Summary

- Synchronized activity is crucial for brain function:
- Occurs at multiple levels (neuronal or regional)
- Related to many pathological conditions (Parkinson's disease)
- In realistic networks, complex patterns of synchronizat (Complete) synchronization
- Cluster synchronization (e.g. phase lock)
- Finding the conditions that foster synchronization is cri understanding biological systems. Useful tools:
- Contraction theory & Algebraic graph theory

Synchronization definitions

Synchronization: N coupled systems, $\mathbf{x}^1, \ldots, \mathbf{x}^N \in \mathbb{R}^{\prime}$ to a forward-invariant manifold, called synchronization

$$\mathscr{S}_{1} := \left\{ \mathbf{X} \in \mathbb{R}^{nN} \mid \mathbf{X}^{1} = \cdots = \mathbf{X}^{N}, \ \mathbf{X}^{i} \in \mathbb{R}^{n} \right\} \quad \checkmark$$

Cluster synchronization: N coupled systems, x¹,... partitioned in $K \leq N$ groups, converge to a forward-inv manifold, called *cluster synchronization manifold*:

Network model

- ▶ Dynamics of a network of *N* nodes, $\mathbf{x}^i \in \mathbb{R}^n$, i = 1, ..., $\dot{\mathbf{x}}^{i}(t) = \mathbf{f}^{i}\left(\mathbf{x}^{i}(t), t\right) + \sum_{j \in \mathcal{N}_{i}} \gamma^{ij} D\left(\mathbf{x}^{j}(t) - \mathbf{x}^{i}(t)\right)$ \mathcal{N}_i : nei
- Nonlinear intrinsic dynamics of each node: fⁱ
- Linear diffusive coupling: Diffusion matrix $D \in \mathbb{R}^{n \times n}$ is indicates which dimensions of the dynamics are coupl
- ▶ Laplacian matrix with eigenvalues $0 = \lambda^{(1)} \leq \lambda^{(2)} \leq \cdots$

$$\mathcal{L}_{ij} = \left\{egin{array}{cc} \sum_{k \in \mathcal{N}_i} \gamma^{ik} & i = j \ -\gamma^{ij} & i
eq j, j \in \mathcal{N} \ 0 & ext{otherwise} \end{array}
ight.$$

References

- Lewis (1949) & Dahlquist, Lozinskii (1958) & Hartman (1961) & Yoshizawa (1966) & Desoer, Haneda (1972), Deimling (1985) & Slotine, Lohmiller (1998)
- Arcak. (2011), Theorem 4 (modified)

- 4 Sorrentino, Ott (2007)
- 5 Stewart, Golubitsky, Pivato (2003)
- 6 Belykh, Osipov, Petrov, Suykens, Vandewalle (2008)

Cluster synchronization of diffusively-coupled nonlinear systems: A contraction based approach Zahra Aminzare Joint work with B. Dey, E. N. Davison, N. E. Leonard

	Contraction theory ¹
& epilepsy) tion emerge:	 Contractive system: ẋ = f(x) is contractive system: ẋ = f(x) is contractive u & v converge to each other u(t) - v(t) ≤ e^{µt} u(0) - Matrix measures (Logarithmic norms (X, · _X): a finite-dim normed vector s L(X, X): normed space of linear transfer the induced operator norm
	$\ A\ _{X \to X} = \sup_{x \neq 0} \frac{\pi}{\ A\ _{X \to X}}$
ⁿ , converge <i>manifold</i> :	matrix measure $\mu_X[\cdot]$ induced by $\ \cdot\ _X$ induced by $\ \cdot\ _X$ is directional derivative of the matrix norm $\mu_X[A] = \lim_{h \to 0^+} \frac{1}{h} (\ I + hA)$
Time	• A sufficient condition for contractivity sup _x $\mu_X[J_f(\mathbf{x})] < 0$, then $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ is cont
$, \mathbf{x}^{N} \in \mathbb{R}^{n},$ variant	Sufficient conditions for synchronizati $f^i = f$
$\mathbf{x}^{i} \in \mathbb{R}^{n} \bigg\}$	• <i>Q</i> : a positive definite matrix s.t. Q^2D + • $ x _{2,Q} := Qx _2$: a <i>Q</i> weighted L^2 norm • $\mu_{2,Q}[A]$: matrix measure induced by $ \cdot $ • $\mu := \sup_{(x,t)} \mu_{2,Q} \left[J_{\mathbf{f}}(x,t) - \lambda^{(2)}D \right]$ Then for any solution \mathbf{x} , \exists a solution $\bar{\mathbf{x}}$ such $ \mathbf{x}(t) - \bar{\mathbf{x}}(t) = m \leq O^{\mu t} \mathbf{x}(0)$
N: N:	$\ \mathbf{x}(t) - \mathbf{x}(t)\ _{2, I_{N} \otimes Q^{2}} \leq C \ \mathbf{x}(0)\ _{2, I_{N} \otimes$
	Cluster-input-equivalence condition & synchronization manifold
diagonal and led. $\cdot \leq \lambda^{(N)}$:	 Cluster synchronization arises in heterom 1. K ≤ N groups 𝒞₁,, 𝒞_K with identical intrins 2. Cluster-input-equivalence (CIE):⁵⁶ f ∑ γ^{rk} = ∑
	$(\mathcal{N}_{r}^{\mathscr{C}_{j}} - \text{ indices of neighbors of } r \text{ in group } \mathscr{C}_{j}.)$ $\blacktriangleright Then, the cluster synchronization manif$
	(necessary condition for cluster synchro Contact

