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ABSTRACT

We study the dynamics of a low-dimensional system of coupled model neurons as a step towards understanding the vastly complex network of
neurons in the brain. We analyze the bifurcation structure of a system of two model neurons with unidirectional coupling as a function of two
physiologically relevant parameters: the external current input only to the �rst neuron and the strength of the coupling from the �rst to the
second neuron. Leveraging a timescale separation, we prove necessary conditions for multiple timescale phenomena observed in the coupled
system, including canard solutions and mixed mode oscillations. For a larger network of model neurons, we present a su�cient condition for
phase locking when external inputs are heterogeneous. Finally, we generalize our results to directed trees of model neurons with heterogeneous
inputs.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5050178

E�orts to gain insight into the complex dynamics of the brain
bene�t from a detailed understanding of neurons and their inter-
active dynamics. We study a system of two model neurons where
the �rst neuron receives a constant external input and the sec-
ond neuron receives an input from the �rst neuron. Systems of
two coupled model neurons exhibit rich dynamical patterns that
can represent large networks comprised of two distinct clusters.
This makes them fascinating in their own right and useful as
a starting point for studying more general networks. Using the
bifurcation theory, we �nd bounds on the external input and
coupling strength that predict �ring, mixed mode oscillations,
and phase locking. We extend these conditions to more general
networks. Our results provide foundations for investigating the
interplay between structure and external stimuli in networks of
neurons.

I. INTRODUCTION

The study of model neurons has a rich history, dating back to
the pioneering work of Hodgkin and Huxley1 on the action poten-
tial in the squid giant axon. A two-dimensional model that captures
salient qualities of the four-dimensional Hodgkin-Huxleymodel was
developed independently by FitzHugh2,3 and Nagumo et al.4 In this

model, commonly known as the FitzHugh-Nagumo (FN)model, one
variable represents the membrane potential and the other represents
a gating variable. A constant external input to the FN model neuron
can produce quiescent behavior (a low-voltage stable equilibrium
point), �ring (a stable limit cycle), or saturated behavior (a high-
voltage stable equilibrium point). The FN model neuron captures
realistic neuronal behavior such as spike accommodation, bistability,
and excitability.5

A system of two coupled neurons can represent a larger net-
work of neurons that cluster into two groups in which neurons
within each group synchronize but neurons in di�erent groups do
not. A cluster synchronized network can be reduced to a quotient
network6,7 by leveraging balanced conditions on coupling and graph
structure,8 as well as bounds on coupling strength.9,10 A system of
two FNmodel neurons with gap junction di�usive coupling (two-FN
system) has been studied numerically and analytically in the sym-
metric case,11,12 where both neurons receive the same external input
and are coupled bidirectionally (undirected coupling). Gap junction
di�usive coupling is modeled as a di�erence between the membrane
potentials of the two model neurons multiplied by a parameter that
represents the coupling strength. The two-FN system has also been
studied numerically11 in a context where the intrinsic properties of
both models are the same but the neurons are coupled unidirection-
ally (directed coupling). Here, we add to the existing literature by

Chaos 29, 033105 (2019); doi: 10.1063/1.5050178 29, 033105-1

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/1.5050178
https://doi.org/10.1063/1.5050178
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5050178
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5050178&domain=aip.scitation.org&date_stamp=2019-03-01
mailto:end@princeton.edu
https://doi.org/10.1063/1.5050178


Chaos ARTICLE scitation.org/journal/cha

analytically describing the bifurcation structure of the directed two-
FN system in terms of two parameters, the external input to the �rst
model neuron and the unidirectional coupling strength from the �rst
model neuron to the second.

The FN model neuron is a classic example of a fast-slow sys-
tem, and the coupled pair of FNmodel neurons exhibit rich dynamics
characterized by the timescale separation. Under certain conditions
on external input and coupling strength, the system exhibits canard
solutions, which are solutions that pass from a stable to an unstable
manifold in the slow system and stay near the unstable manifold for a
long time relative to the slow system timescale.13–15 Canard solutions
result from the presence of two distinct types of folded singularities,
stable folded nodes, and folded saddles. In particular, stable folded
nodes give rise to robust families of canard solutions.14,16When com-
bined with a suitable return mechanism, canard solutions can lead
to mixed mode oscillations (MMOs), which are periodic oscillations
that alternate between canard-driven oscillations and a relaxation
oscillation.17The existence of canards andMMOs has been described
for systems in four dimensions,14,18 systems with two slow variables
and two fast variables,19 and generalized systems in arbitrary �nite
dimensions.20 The folded saddle node of type I (FSN I) and folded
saddle node of type II (FSN II) have been identi�ed as mechanisms
for the onset of MMOs in fast-slow systems.17,21–24 We leverage these
results to determine the regions of parameter space where canards
and MMOs may be present in the directed two-FN system, which
has two slow variables and two fast variables.

Canard-induced MMOs have been studied analytically in
numerous systems including chemical reactions,25,26 the Hodgkin-
Huxley neuronal model,27 cortical grid cells,28 and a self-coupled FN
model neuron.29 In a two-FN system, the onset of �ring, as cou-
pling strength is increased, can be characterized by the appearance
of canard solutions and by MMOs, as the coupling is increased fur-
ther. The existence of canard solutions in a two-FN system was �rst
proven using nonstandard analysis in the case of model neurons with
identical parameters.30Necessary conditions were found in terms of a
model parameter that controls the slope of the linear nullcline of the
system. Conditions for di�erent stability types of folded singularities
were found in terms of the same model parameter in a slightly mod-
i�ed, but still symmetric, model.31 Here, we �x the corresponding
parameter within the range where canard solutions may be present
and �nd conditions for the existence of canard-induced MMOs in
terms of two parameters that break symmetry: external input and
coupling strength.

A condition for the onset of MMOs in a two-FN system was
shown as an application of a method developed to study MMOs
in systems with two fast variables and two slow variables.32 There
are no symmetry requirements and the main result is a necessary
condition for the MMO onset in terms of a parameter correspond-
ing to the input to one of the neurons. In the spirit of this work,
we prove explicit necessary conditions for existence of canard solu-
tions and MMOs in the directed two-FN system in terms of both
the external input and the coupling strength. First, we take the sin-
gular limit of the system, and obtain necessary conditions on the
bifurcation parameters for existence of transcritical bifurcations. The
transcritical bifurcations in the singularly perturbed system delin-
eate regions in parameter space where MMOs exist in the original
system.

We show, further, that the original system admits Hopf bifurca-
tions within a distance of order ε around the point in the parameter
space where the singularly perturbed system admits transcritical
bifurcations. This we use to derive novel bounds for phase-locking in
representative networks of model neurons. Phase locking is a gener-
alization of synchronization where the phases of oscillating models
remain separated by a constant o�set, while amplitudes and wave-
forms may vary.33 A common phenomenon in nature, phase locking
has been studied in cardiac rhythms,34–36 in the �ring patterns of
squid axons,37 in two coupled phase oscillators,38 in local �eld poten-
tialmeasurements of neurons in the humanbrain,39,40 and in the brain
as a mechanism for coordination between groups of neurons.41

Finally, we consider the more general problem of n FN model
neurons linked by unidirectional gap junction di�usive coupling in
a directed tree, with heterogeneous coupling strengths and hetero-
geneous external inputs. As in the directed two-FN system, this can
represent a class of large networks that contain cluster synchronized
groups of model neurons and satisfy conditions on graph structure8

and connectivity9,10 so they can be reduced to a quotient network.6,7

An analogous problem with homogeneous coupling strength has
been analyzed in detail in the strong coupling limit where the dynam-
ics are reduced using the singular perturbation theory.42 Here, we
leverage an analysis of the singular perturbation of the directed
two-FN system to provide necessary conditions for the existence of
MMOs and su�cient conditions for phase locking in the original
n-FN system.

Our contributions towards understanding the dynamics of net-
worked nonlinearmodel neurons are as follows. First, we explain how
the bifurcation structure of the directed two-FN system relates to the
bifurcation structure of the reduced, singularly perturbed system that
is used to study canard solutions. This is critical because the reduced
system can be used to explain features of the original system and
the original system can be used to understand the reduced system.
Second, we provide necessary conditions for canards and MMOs in
the directed two-FN system in terms of two model parameters; this
is an extension of the conditions found in terms of one parameter
in the literature. Third, we provide a su�cient condition for phase
locking given heterogeneous external inputs in the directed two-FN
system.We generalize these conditions to directed trees of FNmodel
neurons.

