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Abstract
Bacteria are often exposed to multiple stimuli in complex environments, and their
efficient chemotactic decisions are critical to survive and grow in their native environ-
ments. Bacterial responses to the environmental stimuli depend on the ratio of their
corresponding chemoreceptors. By incorporating the signaling machinery of individ-
ual cells, we analyze the collective motion of a population of Escherichia coli bacteria
in response to two stimuli, mainly serine and methyl-aspartate (MeAsp), in a one-
dimensional and a two-dimensional environment, which is inspired by experimental
results inY.Kalinin et al., J. Bacteriol. 192(7):1796–1800, 2010.Under suitable condi-
tions, we show that if the ratio of the main chemoreceptors of individual cells, namely
Tar/Tsr, is less than a specific threshold, the bacteria move to the gradient of serine,
and if the ratio is greater than the threshold, the group of bacteria moves toward the
gradient of MeAsp. Finally, we examine the theory with Monte Carlo agent-based
simulations and verify that our results qualitatively agree well with the experimental
results in Y. Kalinin et al. (2010).

Keywords Chemotaxis · Multi-scale dynamics · Population dynamics · Intracellular
decision making · Fokker–Planck equations · Advection–diffusion equations · Monte
Carlo simulations

1 Introduction

The preferred movement of a bacterium along the gradient of chemical substances, the
so-called chemotaxis, includes a directedmovement (run) and a relatively short random
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turning (tumble). See, e.g., Berg and Brown (1972), Macnab and Koshland (1972) for
Escherichia coli (E. coli) and Salmonella typhimurium chemotaxis. Each bacterium
carries an internal state which may be modeled by a system of ordinary differential
equations. In the presence of a stimulus in the environment, each cell changes its
direction at random, with a tumbling rate which depends on the internal state, biasing
moves toward more favorable environments or away from noxious substances.

In natural environments, bacteria are often exposed to multiple chemical stimuli.
To navigate toward a favorable environment, they choose their directions of movement
basedon environmental perception, individual preferences, and interactionwith others.
Also, each individual’s decision characterizes the behavior of a group of bacteria. Thus,
understanding how bacterium chooses between multiple stimuli is essential to study
bacterial chemotaxis at the population level.

In the case of E. coli, chemical signals are often detected via five main chemore-
ceptors, namely Tar, Tsr, Tap, Trg, and Aer Vladimirov and Sourjik (2009). In Kalinin
et al. (2010), where responses of E. coli to two chemoattractant signals are demon-
strated, it is shown that the expression levels of the most abundant receptors, Tar and
Tsr, are determined by the bacterial density in a batch-mode culture within the growth
phase; in turn, the ratio of these receptors differentiates their chemical preferences.

Inspired by the experimental results of Kalinin et al. (2010), our goal of this work
is to incorporate the bacterial decision-making process into a mathematical model and
investigate the corresponding collective behavior observed in Kalinin et al. (2010).
To this end, we consider a population of bacteria in a one-dimensional and a two-
dimensional spatial domain occupied by two stimuli that their temporal rates are
assumed to be zero. First, we employ a Fokker–Planck-type master equation (also
known as balance equation Alt (1980)) to describe the bacterial chemotaxis. This
(microscopic) model enables us to incorporate the internal dynamics of E. coli repre-
senting the chemotaxis signalingpathway (Tu et al. 2008;Edgington andTindall 2018).
Then, we describe the E. coli population dynamics by a (macroscopic) advection–
diffusion equation, which is analogous to the classic Keller–Segel model (Keller and
Segel 1971), and can be derived from the microscopic model by the tools developed
in Erban and Othmer (2004).

Mathematical modeling aiming to understand the behavior of bacteria population
in response to external signals has been extensively studied (see Tindall et al. (2008)
for a review on multi-scaling model approaches for chemotaxis). These studies have
been discussed along with detailed mathematical models for the entire signal trans-
duction network, first modeled by Barkai and Leibler (1997) and Spiro et al. (1997).
In Erban and Othmer (2004, 2005), the authors studied E. coli chemotaxis in response
to a single stimulus in a one-dimensional and an arbitrary dimensional space, respec-
tively. These studies were generalized in Xue and Othmer (2009) to multiple space-
and time-dependent signals by applying a general type of receptor-based response
laws (Othmer and Stevens 1997; Painter et al. 2000). These works considered a toy
model for the internal dynamics. In Aminzare and Sontag (2013), Menolascina et al.
(2017), the authors allow arbitrary one-dimensional internal dynamics in response
to a time-independent signal and more realistic models for E. coli internal dynamics
given in Tu et al. (2008), Kalinin et al. (2009). The theory was further generalized to
higher-dimensional space and multiple signals in Xue (2015), Xue and Yang (2016).
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The authors in Hu and Tu (2014) incorporated E. coli signaling pathway from Tu et al.
(2008) into a one-dimensional macroscopic equation in order to understand various
taxis behaviors in Salman and Libchaber (2007), Demir et al. (2011), Yang and Sour-
jik (2012). The macroscopic model was also validated by comparing with available
experimental data that show the ratio of Tar and Tsr affects bacterial thermotaxis and
pH taxis.