aminzare@math.princeton.edu

http://www.math.princeton.edu/~aminzare/

	Main result
<i>ractive</i> , if any two er exponentially: $\mathbf{v}(0) \parallel, \ \mu < 0$ s) pace over \mathbb{R} or \mathbb{C} ormations $A: X \to X$ with $Ax \parallel_X \\ \overline{x \parallel_X}$ is defined as the h: $A \parallel_{X \to X} - 1$) ty If $\exists \parallel \cdot \parallel_X$ s.t. fractive. (J_f : Jacobian)	Consider a network with dyna $\dot{\mathbf{x}}_{\mathscr{C}_r}^k(t) = \mathbf{f}_{\mathscr{C}_r}\left(\mathbf{x}_{\mathscr{C}_r}^k(t), t\right) + \sum_{j \in \mathcal{N}^k} (K \text{ clusters with homogenous})$ Objective: Find conditions of and <i>intrinsic nodal dynamics</i> , \mathcal{G}_1 \mathcal{G}_2 \mathcal{G}_1 \mathcal{G}_2
on ² with homogenous	Sufficient conditions for cl heterogeneous f ⁱ
DQ^2 is positive definite. $\ _{2,Q}$ h that $-\bar{\mathbf{x}}(0)\ _{2,I_N\otimes Q^2}$	Let $\mu := \max_{r} \sup_{(x,t)} \mu_{2,Q} \left[J_{\mathbf{f}_{\mathscr{C}_{r}}} \right]$ solution \mathbf{x} , \exists a solution $\mathbf{\bar{x}}$ s.t. $\ \mathbf{x}(t) - \mathbf{\bar{x}}(t)\ _{2,l_{\mathcal{N}}}$ For $\mu < 0$, the dynamics in each $\mathbf{x}_{\mathscr{C}_{r}}^{i}(t) - \mathbf{x}_{\mathcal{C}_{r}}^{i}(t)$
$-\mathbf{x}^{j}(t) \rightarrow 0$ as $t \rightarrow \infty$. t is true for any L^{p} norms ³ .	Neuronal network: Fitzhug
invariant cluster	Network of Fitzhugh-Nagumo (FN) 2D reduction of Hodgkin-Huxley: $\dot{v} = v - v^3/3 - z - a + I$
ogeneous networks ⁴ . sic dynamics: $\mathbf{f}_{\mathcal{C}_r}$. for any $\mathbf{x}_{\mathcal{C}_i}^r, \mathbf{x}_{\mathcal{C}_i}^s$ in \mathcal{C}_i , γ^{sk}	$z = \epsilon(y - bz)$ Sufficient condition for synchroniza $\gamma > \frac{1}{\lambda_{\mathscr{C}_{i}}^{(2)} + \bar{\lambda}^{(2)}} \max_{0$
fold $\mathscr{S}_{\mathcal{K}}$ is forward-invariant onization).	No(rade (k))

amics

 $\gamma^{kj} D\left(\mathbf{x}_{\mathscr{C}_r}^j(t) - \mathbf{x}_{\mathscr{C}_r}^k(t)\right) \qquad k = 1, \ldots, C_i$

is intrinsic dynamics) that satisfies CIE. on network structure, coupling weights, that guarantee convergence to \mathscr{S}_{K} .

Graph decomposition:

- \blacktriangleright G: interconnection graph
- G_r : subgraph describing connections within cluster r, $\lambda_{\mathscr{C}}^{(2)}$: 2nd eigenvalue
- $\blacktriangleright \overline{\mathcal{G}}$: subgraph describing connections among clusters, $\bar{\lambda}^{(2)}$: 2nd eigenvalue

uster synchronization with

 $f_{\mathscr{C}_r}(x,t) - \left(\lambda_{\mathscr{C}_r}^{(2)} + \overline{\lambda}^{(2)}\right) D$. Then for any

 $_{\mathcal{A}\otimes Q^2}\leq oldsymbol{e}^{\mu t}\|\mathbf{x}(0)-ar{\mathbf{x}}(0)\|_{2,I_{\mathcal{N}}\otimes Q^2}$ ach cluster synchronize: $\forall i, j \in \mathscr{C}_r$, $\mathbf{x}^{j}_{\mathscr{C}}(t)
ightarrow 0$ as $t
ightarrow \infty$

gh-Nagumo & Hindmarsh-Rose

and Hindmarsh-Rose (HR) oscillators: 2D version of Hindmarsh-Rose:

 $\dot{y} = y^3 + cy^2 + z + I$ $\dot{z} = \delta(1 - 5y^2 - z)$

ation with diffusion matrix $D = diag(\gamma, 0)$:

 $\left. rac{(-5)^2}{(2-3)} + rac{1}{4\delta_{\mathscr{C}_i}p}, rac{\mathcal{C}_{\mathscr{C}_i}^2}{3} - \delta_{\mathscr{C}_i}, 1 + lpha_j
ight\}, \ lpha_j = -$