The paper is organized as follows. In Sec. II, we review the
standard analysis of a single FN model neuron and give a biophysi-
cal rationale for bounds on model parameters used throughout the
paper. In Sec. III, we de�ne the directed two-FN system and �nd
conditions for Hopf bifurcations. In Sec. IV, we compute the singu-
lar perturbation of the directed two-FN system. We prove necessary
conditions for the transcritical bifurcations in the singularly per-
turbed system and canards and MMOs in the original system in
Sec. V. In Sec. VI, we generalize the results to directed trees of FN
model neurons. We provide a numerical example to illustrate our
results.

II. SINGLE FITZHUGH-NAGUMO MODEL NEURON

The FN model is a two-dimensional simpli�cation of the four-
dimensional Hodgkin-Huxley (HH) model that retains conceptually
relevant properties of the activation and deactivation dynamics of the
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neuronal action potential. By letting y and z represent the membrane
potential and a slow gating variable, respectively, its dynamics are
given by

dy

dt
= ψ(y)− z + I,

dz

dt
= ε(y − bz),

(1)

where ψ(y) is a cubic polynomial. For our purposes, we use ψ(y)

= y − y3

3 − a. In this model, I corresponds to an external input, 0
< ε � 1 is a positive timescale separation constant, and a and b are
positive constants.

The FN model is far simpler to analyze than the full HH model
due to the lower dimension. Despite the lower dimension, the FN
model captures key characteristics of the HH model and a range of
physiologically meaningful regimes and behaviors.5,43 The FNmodel
is a suitable choice for network analysis because it is both dynamically
rich and analytically tractable.

Hopf bifurcations are distinguishing features of the FN model
dynamics. A Hopf bifurcation occurs when the variation in a param-
eter leads to the appearance or disappearance of an isolated limit cycle
from an equilibrium point and a simultaneous change in stability of
the equilibrium inside the limit cycle. In a supercritical Hopf bifurca-
tion, the limit cycle is stable, while in a subcritical Hopf bifurcation,
the limit cycle is unstable.

A necessary condition44 for the FN model to exhibit distinct
quiescent, �ring, and saturated regimes is the existence of a unique
equilibrium point for all values of the bifurcation parameter I. In this
paper, we assume the following:

Assumption II.1. Parameters a, b, and ε are such that the FN
model (1) has a unique equilibrium point for all values of I ≥ 0. This
results in conditions 0 < a < 1 and 0 < b < 1.

The condition on a corresponds to a simple voltage o�set
requirement and the condition on b corresponds to a requirement
that the slope of the linear nullcline of (1) must be greater than that
of the cubic nullcline of (1).

By Assumption II.1, there is one equilibrium point for all values
of I. There are six key features in the bifurcation structure of the FN
model as the external input parameter, I, is varied:

I = I0sn: As I is increased from zero, stable and unstable limit cycles
appear through a saddle node bifurcation of limit cycles at
I = I0sn for some I0sn > 0, while the unique equilibrium point
is stable. The large limit cycles are relaxation oscillations. The
bifurcation at I0sn de�nes the beginning of the �ring regime and
the small region of bistability.

I = I0c: As I is increased slightly, through the point I = I0c,45,46 there
is a region of bistability during which there occurs a canard
explosion, which is an abrupt transition from small limit cycle
oscillations to larger limit cycle oscillations. The unique equi-
librium point is still stable. By Ref. 47, the saddle node of limit
cycles and the canard explosion occur at essentially the same
parameter value, i.e., I0c ≈ I0sn. We calculate an approximation
to I0c later in this section.

I = I0: As I is increased further, through a subcritical Hopf bifurca-
tion at I = I0, where I0 > I0c, the unstable limit cycles disappear,

the stable equilibriumpoint becomes unstable, and the large sta-
ble limit cycles remain. The bifurcation at I0 de�nes the end of
the small region of bistability.

I = I1: For I0 < I < I1, for some I1 > 0, there are only an unstable
equilibrium point and the large stable limit cycle oscillations. At
I = I1, through another subcritical Hopf bifurcation, the equi-
librium becomes stable and small unstable limit cycles appear.
The bifurcation at I1 de�nes the beginning of a second small
region of bistability.

I = I1c: For I1 < I < I1c, the equilibrium is stable and there is again
a region of bistability characterized by a canard explosion with
the unique equilibrium point stable.45,46We calculate an approx-
imation to I1c later in this section.

I = I1sn: As I is increased slightly, through the point I = I1sn, there
is another saddle node bifurcation of limit cycles. The bifurca-
tion at I1sn de�nes the end of the �ring regime and the second
small region of bistability. By Ref. 47, the saddle node of limit
cycles and the canard explosion occur at essentially the same
parameter value, i.e., I1sn ≈ I1c.

Figure 1 depicts the bifurcation diagram of the FNmodel when
I is varied.

The following proposition from Ref. 46 describes the stability
of the unique equilibrium point of (1) given Assumption II.1 and
conditions on I for Hopf bifurcations.

Proposition II.2 (Ref. 46). Let Assumption II.1 hold. Then,
there exists I0 < I1 such that the equilibrium point is stable for I < I0
and, as I increases, it will undergo a transition to an unstable equilib-
rium point through a Hopf bifurcation at I0. As I is increased further it
will undergo a transition from unstable to stable through a secondHopf
bifurcation at I1.

FIG. 1. Bifurcation diagram for a single FN model drawn with a numerical contin-
uation software tool48 for a = 0.875, b = 0.8, and ε = 0.08. Green corresponds
to stable equilibrium points or limit cycles, and red corresponds to unstable equilib-
rium points or limit cycles. For most values I < I0, the FNmodel is in the quiescent
regime. For I0sn ≈ I0c < I < I0, the FN model is in the firing regime since it con-
currently exhibits a stable equilibrium point, small unstable oscillations, and larger
stable oscillations. The FN model is always in the firing regime when I0 < I < I1.
For I1 < I < I1c ≈ I1sn, the FN model is also in the firing regime since it concur-
rently exhibits a stable equilibrium point, small unstable oscillations, and larger
stable oscillations. For all other I > I1, the FN model is in the saturated regime.
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We review the approach to analyzing stability of the limit cycles
arising from the Hopf bifurcations following the methods of Chap-
ter 3 of Ref. 46 and the application to the FN model in Ref. 49.
We generalize the approach to networks of FN model neurons in
Secs. III–VII.

The dynamics at a Hopf bifurcation at the origin of a two-
dimensional system can be written as







dx1

dt
dx2

dt






=
(

0 −ω
ω 0

)(

x1
x2

)

+
(

F(x1, x2)
G(x1, x2)

)

(2)

such that F and G satisfy F(0, 0) = G(0, 0) = 0 and DxF(0, 0) =
DxG(0, 0) = 0, where DxF is the Jacobian of F with respect to x and
x = (x1, x2)>.

De�nition II.3 (Cubic coe�cient46,50). Consider the system
(2). The coe�cient of the cubic term of the Taylor expansion of the RHS
of (2) is expressed as

α =
1

16
(Fx1x1x1 + Fx1x2x2 + Gx1x1x2 + Gx2x2x2)

∣

∣

∣

∣

(0,0)

+
1

16ω
(Fx1x2(Fx1x1 + Fx2x2)− Gx1x2(Gx1x1 + Gx2x2)

− Fx1x1Gx1x1 + Fx2x2Gx2x2)

∣

∣

∣

∣

(0,0)

, (3)

where Fx1x2 denotes
∂2F

∂x1∂x2
and so on.

Proposition II.4 [Theorem 3.4.2 (modi�ed)46]. The system
ẋ = f(x,µ) admits a Hopf bifurcation for the parameter valueµ = µ0

at an equilibrium point x = 0 if

1. Dxf(0,µ0) has a pair of pure imaginary eigenvalues and no other
eigenvalues with zero real parts.

2.
∂

∂µ
<[λ(µ)]

∣

∣

∣

∣

µ=µ0
6= 0, where <(λ) denotes the real part of the

eigenvalue λ.
3. The cubic coe�cient of the Taylor expansion of f , denoted by α and

de�ned in De�nition II.3, is nonzero.