Our contributions toward understanding the dynamics of a population of bacteria in
response to two stimuli are as follows. First, we incorporate a relatively general class
of one-dimensional internal dynamics into a one- and a two-dimensional microscopic
equation from which one can derive a macroscopic equation. Second, we use the
macroscopic model for a population of E. coli with a mechanistically realistic, while
a mathematically tractable, model of internal dynamics and analyze the response of
E. coli to two stimuli in a one- and a two-dimensional environment. By analyzing
the steady-state solution of the macroscopic equation, we further show that there is
a critical ratio of receptors that determines bacterial movement toward their favored
chemical. Finally, we demonstrate some Monte Carlo agent-based simulations for
different types of stimuli and compare themwith numerical solutions of themodel.We
also explain that the Monte Carlo simulations results agree well with the experimental
results of Kalinin et al. (2010).

The remainder of the paper is organized as follows. In Sect. 2, we first review the
internal dynamics of E. coli which describe how the cells can produce runs and tum-
bles. Then, given a general internal dynamics of bacteria, we introduce a (forward)
Fokker–Planck equation which describes the dynamics of a probability distribution of
a population of bacteria. By applying specific E. coli internal dynamics, the stochas-
tic equation is approximated by a one-dimensional (respectively, two-dimensional)
advection–diffusion equation in Sect. 3 (respectively, Section 4). Also, a bifurcation
parameter and its value of bacterial chemical preferences are identified. This result is
also verified when comparing the solutions to the advection–diffusion equation with
Monte Carlo agent-based simulation and verified by comparing the solutions with
Monte Carlo agent-based simulations. In Sect. 5, we conclude with a brief summary
and discussion of future directions. All the parameters are given in Table 1 and Table 2
in an Appendix.

2 Microscopic Behavior of a Population of E. coli Bacteria

We briefly review the internal dynamics of E. coli which transfer a signal of the envi-
ronment into a motor rotation for a run or a tumble (see Tu et al. (2008), Kalinin et al.
(2009), Jiang et al. (2010) formore details). Then, followingErban andOthmer (2004),
Aminzare and Sontag (2013), Othmer et al. (1988), we derive a probabilistic equa-
tion which describes microscopic dynamics of a population of bacteria with a given
internal dynamics. Later, in the following section, we use the microscopic equation to
derive a macroscopic equation which approximates the dynamics of a population of
bacteria by integrating the internal dynamics of all the bacteria.
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2.1 The Internal Dynamics of E. coli: A Brief Review

E. coli bacteria use four to six helical flagella that are connected to rotary motors
in their cell wall to swim. Their swimming patterns are characterized as a random
walk, consisting of long runs (∼ 1 sec) and short tumbles (∼ 0.1 sec). When a cell
senses an increasing of external attractant gradient, the run length is extended (Berg
and Brown 1972; Berg and Turner 1990). The receptors in the membrane of the cells,
which receive the signals, and the flagellar motors, which produce runs and tumbles,
are connected by a signaling pathway within the cell, as shown in Figure 1(left),
Wadhams and Armitage (2004). The receptors form hetero-trimers of homo-dimers,
which is basic signaling units, and the clusters of mixed trimers of dimers link to a
histidine kinase CheA through a linker protein CheW (Endres et al. 2008; Hansen
et al. 2010; Xin and Othmer 2012; Lai et al. 2017). We note that individual receptors
cannot activate CheA, and hence, in this paper, we refer to the dimers as receptors.

In the absence of an attractant gradient, CheA autophosphorylates and produces
CheA-P. The phosphoryl group of CheA-P transfers to either CheY or CheB. Phos-
phorylated CheY (denoted by CheY-P) enhances the probability of switching to a
clockwise motor rotation by binding to a protein FilM, a component for switching
the direction of motor rotation (Welch et al. 1993; Bren et al. 1996; Lipkow et al.
2005), and thus the tumbling rate increases. The clockwise motor rotation is quickly
modulated as CheZ accelerates the dephosphorylation of CheY-P in Lipkow (2006).

In the presence of an attractant gradient, a ligand binds to a receptor and inhibits
the activity of CheA, followed by decreasing the CheY-P and CheB-P levels. The
reduction in CheY-P levels lengthens the run with a counter-clockwise motor rotation.

