. SIAM J. Control Optim.

47(2), 661–683 (2008)
Orosz, G., Moehlis, J., Ashwin, P.: Designing the dynamics of globally coupled oscillators. Prog. Theor.

Phys. 122(3), 611–630 (2009)
Pavlov, A., Pogromvsky, A., van de Wouv, N., Nijmeijer, H.: Convergent dynamics, a tribute to Boris

Pavlovich Demidovich. Syst. Control Lett. 52, 257–261 (2004)
Pecora, L.M., Sorrentino, F., Hagerstrom,A.M.,Murphy, T.E., Roy, R.: Cluster synchronization and isolated

desynchronization in complex networks with symmetries. Nat. Commun. 5, 4079 (2014)
Pham, Q.-C., Slotine, J.-J.: Stable concurrent synchronization in dynamic system networks. Neural Netw.

20(1), 62–77 (2007)
Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences,

volume 12 of Cambridge Nonlinear Science Series. Cambridge University Press, Cambridge (2003)
Russo, G., Di Bernardo, M.: Contraction theory and master stability function: linking two approaches to

study synchronization of complex networks. IEEE Trans. Circuits Syst. 56(2), 177–181 (2009)
Russo, G., Slotine, J.-J.E.: Global convergence of quorum-sensing networks. Phys. Rev. E 82(4), 041919

(2010)
Schaub,M.T., O’Clery, N., Billeh, Y.N., Delvenne, J.-C., Lambiotte, R., Barahona,M.: Graph partitions and

cluster synchronization in networks of oscillators. Chaos Interdiscip. J. Nonlinear Sci. 26(9), 094821
(2016)

Sepulchre, R., Paley, D., Leonard, N.E.: Stabilization of planar collective motion with limited communica-
tion. IEEE Trans. Autom. Control 53(3), 706–719 (2008)

Sivrikaya, F., Yener, B.: Time synchronization in sensor networks: a survey. IEEE Netw. 18(4), 45–50
(2004)

Smith, H.M.: Synchronous flashing of fireflies. Science 82(2120), 151–152 (1935)
Soderlind, G.: The logarithmic norm. History and modern theory. BIT Numer. Math. 46(3), 631–652 (2006)
Sorrentino, F., Ott, E.: Network synchronization of groups. Phys. Rev. E 76(5), 056114 (2007)
Sorrentino, F., Pecora, L.: Approximate cluster synchronization in networks with symmetries and parameter

mismatches. Chaos 26(9), 094823 (2016)
Sorrentino, F., Pecora, L.M., Hagerstrom, A.M., Murphy, T.E., Roy, R.: Complete characterization of the

stability of cluster synchronization in complex dynamical networks. Sci. Adv. 2(4), e1501737 (2016)
Stewart, I., Golubitsky, M., Pivato, M.: Symmetry groupoids and patterns of synchrony in coupled cell

networks. SIAM J. Appl. Dyn. Syst. 2(4), 609–646 (2003)
Tiberi, L., Favaretto, C., Innocenti, M., Bassett, D.S., Pasqualetti, F.: Synchronization patterns in networks

of Kuramoto oscillators: A geometric approach for analysis and control. In: Proceedings of the 56th
IEEE Conference on Decision and Control (CDC), pp. 481–486 (2017)

123



J Nonlinear Sci

Wang, W., Slotine, J.J.E.: On partial contraction analysis for coupled nonlinear oscillators. Biol. Cybern.
92, 38–53 (2005)

Wang, K., Fu, X., Li, K.: Cluster synchronization in community networks with nonidentical nodes. Chaos
19(2), 023106 (2009)

Wilson, D., Moehlis, J.: Clustered desynchronization from high-frequency deep brain stimulation. PLoS
Comput. Biol. 11(12), e1004673 (2015)

Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol.
16(1), 15–42 (1967)

Xia, W., Cao, M.: Clustering in diffusively coupled networks. Automatica 47(11), 2395–2405 (2011)
Yoshizawa, T.: Stability Theory by Liapunov’s Second Method. Publications of the Mathematical Society

of Japan, No. 9. The Mathematical Society of Japan, Tokyo (1966)
Yoshizawa, T.: Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions.

Applied Mathematical Sciences, vol. 14. Springer, New York (1975)

123


	Cluster Synchronization of Diffusively Coupled Nonlinear Systems: A Contraction-Based Approach
	Abstract
	1 Introduction
	2 A Review of Contraction Theory
	3 Main Result: Cluster Synchronization
	4 Applications and Numerical Examples
	4.1 Application to Networks Of Heterogeneous FitzHugh–Nagumo Neuronal Oscillators
	4.2 Application to Networks Of Heterogeneous Hindmarsh–Rose Neuronal Oscillators
	4.3 Numerical Examples

	5 Conclusion
	Acknowledgements
	References