Furthermore, if α < 0, the Hopf bifurcation is supercritical, while, if
α > 0, the Hopf bifurcation is subcritical.

The cubic coe�cient is also called the �rst Lyapunov coe�cient.
For the FN model, the cubic coe�cient is given by

α =
1

8

(

2b − b2ε − 1

1 − b2ε

)

.

In this paper, we choose parameters that ensure Assumption II.1
holds and the bifurcations are subcritical Hopf (α > 0); these yield
biologically realistic dynamics.51,52 We �x a = 0.875, b = 0.8, and
ε = 0.08, and we consider I ≥ 0 as a bifurcation parameter.

The value of the bifurcation parameter I where canards exist
near each Hopf bifurcation is close to the respective saddle node
bifurcation of limit cycles and can be found following Ref. 53. Let
f represent the dynamics of (1), and let F and G be de�ned as in (2)
for (1), where x1 = y and x2 = z. Following Eq. (3.23) of Ref. 53, we

compute

Iic = Ii − 8
a1

Fxxδi
ε + O(ε2), i = 0, 1,

where Ii is the value of I at the Hopf bifurcation,

a1 =
1

16
[Fyy(FzGyy − FyyGz)+ Gy(FyzFyy − FzFyyy)]

and

δi =
∂

∂I
{Tr[Dxf(p, I)]}

∣

∣

∣

∣

I=Ii

.

For the FN model (1), I0c = I0 − 0.09ε + O(ε2) and I1c = I1 +
0.09ε + O(ε2). So canards exists for I0c < I < I0 and for I1 < I < I1c,
as illustrated in Fig. 1.

III. DIRECTED TWO-FN MODEL NEURON SYSTEM

The directed two-FN model neuron system is shown in Fig. 2.
The �rst model neuron is denoted as A and it receives external input
I. The second model neuron is denoted B and it receives no exter-
nal input. The coupling is unidirectional from A to B, with coupling
strength γ . A and B have the same intrinsic dynamics, i.e., the same
values of a, b, and ε as de�ned above. We let I and γ be bifurcation
parameters.

The two-FN system can be used to study cluster synchronized
graphs containing two clusters. In this case, the dynamics can be
reduced to a simpli�ed quotient graph.7,54When there aremanymore
model neurons in one cluster than the other, the coupling from the
large cluster to the small cluster is much stronger than the coupling
from the small cluster to the large cluster. Thus, we can disregard the
coupling from the small cluster to the large cluster and the simpli�ed
graph can be approximated by the directed two-FN system.

The equations for the directed two-FN system are

dyA

dt
= ζA(yA, zA, yB, zB)

= yA −
y3A
3

− a − zA + I, (4a)

dzA

dt
= ε ξA(yA, zA, yB, zB)

= ε (yA − bzA), (4b)

dyB

dt
= ζB(yA, zA, yB, zB)

= yB −
y3B
3

− a − zB + γ (yA − yB), (4c)

dzB

dt
= ε ξB(yA, zA, yB, zB)

= ε (yB − bzB). (4d)

Here, yA (yB) is themembrane potential ofA(B) and zA (zB) represents
a slow gating variable in A(B).

The bifurcation structure of directed and undirected two-FN
systems has been studied extensively from a numerical perspective.11
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FIG. 2. A directed network of two FN model neurons, A and B. A receives an
external input I and there is a unidirectional coupling from A to B with strength γ .

The bifurcation structure of the undirected system has been stud-
ied through analytical methods that leverage symmetry-based argu-
ments or assume symmetric or near-symmetric FN models.12,30,31 In
contrast, we examine the systemwith asymmetry in both the external
input and the coupling.

We begin by classifying the behavior of the two model neu-
rons A and B in the I-γ parameter space, as shown in Fig. 3. Let IiA,
IicA ≈ IisnA for i = 0, 1 be the points associated to the FN model A
for lower and upperHopf bifurcations, canard explosions, and saddle
node bifurcations, as de�ned in Sec. II. Regions (1)-(7) are described
as follows:

(i) For I < I0cA, both A and B will be quiescent at a stable equilib-
rium point. This corresponds to region (1) of Fig. 3. See Sec. V
A for details.

(ii) For I > I1cA,A becomes saturated and, as γ varies, there are three
distinct behaviors for B. See Sec. V B for details. For I > I1cA,
there exist I0cB(I) and I1B(I) such that
(a) For γ < I0cB(I), B is quiescent. This corresponds to region

(2) in Fig. 3.
(b) For I0cB(I) < γ < I1B(I), B is �ring. This corresponds to

region (3) in Fig. 3.
(c) For γ > I1B(I),B is saturated. This corresponds to region (4)

in Fig. 3.
(iii) For I0cA < I < I1cA,A is �ring and there are three distinct behav-

iors for B:
(a) When γ > 1 − bε, B is phase locked with A, where the

phases of the oscillating models remain separated by a con-
stant o�set, while amplitudes and waveforms may vary. This
corresponds to region (5) of Fig. 3. See Sec. V C for details.

(b) When γ < 1 − bε and I is below a curve, denoted by I∗(γ ),
MMOsor small canard oscillationsmay be present. This cor-
responds to region (6) of Fig. 3. See Sec. IV for the derivation
and Sec. V D for details.

(c) When γ < 1 − bε and I is above I∗(γ ), B is �ring and is
phase lockedwithA. This corresponds to region (7) of Fig. 3.
See Sec. IV for the derivation and Sec. V D for details.

In Sec. IV, we study the system (4) by applying geometric singu-
lar perturbation techniques. Leveraging fast-slow dynamics of (4), we
reduce it to a two-dimensional singular limit. We analyze the result-
ing second-order dynamics and draw conclusions about canards and
MMOs for the original dynamics (4) in Sec. V.

FIG. 3. Regions of behavior of the directed two-FN system (4) in the I-γ param-
eter space. Boundaries between regions are identified in the key. In regions (3),
(5), (6), and (7), shaded gray, there is a stable limit cycle such that either A or B is
firing. In region (3), with cross hatching, only B is firing. In regions (5) and (7), in
darker gray, there is phase locking. In region (6), in light gray, A is firing and Bmay
exhibit canard solutions. All boundaries are computed analytically. HH denotes a
Hopf-Hopf bifurcation and GH denotes a generalized Hopf bifurcation.

IV. FAST-SLOW PHENOMENA IN THE DIRECTED

TWO-FN SYSTEM

In this section, we assumeA is �ring and study the onset of �ring
in B as γ increases. This corresponds to region (6) of Fig. 3.We begin
by providing de�nitions of canards and MMOs, which are observed
numerically at the transition from quiescent to �ring in B as shown
in Fig. 4. For a general fast-slow system expressed as

dy

dt
= f (y, z),

dz

dt
= εg(y, z),

(5)

y ∈ R
m are fast variables, z ∈ R

n are slow variables, and 0 < ε � 1
is the timescale separation parameter. The singular limit correspond-

ing to ε = 0 is called the layer system,
dy

dt
= f (y, z), where the slow

variables z are parameters in this limiting system.
De�nition IV.1 (Criticalmanifold). Given system (5)with ε =

0, C =
{

(y, z) ∈ R
m × R

n : f (y, z) = 0
}

is called the critical manifold
and corresponds to the equilibrium points of the layer system.

De�nition IV.2 (Normal hyperbolicity). A subset Ch ⊂ C is
called normally hyperbolic if all the points of Ch are hyperbolic equilib-
rium points of the layer system, i.e., if Dyf has no eigenvalues with zero
real part. Ch is called attracting (respectively, repelling) if the eigenval-
ues have negative (respectively, positive) real part. Ch is a saddle if it is
neither attracting nor repelling.

De�nition IV.3 (Fold points55). Denote the set of points in C
that are not normally hyperbolic (Dyf has at least one eigenvalue with
zero real part) as

L :=















(y, z) ∈ C

∣

∣

∣

∣

∣

∣

∣

∣

rank(Dyf [y, z)] = m − 1

l · D2
yf (y, z)(r, r) 6= 0

l · Dzf (y, z) 6= 0















,
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FIG. 4. Example of (a) canard solutions, (b) MMOs, and (c) phase locking.

where l and r are corresponding left and right eigendirections of Dyf . L
denotes the fold points of the critical manifold C. L locally divides the
critical manifold C into subsets with di�erent stability properties.