To respond to further changes in the concentration of a gradient, CheR and CheB-
P mediate adaptation. On the one hand, CheR methylates the receptors and hence
enhances CheA activity (Springer and Koshland 1977). On the other hand, CheB-P
demethylates the receptors and consequently inhibits the activity of CheA (Stock and
Koshland 1978). Therefore, when an attractant gradient is sensed, the CheA-P level,
and thus the CheB-P level decrease. While the CheB-P level decreases, the receptors
are methylated by CheR, and they return to their pre-stimulus state, followed by the
pre-stimulus values of CheA activity, CheA-P and CheY-P levels, andmotor bias. This
process is called an adaptation of methylation.

The intracellular chemotaxis signaling pathway, which contains three main phos-
phorylation groups and the receptormethylation level, can bemathematicallymodeled
by four coupled ordinary differential equations (ODEs) that consist of three biochem-
ical equations for CheA-P, CheB-P, and CheY-P, and one equation for the methylation
level of receptors. However, the phosphorylation processes and the methylation pro-
cess occur at different time scales, and one can reduce the four-dimensional system
into a three-, two-, or even a one-dimensional system. In Edgington and Tindall (2018),
the authors explained these reductions in detail.

It is known that the adaptation process of methylation is much slower than the other
dynamics in the signaling pathway (Erban and Othmer 2005; Bray and Bourret 1995;
Terwilliger et al. 1986; Simms et al. 1987). Therefore, assuming quasi-equilibrium
approximations for CheA-P, CheB-P, and CheY-P, we consider a one-dimensional
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Fig. 1 Left: E. coli signaling pathway. Binding ligands to receptors, the signal is transduced to the flagellar
motor via six cytoplasmic chemotaxis proteins. Right: An input–output representation of E. coli signaling
pathway. The internal signaling pathway shown in left is reduced to the interaction between the methylation
levelm and the kinase activity a. This interaction, which depends on ligand concentration S (input), controls
the motor rotation by changing the tumbling rate (output). See Sect. 2.1 for detailed description

reduction model for the methylation level of receptors, as developed in Tu et al.
(2008).

Consider the following input–output dynamics for the chemotaxis signaling path-
way, as shown in Figure 1(right). The ligand concentration, denoted by S, and the
tumbling rate, denoted by λ, represent the input and the output, respectively. As
explained above, binding the ligand to the receptor inhibits the activity of CheA,
denoted by a. On the other hand, the methyl group (denoted by m) in the receptors
enhances the activity of a. Therefore, a = G(S, m) can be described as an increasing
function of m and a decreasing function of S.

As described earlier, the kinase activity of CheA enhances the CheB-P level, and
CheB-P reduces the methylation level of the receptors. Consequently, the kinase activ-
itya reduces themethylation levelm, indirectly. So, the dynamics ofm canbedescribed
by dm/dt = F(a), where F is a decreasing function of a.
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Several models for methylation dynamics (F) and kinase activity function (G) have
been developed. See, e.g., Tu et al. (2008), Edgington and Tindall (2018), Vladimirov
et al. (2008), Clausznitzer et al. (2010). For ease of calculation, we choose models for
F and G as described in (1) and (2). Despite of the simplicity, the models capture the
essential features such as receptor cooperativity, methylation on kinase activity, and
adaptation for E. coli signaling pathway, and they were verified by existing experi-
ments. More details are discussed below.

Note that the tumbling rate λ is controlled by the level of CheY-P, which is affected
by the kinase activity. Therefore, λ can be modeled by an increasing function of a, as
described in (5).

Following the experimental setup in Kalinin et al. (2010), we consider two stimuli:
S1 and S2, which, respectively, stand for methyl-aspartate (MeAsp) and serine, and
can be sensed by Tar and Tsr, which are the most abundant chemoreceptors in the E.
coli chemotaxis network. Furthermore, since the experiments in Kalinin et al. (2010)
are designed to keep the external signals S1 and S2 constant in time, we assume that S1
and S2 only depend on the spatial variable x and are independent of time t : S1 = S1(x)
and S2 = S2(x).

Remark 1 In a mixed cluster of receptors, not only adaptation occurs locally and is
ligand specific, but also interactions among receptors are crucial to signal amplification
and integration. Models for a mixed-receptor cluster with crosstalk among different
types of receptors have been developed to understand how a mixed-receptor cluster
differentiates ligand types and adapts to the individual stimuli (e.g., Hansen et al.
(2010), Xin and Othmer (2012), Lai et al. (2017), Endres and Wingreen (2006), Lan
et al. (2011) and reference therein). In this work, however, we do not attempt to
capture all the details on receptor crosstalk, and consequently methylation crosstalk
and ligand-specific adaptation are not considered. Instead, we are interested in the total
receptor kinase activity of the whole receptor cluster, and use the average methylation
level of the entire receptor rather than the methylation dynamics for different types
of receptors separately, as in Hu and Tu (2014). Due to the simplicity of our model,
it is unable to describe processes that depend on activities of individual receptors
in the cluster; however, it makes our model analytically solvable, and still captures
the essential features such as receptor cooperativity, effects of methylation on kinase
activity, and adaptation.