De�nition IV.4 (Canard). A solution of (5) is called a canard
if it stays within O(ε) of a repelling branch of the critical manifold for
a time that is O(1) on the slow timescale, τ1 = tε.

De�nition IV.5 [Mixed mode oscillation (MMO)15]. Periodic
solutions of (5) with peaks of substantially di�erent amplitudes are
called MMOs. Canard solutions often comprise the small oscillations
present in MMOs.

De�nition IV.6 (Phase locking). Two oscillating signals are
said to be phase locked if the phases of the signals remain separated
by a constant o�set.

An example of a canard solution, MMOs, and phase locking
found in the directed two-FN system are shown in Fig. 4.

One of our goals is to show the existence of canards andMMOs
in the two-FN system. In what follows, we review how the equilib-
rium points and the fold points of a fast-slow system play important
roles in the existence of canards andMMOs. To this end, we study the
behavior of the slow system on the critical manifold, which is called
the reduced system. By the Fenichel theory, the equilibrium points of
the full system lie within an O(ε) neighborhood of the equilibrium
points of the reduced system. However, the solutions of the reduced
system blow up in �nite time at the fold points. To remove these solu-
tions, we study the desingularized system, which is obtained from
the reduced systemby an appropriate time rescaling. The equilibrium
points of the desingularized system arewithin anO(ε) neighborhood
of the equilibrium points of the full system and the fold points.

In the slow timescale τ1 = tε, system (5) becomes

ε
dy

dτ1
= f (y, z),

dz

dτ1
= g(y, z).

(6)

For this system, the singular limit corresponding to ε = 0 is called
the reduced system which is the di�erential algebraic equation corre-

sponding to the slow dynamics
dz

dτ1
= g(y, z) de�ned on the critical

manifold C. Note that the full and reduced systems have the same
equilibrium points.

To derive the desingularized system, we �rst di�erentiate
f (y, z) = 0 with respect to τ1 to get

(Dy f ) ·
dy

dτ1
+ (Dz f ) ·

dz

dτ1
= 0. (7)

Multiplying both sides of (7) by adj(Dyf ), the adjugate (or the trans-
pose of the cofactor matrix) of Dyf , gives

− det (Dyf )
dy

dτ1
= adj(Dyf )(Dz f ) · g(y, z). (8)

This system is singular when det (Dyf ) = 0, namely, at fold points.
This means that standard existence and uniqueness results do not
hold at the fold points. However, rescaling time in (8) by dτ1
= − det (Dyf )dτ2 yields the desingularized system

dy

dτ2
= adj(Dyf )(Dzf ) · g(y, z). (9)

Note that to obtain the corresponding �ows of the reduced sys-
tem from the desingularized system, due to the time scaling dτ1
= − det (Dyf )dτ2, the direction of the �ows of the desingularized
system must be reversed on branches where det (Dyf ) > 0.

The desingularized system (9) has two types of equilibrium
points, which are called ordinary and folded singularities, respec-
tively.

De�nition IV.7 (Ordinary singularity). An equilibrium point
of the desingularized system is an ordinary singularity if it corresponds
to an equilibrium point of the reduced system and lies within an O(ε)

neighborhood of an equilibrium point of the full system. Conditions for
an ordinary singularity are

g(y, z) = 0, det (Dyf ) 6= 0, adj(Dyf )(Dzf ) · g(y, z) 6= 0.

De�nition IV.8 (Folded singularity). An equilibrium point of
the desingularized system is a folded singularity if it corresponds to a
fold point of the reduced system. Conditions for a folded singularity are

det (Dyf ) = 0, adj(Dyf )(Dzf ) · g(y, z) = 0.

Suppose that the desingularized system (9) possesses a stable
folded singularity y∗ that is a node. Let the eigenvalues of the lin-
earization of (9) at y∗ beλs andλw, whereλs < λw < 0. The trajectory
tangent to the eigendirection corresponding to λs, called the strong
singular canard, corresponds to a trajectory in the full system that
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passes through a point close to y∗ from the attracting branch to the
repelling branch of the critical manifold. It creates a funnel such that
all the trajectories in the full system that enter the funnel pass through
the same point from the attracting branch to the repelling branch
of the critical manifold. It was shown16 that these trajectories rotate
about the eigendirection corresponding to λw, called the weak sin-
gular canard, and eventually leave the funnel and jump away from
the point near y∗.23 If there exists a return mechanism to return these
trajectories back to the funnel, then MMOs occur.21,22

The remainder of this section details the calculations involved
in the transformation of (4) into a two-dimensional desingularized
system.

In Sec. V, we show conditions on I and γ such that the desin-
gularized system possesses a stable folded node and thus a strong
singular canard.We also explain the existence of a returnmechanism
and provide conditions for regions where MMOs are possible.

A. The critical manifold and fold points of the

directed two-FN system

The critical manifold of system (4) with ε = 0 is

C =















yA, yB, zA, zB

∣

∣

∣

∣

∣

∣

∣

∣

zA = yA −
y3A
3

− a + I

zB = yB −
y3B
3

− a + γ (yA − yB)















. (10)

By Fenichel’s theorem, the slow dynamics of the two-FN sys-
tem (4) will lieO(ε) away fromCh, the normally hyperbolic subman-
ifold of C, on a normally hyperbolic slow invariant manifold Cε with
the same stability properties as Ch.15,55

We next identify fold points by checking the three condi-
tions that determine the set L from De�nition IV.3. The �rst
eigenvalue of Dyζ is 1 − y2A, with left and right eigenvectors
l1 =

[

1, (γ − y2A + y2B)/γ
]

and r1 = (0, 1)>. The second eigenvalue
of Dyζ is 1 − y2B − γ , with left and right eigenvectors l2 = (0, 1) and

r2 =
[

1, (−γ + y2A − y2B)/γ
]>
.

The �rst condition is satis�ed, i.e., rank(Dyζ ) = 1, if either
1 − y2A = 0 or 1 − y2B − γ = 0, but not both. The second condition
is satis�ed if

l · D2
yζ (r, r) = l ·

(

−2yA 0 0 0
0 0 0 −2yB

)(

r
r

)

6= 0.

For each eigenvalue, the condition becomes yB[(1 − y2A)
− (1 − y2B − γ )] 6= 0, which is satis�ed if the �rst condition is sat-
is�ed and yB 6= 0. The third condition is always satis�ed.

B. Desingularization of the directed two-FN system

According to (9), the desingularization of the reduced system of
the two-FN system is

dy

dτ2
= adj(Dyζ )(Dzζ ) · (y − bz) (11)

or equivalently,

dyA

dτ2
= ρ1(yA, yB)

= −(1 − y2B − γ )(yA − bzA),

dyB

dτ2
= ρ2(yA, yB)

= γ (yA − bzA)− (1 − y2A)(yB − bzB),

(12)

where zA and zB are de�ned as

zA = yA −
y3A
3

− a + I,

zB = yB −
y3B
3

− a + γ (yA − yB).

(13)

In what follows, we study the stability type of the ordinary sin-
gularity and the folded singularities of (12). These points correspond
to the equilibrium point and the fold points of the two-FN system,
respectively. However, due to the time reversal step, the stability in
the desingularized system is not identical to the stability of the full
system.

By De�nition IV.7, the ordinary singularity in (12) satis�es

y − bz = 0, det (Dyζ ) 6= 0, adj(Dyζ )(Dzζ ) · (y − bz) 6= 0.

Figure 5 depicts regions in I-γ parameter space according to the local
stability of the ordinary singularity. Changes in stability in (12) cor-
respond toHopf bifurcations in (4). However, the curves in I-γ space
that delineate the di�erent signs of the real parts of the eigenvalues
are slightly di�erent from the Hopf bifurcation curves because pre-
dictions from singular perturbation analysis are accurate up toO(ε).
In regions whereA and B are both quiescent or saturated (dark gray),
the real parts of both eigenvalues are positive and the ordinary sin-
gularity is an unstable equilibrium. In regionswhere both A and B

FIG. 5. Regions in the I-γ parameter space distinguishing local stability of the
ordinary singularity in the desingularized system (12). Dark gray indicates an
unstable node, light blue indicates a stable node, and light gray indicates a
saddle. The Hopf bifurcations and distinguishing features of the original two-FN
system (4), the boundaries in Fig. 3, are plotted for comparison as five curves.
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are �ring (light blue), the real parts of both eigenvalues are negative
and the ordinary singularity is a stable equilibrium. In regions where
eitherA or B is �ring (light gray), the ordinary singularity is a saddle.

By De�nition IV.8, the folded singularities of (12) satisfy

det (Dyζ ) = 0 and adj(Dyζ )(Dzζ ) · (y − bz) = 0

or equivalently

(1 − y2B∗ − γ )(1 − y2A∗) = 0, (14a)

(1 − y2B∗ − γ )(yA∗ − bzA∗) = 0, (14b)

(1 − y2A∗)(yB∗ − bzB∗)− γ (yA∗ − bzA∗) = 0. (14c)

Equation (14a) is satis�ed when yA∗ = ±1 or yB∗ = ±
√
1 − γ .

If (14b) and (14c) are satis�ed but (14a) is not satis�ed, the corre-
sponding singularity is an ordinary singularity.

First, consider the case in which yA∗ = ±1. By (14b)–(14c),
either zA∗ = 1

b
yA∗ or γ = 0 and yB∗ = ±1. If zA∗ = 1

b
yA∗ then,

by (13), I = ± 1
b

∓ 2
3 + a. Thus, we do not consider the case yA∗ =

±1 further, since either γ = 0 or I is independent of γ .
When yB∗ = ±

√
1 − γ , we use (13) to solve (14c) for yA∗, which

is equivalent to solving the cubic equation

β3y
3
A∗ + β2y

2
A∗ + β1yA∗ + β0 = 0, (15)

where

β0 = bγ (I − a)+ yB∗ + b

(

−yB∗ +
y3B∗
3

+ a + γ yB∗

)

,

β1 = −bγ ,

β2 = −yB∗ + b

(

yB∗ −
y3B∗
3

− a − γ yB∗

)

,

β3 =
2bγ

3
.

The solutions of (15) for yA∗ as a function of γ and I are given by

yA∗,k = −
1

3β3

(

β2 + Ck +
β2
2 − 3β1β3

Ck

)

,

where for k = 1, 2, 3,

Ck =
(

√
−3 − 1

2

)k−1
(

σ −
√

−27β2
31

2

)1/3

,

1 = 18β3β2β1β0 − 4β0β
3
2 + β2

2β
2
1 − 4β3β

3
1 − 27β2

3β
2
0 ,

σ = 2β2
2 − 9β3β2β1 + 27β2

3β0.

If1 > 0, there are three real solutions, i.e., three folded singularities,
and if1 < 0, there is one real solution, i.e., one folded singularity.

The Jacobian of (12) for the folded singularities with yB∗ =
±

√
1 − γ has the form

Dyρ(yA∗, yB∗) =
(

0 2yB∗ξA
γ+2yA∗ξB −(1 − y2A∗)

)

,

where ρ = (ρ1, ρ2)>, ξA = yA∗ − bzA∗, and ξB = yB∗ − bzB∗. To clas-
sify each folded singularity, we use the trace and determinant of the

Jacobian, which are

Tr[Dyρ(yA∗, yB∗)] = −(1 − y2A∗),

det [Dyρ(yA∗, yB∗)] = 2yB∗ξA
(

γ + 2yA∗ξB
)

.

When det (Dyρ[yA∗, yB∗)] > 0, the real parts of the eigenvalues have
the same sign, so the singularity is a folded node or focus. The sta-
bility can be determined by looking at the sign of the trace. When
det [Dyρ(yA∗, yB∗)] < 0, the real parts of the eigenvalues have oppo-
site signs, and the singularity is a folded saddle.

Figure 6 depicts regions in I-γ parameter space according to
the local stability of the folded singularities. The white regions in this
�gure correspond to values of I and γ , where the given folded singu-
larity does not exist in the desingularized system (12) (i.e., 1 < 0).

V. DYNAMICS BY REGION

In this section, we apply the analytical results for the desingular-
ized system (12) to draw conclusions about the original system (4).
In doing so, we provide details of the computations used to pro-
duce Fig. 3 and the characterization of each of the seven regions,
as described in Sec. III. We prove the stability of limit cycles of the
Hopf bifurcations inmodel neuron B.We prove necessary conditions
for MMOs and su�cient conditions for phase locking in terms of I
and γ .

In the following proposition,we compute the value of the unique
equilibriumpoint of (4), whenAssumption II.1 holds, and its stability
as a function of I and γ .

Proposition V.1. Consider the directed two-FN system (4) and
let Assumption II.1 hold. For any �xed I and γ , there exists a unique
equilibriumpoint denoted byp∗ = [yA∗(I), zA∗(I), yB∗(I, γ ), zB∗(I, γ )].
Then,

1. p∗ is nonhyperbolic if I and γ satisfy

σ1(I, γ ) = 1 − bε − y2A∗ = 0,

or σ2(I, γ ) = 1 − bε − γ − y2B∗ = 0,
(16)

where σ1 is the sum of the �rst two eigenvalues of the Jacobian of
(4) evaluated at p∗ and σ2 is the sum of the second two eigenvalues
of the Jacobian of (4) evaluated at p∗.

2. p∗ is hyperbolic if I and γ do not satisfy (16). If σ1(I, γ ) < 0 and
σ2(I, γ ) < 0, p∗ is attracting. If σ1(I, γ ) > 0 and σ2(I, γ ) > 0, p∗
is repelling. If σ1(I, γ )σ2(I, γ ) < 0, p∗ is a saddle.

Proof. Solving for the equilibriumpoint of (4), we �rst compute
yA∗ as a function of I as

yA∗ =
(

3(I − a)

2
+
√

[3(I − a)]2

4
+ b̃3

)1/3

+
(

3(I − a)

2
−
√

[3(I − a)]2

4
+ b̃3

)1/3

, (17)
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FIG. 6. Regions in the I-γ parameter
space distinguishing local stability of the
three folded singularities corresponding to

yB∗ = −
√

1 − γ (top, middle, and bottom
plots on the left) and the three folded sin-

gularities corresponding to yB∗ =
√

1 − γ

(top, middle, and bottom plots on the right). In
white regions, the folded singularity does not
exist. In dark gray regions, the folded singularity
is unstable. In light gray regions, the folded
singularity is a saddle. In light blue regions, the
folded singularity is stable.

where b̃ = 1
b

− 1. Similarly, by leveraging (17), we can write yB∗ as a
function of I and γ as

yB∗ =
(

3(γ yA∗ − a)

2
+
√

9(γ yA∗ − a)2

4
+
(

b̃ + γ
)3
)1/3

+
(

3(γ yA∗ − a)

2
−
√

9(γ yA∗ − a)2

4
+
(

b̃ + γ
)3
)1/3

. (18)

Then, zA∗ = 1
b
yA∗ and zB∗ = 1

b
yB∗.

We compute the linearization of (4) around p∗. We let νA =
(yA, zA), νB = (yB, zB), and ξ = (ζA, εξA, ζB, εξB). The Jacobian of (4)
evaluated at p∗ is

D(νA ,νB)ξ(p∗) =







1 − y2A∗ −1 0 0
ε −bε 0 0
γ 0 1 − y2B∗ − γ −1
0 0 ε −bε






.

The linearization is block triangular, so the eigenvalues of the
Jacobian are the union of the eigenvalues of the diagonal blocks. This
means that local stability can be determined through linearization of
each FN model separately. The eigenvalues for the �rst and second

blocks are

λ1,2 =
1

2

(

1 − bε − y2A∗
)

±
1

2

√

(1 − bε − y2A∗)
2 − 4ε(1 − b + y2A∗b),

λ3,4 =
1

2

(

1 − bε − γ − y2B∗
)

±
1

2

√

(1 − bε − γ − y2B∗)
2 − 4ε(1 − b + y2B∗b + γ ).

The sign of the real part of the eigenvalues will be determined
by the sign of the �rst term. The �rst term of λ1,2 is zero when
σ1(I, γ ) = λ1 + λ2 = 1 − bε − y2A∗ = 0. The �rst term of λ3,4 is zero
when σ2(I, γ ) = λ3 + λ4 = 1 − bε − γ − y2B∗ = 0. Thus, p∗ is non-
hyperbolic when σ1 = 0 or σ2 = 0.