Following Hu and Tu (2014); Mello and Tu (2005), Neumann et al. (2010), we
let a heterogeneous Monod–Wyman–Changeux (MWC) model (Monod et al. 1965)
describe the total kinase activity a:

G(S1, S2, m) = 1

1 + η0(m)η1(S1)η2(S2)
, (1)

where η0(m)η1(S1)η2(S2) is derived from the total free energy difference between the
active and inactive states. According to Tu et al. (2008), Jiang et al. (2010), Sourjik and
Berg (2002), Shimizu et al. (2006), Mello and Tu (2007), the methylation-dependent
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free energy gives

η0(m) = exp(Nα(m0 − m)),

where N is the number of the responding receptors in the cluster, and α and m0
denote the free-energy per added methylation group and a reference methylation level,
respectively. The ligand-dependent free-energy obtains

ηi (Si ) =
(
1 + Si/K i

I

1 + Si/K i
A

)Nri

,

where K i
I and K i

A are the dissociation constants of the corresponding ligand (i = 1
for MeAsp, i = 2 for serine) to the inactive and the active receptor (i = 1 for Tar,
i = 2 for Tsr). The constant parameters r1 and r2 are the fraction of receptors Tar and
Tsr in the receptor cluster, respectively. We assume that r1 + r2 = 1 and r1N and r2N
are the number of the receptors binding to the corresponding ligand.

The averagemethylation level of receptors,m, evolves slowly, and can be described
by the following equation (Tu et al. 2008; Jiang et al. 2010):

dm

dt
= F(a) = a0 − a

τa
, (2)

where τa � 1 is the time scale and a0 is a constant which represents the adaptation
level of a, i.e., when a > a0, dm/dt < 0 and hence m and consequently a decrease.
When a < a0, dm/dt > 0 and hence m and consequently a increase.

In what follows, we denote a state variable by a in (1) that depends on m which
restores a to the adapted level a0. Taking time derivative of a gives:

da

dt
= ∂a

∂m

dm

dt
+ ∂a

∂S1
∇xS1 · dx

dt
+ ∂a

∂S2
∇xS2 · dx

dt
. (3)

Using (1) for a = G(S, m), we obtain

∂a

∂m
= αNa(1 − a),

∂a

∂Si
= Na(a − 1)ri

1/K i
I − 1/K i

A

(1 + Si/K i
I )(1 + Si/K i

A)
.

For i = 1, 2, we assume that for any x,

K i
I � Si (x) � K i

A,

as in Tu et al. (2008), Jiang et al. (2010). This assumption guarantees scale-invariant
behavior ofE. coli in response to external signals, whichwasmathematically predicted
in Shoval et al. (2010) and experimentally verified in Lazova et al. (2011). Scale-
invariance property of a system means that the system does not distinguish between
an input (here, S1 or S2) and its scaled version (e.g., p1S1 or p2S2). For more details,
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see Edgington and Tindall (2018) and Shoval et al. (2011). Using this assumption, we
make the following approximation

1/K i
I − 1/K i

A

(1 + Si/K i
I )(1 + Si/K i

A)
≈ 1

Si
.

Therefore,

da

dt
= αNa(1 − a)

a0 − a

τa
+ Na(a − 1)

(
r1

∇xS1 · dx/dt

S1
+ r2

∇xS2 · dx/dt

S2

)
.

(4)

Experimental data on the parameters used in this section are listed in Table 1.

Remark 2 E. coli bacteria can also sense pH changes, and their internal dynamics
during pH taxis is analogous to that during chemotaxis. For example, according to
Hu and Tu (2014), Demir et al. (2011), Yang and Sourjik (2012), Tar receptors are
attracted to a decrease in pH, but Tsr receptors show the opposite response. Taking into
account two chemical stimuli with different pH levels, we can apply the heterogeneous
MWC model and use the following assumptions to derive the internal dynamics for
pH:

K 1
I � S1(x) � K 1

A, and K 2
A � S2(x) � K 2

I ,

which yield

1/K 1
I − 1/K 1

A

(1 + S1/K 1
I )(1 + S1/K 1

A)
≈ 1

S1
, and

1/K 2
I − 1/K 2

A

(1 + S2/K 2
I )(1 + S2/K 2

A)
≈ −1

S2
.

As a result of the slow adaptation process (2), bacteria use their methylation state
as a short-term memory store to compare changes of stimuli temporarily during a
run. This process helps the bacteria to run or tumble effectively toward their preferred
location. According to experimental observations and measurements, the tumbling
rate function can be described as

λ(a) = λ0 + 1

τ

( a

a0

)H
, (5)

where λ0, H , and τ denote the rotational diffusion, the Hill coefficient of flagellar
motor’s response curve, and the average run time, respectively, and a0 is as given in
(2). Note that since a depends on S, we may write λ = λ(a, S) (see Sect. 2.2). More
details about the physical meaning of these parameters can be found in Hu and Tu
(2014), Jiang et al. (2010), Sourjik and Berg (2002). The parameter values are shown
in Table 1.
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2.2 A Fokker–Planck Equation Describing a Population of Bacteria

In what follows, we describe the motion of a population of bacteria by incorporating
their internal dynamics.

Let p(x, a, ν, t) be a probability density function describing a population of bac-
teria, modeled in a 2N + M + 1-dimensional phase space, where time t ∈ R,
x = (x1, . . . , xN ) ∈ R

N (we will specialize to N = 1, 2) denotes the position
of a cell centroid, a = (a1, . . . , aM) ∈ A ⊂ R

M (we will specialize to M = 1)
denotes the internal dynamics of the cell, and ν = (ν1, . . . , νN ) ∈ V ⊂ R

N denotes
its velocity, dx/dt = ν. The vector S(x, t) = (S1(x, t), . . . , SK(x, t)) ∈ R

K repre-
sents the concentration of extracellular signals in the environment (we will assume
that S only depends on x as in Sect. 2.1 and Kalinin et al. (2010)).

Let the following system of ODEs describe the evolution of the intracellular state,
in the presence of the extracellular signal S:

da
dt

= f (a, S), (6)

where f : RM × R
K → R

M is a continuously differentiable function with respect
to each component, i.e., f ∈ C1(RM × R

K).
Assuming constant velocity, dνi/dt = 0, the evolution of p = p(x, a, ν, t) with

turning rateλ = λ(a, S) is governed by the following forward Fokker–Planck equation
describing a velocity-jump process (Alt 1980; Othmer et al. 1988):

∂ p

∂t
+ ∇x · ν p + ∇a · f p = −λ(a, S)p +

∫
V

λ(a, S)T (a, ν, ν′)p(x, a, ν′, t) dν′,

(7)

where the non-negative kernel T (a, ν, ν′) is the probability that the bacteria change
the velocity from ν′ to ν, and

∫
V

T (a, ν, ν′) dν′ = 1.

Equation (7) is not tractable mathematically and is hard to be validated by typical
experimental techniques. The goal is to use the microscopic model (7), and derive
a macroscopic model for chemotaxis in a one-dimensional space (in Sect. 3) and a
two-dimensional space (in Sect. 4), i.e., an equation for the marginal density

n(x, t) =
∫

V

∫
A

p(x, a, ν, t) da dν,

with N = 1 or 2, M = 1, and K = 2; n(x, t) is the number of individuals which at
time t are located at position x, whatever their internal dynamics and velocity are.

Note that the theory works for any arbitrary K. However, we are interested in two
extracellular signals, so we only consider K = 2.
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3 E. coli Preferences in Response to Two Stimuli in a One-Dimensional
Space

In this section, we study the behavior of bacteria in response to two stimuli in a one-
dimensional space. First, we derive the corresponding macroscopic equation; then
analyze its steady-state behavior and discuss bacteria preferences. Then, we compare
the numerical solutions of the model and Monte Carlo simulations and discuss how
they agree with experimental results.

3.1 Advection–Diffusion Equations and Integration of the Biochemistry of E. coli
Chemotaxis

First, we assume that the bacteriamove in a one-dimensional space, i.e., a finite interval
[0, L] where we assume L is sufficiently large. We let p±(x, a, t) = p(x, a,±ν, t)
denote the density of the bacteria, located at x ∈ [0, L], moving to the right and left,
respectively, and let f ± = f0 ± ν f1 describe their corresponding internal state. Here,
ν > 0 represents the speed of the bacteria, and we assume that ν is constant. Then,
the Fokker–Planck equation (7) becomes

∂ p+

∂t
+ ν

∂ p+

∂x
+ ∂

∂a

[
f +(a, S) p+] =1

2
λ(a, S)(p− − p+), (8)

∂ p−

∂t
− ν

∂ p−

∂x
+ ∂

∂a

[
f −(a, S) p−] =1

2
λ(a, S)(p+ − p−). (9)