The stability of p∗ when σ1σ2 6= 0 is derived from the signs of
the real parts of the eigenvalues of D(νA ,νB)ξ . �

Remark V.2. The one-dimensional manifolds of nonhyper-
bolic equilibrium points in I-γ space, {(I, γ ) : σ1(I, γ ) = 0 or
σ2(I, γ ) = 0}, correspond to the points where A and B undergo Hopf
bifurcations.

Remark V.3. The corresponding �ows of the full system and
desingularized system have opposite sign when det (Dyf ) > 0 due to
the time rescaling step, dτ1 = − det (Dyf )dτ2. One consequence is that
when the ordinary singularity in the desingularized system is an unsta-
ble node, the unique equilibrium point in the full system is stable.
Likewise, when the ordinary singularity in the desingularized system

Chaos 29, 033105 (2019); doi: 10.1063/1.5050178 29, 033105-9

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

is a stable node, the unique equilibrium point in the full system is
unstable.

A. Quiescence: Region (1)

Given the two-FN system (4) and Assumption II.1, if I < I0cA,
then A converges to a single stable equilibrium point, (yA∗, zA∗),
which is quiescent. The value yA∗, independent of γ , is too low to
induce �ring in B, i.e., B is quiescent.

To fully understand the behavior of B, we examine the desingu-
larized system (12), which has seven singularities for the parameter
values in region (1). These include one unstable ordinary singularity
(corresponding to the unique stable equilibrium point), one unstable
folded node, two stable folded singularities, and three saddle folded
singularities.

Due to the presence of a stable folded node when γ is close to 1
and I < I0, robust families of canards that compose small oscillations
of B could arise for these parameter values in the original system (4)
in region (1) as described in Sec. IV.

B. Hopf bifurcations in B : Regions (2), (3), and (4)

For the two-FN system (4), if I > I1cA then A is saturated. We
prove conditions for whenBwill be quiescent, �ring, or saturated and
provide illustrative examples of the desingularized system nullclines
and phase plane for representative parameter values.

PropositionV.4. Consider the two-FN system (4) andAssump-
tion II.1. Let I > I1cA and γ < 1 − bε. There exist two curves of Hopf
bifurcations de�ned by

I1B,0B(γ ) = b̃yA∗± +
y3A∗±

3
+ a,

where

yA∗± = ±
1

γ

(

1

3
(1 − εb − γ )3/2 +

(

b̃ + γ
)

√

1 − εb − γ + a

)

.

The bifurcation structure of B in the small parameter range
around the transition from quiescent to �ring is analogous to the sin-
gle FN model in Sec. II. There is a saddle node bifurcation of limit
cycles at I = I0sn(γ ), canard explosion at I = I0cB(γ ), and Hopf bifur-
cation at I = I0B(γ ). B transitions from �ring to saturated through a
supercritical Hopf bifurcation at I = I1B(γ ).

Moreover, there exists γ∗ such that, for I < I0B(γ∗), the following
holds. If γ < γ ∗, the Hopf bifurcation at I0B(γ ) is subcritical and, if
γ > γ ∗, the Hopf bifurcation at I0B(γ ) is supercritical.

Proof. TheHopf bifurcations inB occur at nonhyperbolic equi-
librium points, which are yB∗± = ±

√

1 − γ − bε by Proposition
V.1.

Substituting yB∗± = ±
√

1 − γ − bε and (4d) into the equilib-
rium solution for (4c) gives the critical values

yA∗± = ±
1

γ

(

1

3
(1 − εb − γ )3/2 +

(

b̃ + γ
)

√

1 − εb − γ + a

)

.

Substituting yA∗± and (4b) into (4a) gives the values

I1B,0B = b̃yA∗± +
y3A∗±

3
+ a.

For a �xed γ , we check the conditions of Proposition .4 for
the bifurcation parameter I. First, we transform (yB∗, zB∗) to the ori-
gin (0, 0), by introducing y0 = yB − yB∗ and z0 = zB − zB∗. With this
change of variables, the dynamics of B (4c)-(4d) can be expressed as

dy0

dt
= (1 − γ − y2B∗)y0 −

y30
3

− y20yB∗ − z0,

dz0

dt
= ε(y0 − bz0)

(19)

and the Jacobian of (19) evaluated at the origin is

JB(0, 0) =
(

1 − y2B∗ − γ −1
ε −bε

)

.

Now we apply Proposition II.4.
Condition 1 of Proposition II.4: This condition holds because

Tr[JB(0, 0)] = 0 at the bifurcation values I = I0B and I = I1B.
Condition 2 of Proposition II.4: The second condition holds as

well because

∂

∂I
<[λ3,4(I)]

∣

∣

∣

∣

I=I0B,1B

6= 0,

where λ3,4 are given in the proof of Proposition V.1.
Condition 3 of Proposition 2.4: The cubic coe�cient α of the

Taylor expansion of (4c)–(4d) (De�nition II.3) which determines
whether the Hopf bifurcation is subcritical or supercritical,46 is

α =
1

8

(

2b − 2bγ − b2ε − 1

1 − b2ε

)

.

At γ = γ∗, α = 0 and B undergoes a “generalized Hopf,” or Bautin,
bifurcation, depicted in Fig. 3 as the point GH.56,57 For γ > γ∗, α < 0
and the limit cycles resulting from the Hopf bifurcations are sta-
ble (supercritical). Otherwise, the limit cycles are unstable and the
bifurcations are subcritical, as for A. �

RemarkV.5. For the two-FN system (4), given Assumption II.1,
if A is saturated, then B transitions from quiescent to �ring to saturated
as a function of I and γ .

In region (2), the desingularized system (12) has seven singu-
larities, one ordinary singularity and six folded singularities. The
ordinary singularity is unstable, and there are three unstable folded
singularities and three folded saddles. This is a region where A is sat-
urated and B is quiescent, so the full two-FN system has a unique
stable equilibrium point.

In region (3), the desingularized system (12) has seven singular-
ities for small γ , and �ve singularities for large γ .

The transition from seven to �ve singularities occurs through a
saddle node bifurcation between a folded saddle point and an unsta-
ble folded singularity. The ordinary singularity is a saddle and the
unique equilibrium point of the full system is also a saddle.

In region (4), the desingularized system (12) can have one, three,
�ve, or seven singularities. Parameter choices for (12) in which γ >
1, which corresponds to γ > 1 − bε in the two-FN system, result in
one singularity. Since γ > 1 for (12) in region (4), the folded singular-
ities corresponding to yB∗ = ±

√
1 − γ no longer exist. The ordinary

singularity is unstable and the unique equilibrium point of the full
system is stable.
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C. Phase-locking: Region (5)

Consider the two-FN system (4) with I0cA < I < I1cA such that
A is �ring. Region (5) corresponds to this range of I and γ > 1 − bε.
For I0A < I < I1A and γ > 1 − bε, the linearization of (4) around the
equilibrium point p∗ has two eigenvalues λ1,2 with positive real part,
and two eigenvalues λ3,4 with negative real part. Thus, B will follow
the limit cycle from A.

RemarkV.6. For the two-FN system (4), given Assumption II.1,
if A is �ring and γ > 1 − bε, B is �ring and A and B are phased locked.

For the desingularized system (12), γ > 1 and the singulari-
ties at yB∗ = ±

√
1 − γ no longer exist. The ordinary singularity is

a saddle and the unique equilibrium point of the full system is also
a saddle. Note that there are still folded singularities corresponding
to yA∗ = ±1, but they are the points, I0A and I1A, where the stability
changes in the ordinary singularity.

D. Mixed mode oscillations: Regions (6) and (7)

Now consider the two-FN system (4) when I0cA < I < I1cA and
γ < 1 − bε. In this case, a range of dynamics is observed in sim-
ulation. For γ � 1, the in�uence of A is small, so B exhibits only
small oscillations that stay close to (yB∗, zB∗). As γ is increased, the
in�uence of oscillation A can be large enough to yield a mixed mode
oscillation (MMO), see Fig. 4(b). As γ is increased further and the
in�uence of A becomes increasingly strong, B approaches �ring at
the same frequency as A.

To better understand these transitions, we study the bifurcation
diagrams and phase planes of the desingularized system (12). We
prove necessary conditions for the existence of MMOs as a function
of I and γ .

In region (6), there are seven singularities for the desingularized
system (12), seen in Figs. 7(a) and 7(b). In this region, the ordinary
singularity of the desingularized system (12) is a saddle (correspond-
ing to a saddle in the full system), whereas the folded singularities
include three saddles, one stable folded singularity and two unsta-
ble singularities. Trajectories, nullclines, and singularities are shown
in Fig. 7(a) for parameters in region (6). Co-existence of the stable
folded node and a global returnmechanism due to the S-shaped crit-
ical manifold allows the existence of canard-induced MMOs in this
region of parameter space for the two-FN system.21

Figure 7(b) zooms in on the area around the ordinary singular-
ity and stable folded node for the same parameter values as Fig. 7(a).
Critical features for canard existence are present in this region. An
unstable manifold of the ordinary singularity, which is a saddle, con-
nects to the stable folded node, shown in red. The strong singular
canard of the stable folded node is shown in green, and the stable
manifold of the ordinary saddle singularity is shown in blue. All tra-
jectories between the stable manifold of the ordinary singularity and
the stablemanifolds of the two folded saddles to the right of the stable
folded node will be funneled to the stable folded node, and thus will
pass from the attracting to repelling parts of the critical manifold in
the full system. This results in the family of canard solutions seen in
the full system.

In region (7), there are seven singularities. In this region, the
ordinary singularity of the desingularized system (12) is stable (cor-
responding to an unstable equilibrium in the full system), whereas

FIG. 7. Nullclines and phase planes for the desingularized system (12) near the
boundary between regions (6) and (7). For all panels, the folded singularities are
shown as smaller circles and the ordinary singularity is a larger circle. Green
represents a stable singularity, gray represents a saddle, and red represents an
unstable singularity. Trajectories of the system are shown in black. The yA (blue
dashed) and yB (pink dashed) nullclines are also shown. Panels (a) and (b) show
the phase plane for I = 0.9 and γ = 0.4 [in region (6)] for differing ranges of
yA and yB. Panel (b) shows the stable (blue) and unstable (red) manifolds of the
ordinary singularity, which is a saddle, along with the strong canard (green) asso-
ciated with the stable folded node. Panel (c) shows the phase plane for I = 1.0633
and γ = 0.4 on the boundary between regions (6) and (7). Panel (d) shows the
phase plane for I = 1.3 and γ = 0.4 in region (7), where A is firing and B is phase
locked with A in the two-FN system (4). The stable (light blue) and unstable (light
red) manifolds of the folded saddle are shown.

the folded singularities include four saddles and two unstable singu-
larities. As a consequence, canard-inducedMMOs do not exist in the
two-FN system, and both A and B are �ring and phase-locked.

We next compute the boundary between regions (6) and (7),
shown by I∗ in Fig. 3. The boundary is de�ned by points at which
there is a transcritical bifurcation between the ordinary singular-
ity and a folded singularity, called FSN type II bifurcation, where
the ordinary singularity transitions from a saddle to a stable node
and the folded singularity transitions from a stable node to a sad-
dle. This transcritical bifurcation is a known location for the onset
of MMOs,32 so computing I∗ gives necessary conditions for the exis-
tence ofMMOs. Figure 7(c) depicts the phase plane near the ordinary
singularity at the transcritical bifurcation. The strong stable canard
trajectory and connecting unstable manifold of the ordinary singu-
larity are no longer present. Figure 7(d) depicts the phase plane near
the ordinary singularity as I is increased beyond the transcritical
bifurcation. In this region, there is no longer a stable folded node.
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Proposition V.7 [Theorem 3.4.1 (modi�ed)46]. A system
ẋ = f (x,µ), admits a transcritical bifurcation at (x0,µ0) if

1. Dx f (x0,µ0) has a simple 0 eigenvalue with right eigenvector v and
left eigenvector w.

2. wD2
xµf (x0,µ0)v 6= 0.

3. wD2
x f (x0,µ0)(v

>, v>)> 6= 0.

Proposition V.8. Consider the desingularized system (12) with
�xed γ < 1 and let

I∗(γ ) =
1

3b3γ 3

(

√

1 − γ +
2b 3

√
1 − γ

3
− ba

)3

+ a. (20)

Then, system (12) admits a transcritical bifurcation at [p, I∗(γ )],where
p = (yA∗, yB∗)

> is an ordinary singularity of (12), i.e., p solves (14b)
and (14c).

Proof. To show the transcritical bifurcation, we apply Proposi-
tion V.7 to (12). The Jacobian, Dyρ, of (12) is
(

−(1 − y2B − γ )(1 − b + by2A) 2yB(yA − bzA)
γ+2yA(yB − bzB) −(1 − y2A)(1 − b + by2B + bγ )

)

.

Condition 1 of Proposition 5.7: Evaluating the Jacobian of (12) at
(yA, yB)> = p and I = I∗ gives

Dyρ(p, I∗) =
(

0 0
γ −(1 − y2A∗)

)

,

which has a zero eigenvalue with a left eigenvector w = (1, 0) and a

right eigenvector v =
(

1, γ

−(1−y2A∗)

)>
.

Condition 2 of Proposition V.7: Taking the derivative ofDyρ with
respect to I and evaluating at (yA, yB)> = p and I = I∗ gives

D2
yIρ(p, I∗) =

(

0 −2byB∗
0 0

)

.

Then, multiplyingD2
yγ ρ(p, I∗) from left byw and from right by v, we

have

w
[

D2
yγ ρ(p, I∗)

]

v =
2bγ yB∗

1 − y2A∗
,

which is always nonzero.
Condition 3 of Proposition V.7: Evaluating D2

yρ at p = (yA, yB)>

and I = I∗ gives

D2
yρ(p, I∗) =

(

0 2yB∗(1 − s) 0 2yA∗
2yB∗(1 − s) 0 2yA∗ −2yB∗s

)

,

where s = b(1 − y2A∗). Then, multiplying D2
yρ from left by w and

from right by (v>, v>)>, we have

w
[

D2
yρ(p, I∗)

]

(

v
v

)

=
−2γ

1 − y2A∗

{

yB∗[1 − b(1 − y2A∗)] + yA∗
}

, (21)

which is also nonzero as shown in Fig. 8. �

A necessary condition for canard-induced MMOs is the exis-
tence of a stable folded node with a return mechanism, since the
family of canard solutions that form the small oscillations are only

FIG. 8. Regions in the I-γ parameter space distinguishing the sign of (21). In the
light blue regions, the sign is positive. In the light gray regions, the sign is negative.
At the boundaries, the sign becomes zero. For all (I, γ ) pairs on I∗ (shown by the
green dashed line), the sign of (21) is nonzero, except where I∗ intersects I1A. The
bifurcation at the intersection is a codimension-two bifurcation.

found in this context.32,58 The stable folded node has a correspond-
ing family of canard solutions because there are many trajectories
that cross from the attracting to the repelling branch of the critical
manifold through the stable folded node. Furthermore, the return
mechanism is required for MMOs because, after each relaxation
oscillation or canard trajectory, the dynamics must return near the
singularity in order for the MMO to persist.

Global return mechanism: For all coupling strengths γ < 1 −
bε, the projection of the critical manifold in one fast and two slow
dimensions is S-shaped, with two attracting branches connected by
a repelling branch in the center and twofold lines. The relaxation
oscillations in this setting provide a global return mechanism for the
system.21,32

Stable folded node: In the directed two-FN system, MMOs are
only possible for I < I∗(γ ), since that is where there is a stable folded
node.

Remark V.9. Consider the two-FN system (4). For I0cA < I <
I∗(γ ), this system exhibits MMOs and if I∗(γ ) < I < I1cA, it exhibits
phase locking.

Remark V.10. A special case of the transcritical (FSN II) bifur-
cations occurs when γ and I satisfy I∗(γ ) = I1A. In this case, there
is a codimension-two bifurcation where the real parts of the eigenval-
ues of the linearization of (12) about the ordinary singularity and the
eigenvalues of the linearization of (12) about the folded singularity,
yB∗ = −

√
1 − γ , are equal to zero. The codimension-two bifurcation

is illustrated by the orange star in the bifurcation diagram of (12) in
Fig. 9(a), for γ = 0.22. If we �x I0cA < I < I1cA and decrease the value
of γ below the codimension-two value, thenMMOs are always possible.