Following Erban and Othmer (2004), Erban and Othmer (2005), Xue and Othmer
(2009), Aminzare and Sontag (2013), Xue (2015), under a decay condition for p±,
some conditions on the internal dynamics (for example, shallow conditions for the
stimuli—see Proposition 1), moment closure techniques, and parabolic scaling, a gen-
eral advection–diffusion equation for the marginal density

n(x, t) =
∫

A
(p+(x, a, t) + p−(x, a, t)) da

can be derived from Equations (8)-(9) as follows

∂n

∂t
= ∂

∂x

(
ν2

α0

∂n

∂x
− α1B0ν

2

α0(A1 − α0)
n

)
. (10)

Here, αi , Ai , and Bi are the Taylor constants of λ, f0, and f1, respectively:

λ = α0 + α1a + · · · ,

f0 = A0 + A1a + · · · ,

f1 = B0 + B1a + · · · .

All the Taylor constants depend on S = S(x).
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Inwhat follows,we determine the terms in the advection–diffusion equation (10) for
a population of E. coli bacteria in a spatial domain [0, L] equipped with two chemical
gradients MeAsp, denoted by S1(x), and serine, denoted by S2(x). We further assume
that S1 and S2 are, respectively, increasing and decreasing functions on [0, L], i.e.,
MeAsp accumulates near x = L and serine accumulates near x = 0. As we discussed
in Sect. 2.1, in a one-dimensional space, the internal state of E. coli evolves according
to Equation (4). Following Aminzare and Sontag (2013), Xue (2015), we state the
following proposition, in which all the parameters and functions are as described in
Sect. 2.1.

Proposition 1 Assume that the density functions p± satisfy the decay condition

p±(x, a, t) ≤ C(x, t)e−c(x,t)a

for some functions C, c : R × [0,∞) → R>0. With the fraction of two receptors, r1
and r2, suppose that the stimuli S1 and S2 satisfy the shallow condition

∣∣∣∣r1 S′
1(x)

S1(x)
+ r2

S′
2(x)

S2(x)

∣∣∣∣ ≤ min{q, 1 − q} p

ν
, ∀x ∈ [0, L], (11)

where q = a0 and p = α
τa

represent the adapted value and the speed of adaptation,
respectively. Then, for the given internal dynamics (4), the dynamics of a population
of E. coli, n(x, t), can be approximated by the advection–diffusion

∂n

∂t
= ∂

∂x

(
D

∂n

∂x
− χ V (x)n

)
, (12)

where the diffusion coefficient D and the advection terms χ and V (x) are as follows:

D = ν2

λ0 + rq H
, χ = r N Hq H (q − 1)ν2

(λ0 + rq H )(N pq(q − 1) − λ0 − rq H )
, (13)

V (x) =r1
S′
1(x)

S1(x)
+ r2

S′
2(x)

S2(x)
. (14)

Note that the condition (11) holds if either the adaptation rate p is large or r1, r2,
S1 and S2 are chosen so that the left hand side (LHS) of (11) is small, i.e., the shallow
condition is equivalent to either small changes in the environment or fast adaptation.
For the case where the whole receptor cluster contains both Tar and Tsr, we define

γ := r1
r2

, (15)

which is the ratio Tar/Tsr, to reduce the number of parameters. Recall that r1+r2 = 1,
so indeed r1 = γ

1+γ
and r2 = 1

1+γ
. As an example, a role of γ and the shallow

condition will be discussed in Sect. 3.3 in more detail by choosing specific S1 and S2
of our interest.
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Following the experimental setup of Kalinin et al. (2010) in which the population
of the bacteria is conserved in time, we impose the following zero flux boundary
conditions at x = 0 and x = L. For any t ≥ 0,

∂n

∂x
(0, t) = χ

D
V (0)n(0, t) and

∂n

∂x
(L, t) = χ

D
V (L)n(L, t). (16)

3.2 Bifurcation of Bacterial Chemotactic Preference

The bacterial responses to MeAsp and serine depend on the ratio of their chemorecep-
tors Tar and Tsr, i.e., γ = Tar/Tsr, or equation (15). The goal is to find a positive γ ∗
and show that for γ > γ ∗ the bacteria tend to move toward a gradient of increasing
MeAsp (i.e., accumulate near x = L) and for γ < γ ∗ they move toward a gradient of
increasing serine (i.e., accumulate near x = 0). To determine such a γ ∗, we look at
a steady state of the advection–diffusion equation (12) with boundary condition (16).
Under some assumptions on S1, S2 and γ that guarantee the existence of a non-trivial
solution (we provided details in Park and Aminzare (2020)), when the initial condition
n(x, 0) is non-trivial, a unique non-trivial steady state 
(x) of (12) exists as follows:


(x) = 
(c0) exp

{
χ

D

∫ x

c0
V (y)dy

}
(17)

for some c0 such that 
(c0) > 0. Indeed, there is such a c0 by (16):

d

dt

∫ L

0
n(x, t)dx = 0 ⇒

∫ L

0
n(x, t)dx = constant > 0

⇒ lim
t→∞

∫ L

0
n(x, t)dx =

∫ L

0

(x)dx = constant > 0

⇒ there exists c0 such that 
(c0) > 0.