To highlight the location of the transcritical bifurcation (FSN
II) and compare to features in Fig. 3, we show it as the blue star
in the bifurcation diagram of (12) in Fig. 9(b). Here, by treating I
as the bifurcation parameter, and maintaining γ �xed at value 0.4,

Chaos 29, 033105 (2019); doi: 10.1063/1.5050178 29, 033105-12

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 9. Bifurcation diagrams of the desingularized system (12) with bifurcation parameter I for two different values of γ . The inset shows the locations of the two diagrams
(dashed lines correspond to the I-axis) in I-γ parameter space matching Fig. 5. (a) When γ = 0.22, the desingularized system admits a codimension-two bifurcation (orange
star), where the ordinary singularity remains a saddle, while one folded singularity switches from a stable folded singularity to an unstable folded singularity and the other
switches from a folded saddle to an unstable folded singularity. (b) When γ = 0.4, a transcritical bifurcation (FSN II) occurs between the ordinary singularity and a folded
singularity (blue star). For this choice of γ , the desingularized system admits another folded singularity (unstable folded singularity) at yA∗ ≈ 6, which is not shown in either
figure.

we can observe that the ordinary singularity transitions from unsta-
ble (thick dashed red) to saddle (thick gray) at I = I0A (red star).
Simultaneously, a stable folded singularity (thin green) becomes a
folded saddle (thin gray) and a folded saddle becomes an unstable
folded singularity (thin dashed red). The concurrent existence of a
stable folded node and a folded saddle allows for composite canards,
which are trajectories that follow canard solutions of at least two
di�erent folded singularities and produce complex small-amplitude
oscillations.59

At I = I∗(γ ) (blue star), derived in Proposition V.8, the ordi-
nary singularity and a folded singularity swap stability properties in
a transcritical bifurcation, which can be classi�ed as an FSN II bifur-
cation. Also, this FSN II bifurcation in the desingularized system (12)
corresponds to the generalized Hopf bifurcation in the two-FN sys-
tem (4). For I > I∗, (4) exhibits phase locking and MMOs are no
longer possible.

At I = I1A (magenta star), the ordinary singularity returns to a
saddle and two folded saddles become two unstable folded singular-
ities. For I > I1A, phase locking in (4) is no longer possible. We also
note that when I is just above I1A, one folded saddle merges with an
unstable folded singularity through a saddle node bifurcation.

VI. DIRECTED TREE OF FN MODEL NEURONS

In this section, we consider an extension of the previous results
to a directed chain of coupled FNmodels.We leverage the connection
between the desingularized system and the directed two-FN system
to �nd su�cient conditions for phase locking.

Consider a system of k FN model neurons with dynamics

ẋ = f(x, I, γ ),

where x ∈ R
2k, I ∈ R

k−1, and γ ∈ R
k−1. All FN models receive an

external input except for the last in the chain. Then, by allow-
ing heterogeneity in the external inputs and coupling strengths, the
linearization around the equilibrium point can be expressed as

Dxf =























J1 02×2 02×2 02×2 · · · 02×2

01 J2 02×2 02×2 · · · 02×2

02×2 02 J3 02×2

. . .
...

...
. . .

. . .
. . .

. . . 02×2

02×2 02×2

. . . 0k−2 Jk−1 02×2

02×2 02×2 · · · 02×2 0k−1 Jk























,

where the �rst diagonal block is given by

J1 =
(

1 − y21 −1
ε −bε

)

and the subsequent diagonal blocks are given by

Ji =
(

1 − y2i − γi−1 −1
ε −bε

)

, i ∈ {2, . . . , k}.

The blocks on the lower diagonal are

0i = γi

(

0 1
0 0

)

, i ∈ {1, . . . , k − 1}.

Due to the lower block triangular structure of the lineariza-
tion, local stability of the equilibrium can be determined by studying
the eigenvalues of the diagonal blocks. Similar to the analysis at the
beginning of Sec. V, we begin by solving for the equilibrium point.
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The equilibrium of the �rst model neuron is given by

y1∗ =
(

3(I1 − a)

2
+
√

[3(I1 − a)]2

4
+ b̃3

)1/3

+
(

3(I1 − a)

2
−
√

[3(I1 − a)]2

4
+ b̃3

)1/3

.

The equilibrium of the i-th model neuron is given by

yi∗ =





3Ĩ

2
+

√

(3Ĩ)2

4
+
(

b̃ + γi−1

)3





1/3

+





3Ĩ

2
−

√

(3Ĩ)2

4
+
(

b̃ + γi−1

)3





1/3

,

where Ĩ = γi−1yi−1∗ + Ii − a, i ∈ {2, . . . , k}. The eigenvalues of the
individual diagonal blocks are

λ1,2 =
1

2

(

1 − y21∗ − bε
)

±
1

2

√

(y21∗ + bε − 1)2 − 4ε(1 − b + y21∗b),

λ2i−1,2i =
1

2

(

1 − y2i∗ − γi−1 − bε
)

±
1

2

√

(y2i∗ + γi−1 + bε − 1)2 − 4ε(1 − b + y2i∗b + γi−1),

where i = 2, . . . , k. The Hopf bifurcations in the i-th model neuron
occur at

IH± = ±
1

3
(1 − γi−1 − bε)3/2

±
√

1 − γi−1 − bε
(

b̃ + γi−1

)

− Ĩ. (22)

As a directed tree can be decomposed into a collection of
directed chains, these results generalize to directed trees as well.
In Fig. 10, we illustrate with the directed chain that starts with the
light orange FN model and is directed to the right to the cyan FN
model. The �rst FN model (light orange) receives an input I = 1.2,
which ensures that it is �ring. The coupling strength to the second
FN model (dark orange) with input I = 0.4 ensures that the second
FNmodel is in region (6) whereMMOs are possible. However, in this
case, no MMOs are exhibited. The coupling strength to the third FN
model (dark cyan) with a zero input ensures that it is also in region
(6). In this case, MMOs induced by canards are exhibited. The active
signal has frequency half that of the �rst and second FNmodels. As a
result, the input to the fourth FNmodel (cyan) is an MMO; this case
was not covered in our two-FN system analysis. The fourth FNmodel
responds to incoming canards with almost no activity and incoming
spikes with a small canard. The frequency of the small canards in the
fourth FN model is the same as the frequency of the active signal of
the third FN model.

FIG. 10. Panel (a) depicts a directed tree graph of FN model neurons with het-
erogeneous external inputs Ii . All edge weights have coupling strength γ = 0.07.
A representative chain is selected and indicated by vertices with colors matching
simulation results, which are shown in panel (b). The frequency of the cyan FN
models is half of the frequency of the orange FN models.

VII. DISCUSSION

In this work, we study a system of two FN model neurons in
a setting where the �rst FN model has a constant external input I,
the second FNmodel has no input, and there is a unidirectional cou-
plingwith strength γ from the �rst FNmodel to the second.We study
and rigorously characterize all of the di�erent regions of dynamic
behavior for the two-FN system in I-γ space. We prove new neces-
sary conditions in terms of both I and γ for the existence of canards
and MMOs. We leverage this result to �nd a similarly new su�cient
condition for phase locking and extend to systems of FN models in
directed tree networks. We illustrate for a directed chain of four FN
models, where canards,MMOs, and frequency halving is observed as
predicted.

Further investigation of the two-FN system is needed to deter-
mine the threshold between MMOs and canard solutions without
MMOs, which have been observed in simulation. This threshold
has been studied numerically, as well as the chaotic behavior at the
boundaries between types of MMOs, e.g., in Ref. 11. An analytical
understanding of the threshold phenomena involved in the onset
of �ring in systems of FN models would add signi�cantly to the
literature on canards and MMOs.

Future directions include consideration of more diverse graph
structures that include loops within the graph and a more detailed
analysis of the MMOs in these systems. General results have been
found for �nite dimensional fast-slow systems, which could be
applied in this context.20 Incorporating heterogeneousmodel param-
eters is another area of future investigation. Changing ε changes the
frequency of oscillation and the timescale of the FN model, so a net-
work of FN models with di�ering values of ε would be a compelling
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system for exploring canard phenomena in three or more distinct
timescales.
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