Assuming that the bacteria start from a point x0 ∈ (0, L), they move toward
a gradient of increasing MeAsp (respectively, serine) and accumulate near x = L
(respectively, x = 0), if the steady-state solution of the advection–diffusion equation
(12) admits a maximum on the right (respectively, left) sub-interval (x0, L] (respec-
tively, [0, x0)). Therefore, in what follows, we find conditions that 
(x) admits a
maximum on the right sub-interval (x0, L] or the left sub-interval [0, x0).

In what follows, we write V as a function of both x and γ , V = V (x, γ ). Consider-
ing the fact that 
′(x) = χ

D V (x, γ )
(x) and 
(x) > 0, 
 takes a unique maximum
at x∗ ∈ [0, L] if, for any γ > 0, either V does not change sign or V is a non-increasing
function of x and V (x∗, γ ) = 0. Now we are ready to find γ ∗ in the following lemma.

Lemma 1 Assume the bacteria start at x0 ∈ [0, L] and for any γ > 0, ∂V /∂x ≤ 0.
Also, assume that S1 and S2 are, respectively, increasing and decreasing functions on
[0, L]. Then, there exists γ ∗ > 0 such that V (x0, γ ∗) = 0 and for γ > γ ∗ the bacteria
accumulate on the right side of x0 and for γ < γ ∗ they accumulate on the left side.
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Proof A simple calculation shows that V (x, γ ) = 0 if and only if

γ (x) = − S′
2(x)/S2(x)

S′
1(x)/S1(x)

.

Let γ ∗ := γ (x0). For γ > γ ∗, V (x0, γ ) > 0, therefore, since ∂V /∂x ≤ 0, 
 takes
its maximum (either x = L or x = x∗ < L) on the right side of x0, and hence the
bacteria accumulate toward the right side of x0. Similarly, if γ < γ ∗, V (x0, γ ) < 0,
and hence 
 takes its maximum (either x = 0 or x = x∗ > 0) on the left side of x0,
and hence the bacteria accumulate toward the left side of x0. ��

Werefer toγ andγ ∗ as the bifurcation parameter andbifurcation value, respectively,
since at γ = γ ∗ the direction of the bacterial changes. See Figure 2.

Note that if the bacteria are initially distributed on [0, L] instead of locating on a
single point x0, we consider γ ∗ = γ ∗(L/2) as the bifurcation value.

In the following section, we consider two sets of stimuli: (i) S1 linear and increas-
ing, S2 linear and decreasing; (ii) S1 exponential and increasing, S2 exponential and
decreasing. We also assume that the bacteria are located at x0 = L/2 initially. In both
cases, V (x, γ ) is a decreasing function on [0, L]. Hence, the conditions of Lemma 1
hold and, therefore, γ ∗ can be determined based on the initial location of the bacteria,
i.e., x0 = L/2.

3.3 Monte Carlo Agent-based Simulations in a One-dimensional Space

To show that the advection–diffusion equation (12) with boundary condition (16) is
a good approximation for the microscopic description of E. coli chemotaxis, we run
a Monte Carlo agent-based simulation. A detailed description of the Monte Carlo
simulation is given in Table 2.

The following computational setting of our Monte Carlo agent-based simulation is
motivated by the experimental setup in Kalinin et al. (2010).

Spatial Domain. A one-dimensional channel of length of 400μm (x ∈ [0, 400]).
Stimuli.Along the two sides of the channel two opposing chemical signals, S1(x)

and S2(x), flow and diffuse across the channel. Two opposing linear and two
opposing exponential chemical signals are considered in Sects. 3.3.1 and 3.3.2,
respectively.
Initial Condition. At t = 0 (sec), an ensemble of 100,000 agents is located in the
center of the channel (x = 200).
Boundary Conditions. When a cell reaches a boundary, we relocate the cell to
stay inside the domain, i.e., zero flux boundary condition is applied.
SimulationDuration.Wesimulate the bacterial behavior for 200 sec, t ∈ [0, 200].
It is observed that the solution of each simulation in this section becomes stationary
at t = 200.

To illustrate distributions of the cells, we display histograms with 100 equal-sized
bins.
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We use an explicit finite difference method to numerically solve the advection–
diffusion equation (12) with the boundary condition (16).

In the following examples, we compare the solutions of the macroscopic equation
(12)with boundary conditions (16)with results of theMonteCarlo simulation. Further,
for each case, we compute the bifurcation value γ ∗ defined in Sect. 3.2. To measure
bacterial preference, we define the chemotactic migration coefficient (CMC):

CMCx (t) = mean(x(t)) − 200

200
. (18)

In the Monte Carlo simulation, mean(x(t)) is the average of individual positions xi at
time t across the channel, i.e., meani (xi (t)). For a solution n(x, t) of (12), mean(x(t))
is the expectation value of the probability density n(x, t), i.e.,

∫ L
0 xn(x, t)dx . The

absolute value of CMCx determines the displacement of the bacteria in x-direction.
The sign of CMCx indicates their preference to the right or left. When CMCx > 0
(respectively, CMCx < 0), the bacteria tend to move to the right, i.e., above x = 200
(respectively, left, i.e., below x = 200).

3.3.1 Chemotaxis in Response to Two Linear Gradients

To demonstrate responses of E. coli to two opposing linear gradients MeAsp and
serine, and following the experimental setup in Kalinin et al. (2010), we let

S1(x) = 0.5x + 130 and S2(x) = −0.03x + 20 (19)

represent the concentrations of MeAsp and serine at each point x ∈ [0, 400], respec-
tively.

As we discussed in Sect. 3.2, since for any γ > 0,

V (x, γ ) = γ

1 + γ

0.5

0.5x + 130
+ 1

1 + γ

−0.03

−0.03x + 20
(20)

is decreasing on [0, 400], V (200, γ ) is an increasing function of γ , and V (200, γ ∗) =
0 for γ ∗ ≈ 0.985, by Lemma 1, for γ > 0.985 (respectively, γ < 0.985) the bacteria
move to the right (respectively, left), toward the gradient of MeAsp (respectively,
serine).

Remark 3 In this example, for any x ∈ [0, L], S1 > S2, |S′
1| > |S′

2| and |S′
1/S1| >

|S′
2/S2|. Therefore, one may expect that the bacterial always choose to move toward

MeAsp (S1). However, as we proved in Lemma 1, when the ratio Tar/Tsr is small
enough (γ < γ ∗), the bacteria move toward the gradient of serine. Figure 2 displays
the relation between γ and the initial position of the bacteria, x0. The dotted curve

γ ∗(x0) = ( S′
2/S2

S′
1/S1

)
(x0) = 780+3x0

2000−3x0
satisfying V (x0, γ ∗) = 0 represents the bifurcation

values in which the bacterial direction changes. As it is shown in Fig. 2, γ ∗ is an
increasing function in x0, that is, |S′

1/S1| increases faster than |S′
2/S2| as x0 increases.

This means that if the bacteria start from near the right end point, a stronger force (a
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Fig. 2 Change of signs of V in (20) as x0 and γ vary. For (x0, γ ) in the dark red (respectively, blue) region,
V becomes positive (respectively, negative) as shown in the color bar. The dotted curve is a set of (x0, γ

∗)

where V = 0. The solid point at (200, 0.985) indicates the bifurcation value for the simulation in Sect.
3.3.1

larger γ ∗) is needed to drag them toward the gradient of serine (S2). In the following
section with exponential gradients, although S1 > S2 and S′

1 > S′
2 everywhere, the

needed force γ ∗ to drag the bacteria to the gradient of serine is always equal to 1. The
reason is that |S′

1/S1| ≡ |S′
2/S2|, in that case.

To examine the result of Lemma 1, we choose two values for γ , γ = 1.5 > γ ∗ ≈
0.985 and γ = 0.5 < γ ∗ ≈ 0.985, and Figure 3a, c displays distributions of the
normalized density of E. coli obtained from the Monte Carlo agent-based simulation
and numerical solution of the advection–diffusion (12). Three snapshots at times t =
10, 60, 200 (sec) are shown. As expected, the snapshots of a solution of (12) and the
snapshots of a solution of Monte Carlo simulation move to the right when γ > γ ∗, as
shown in Fig. 3c, and they move to the left when γ < γ ∗, as shown in Figure 3a.

Figure 3b, d displays the corresponding CMCx which, as expected, is positive when
γ > γ ∗ and the bacteria accumulate on the right and are negative when γ < γ ∗ and
the bacteria accumulate on the left.

In Fig. 3, the adaptation speed rate p is 0.4 and other parameters are as given in Table
1. For the given linear stimuli, the values of γ and p are chosen such that the shallow
condition (11) holds. Therefore, by Proposition 1, the advection–diffusion equa-
tion (12) approximates the Fokker–Planck equations (8)-(9). A comparison between
numerical solutions of (12) and the solutions of Monte Carlo simulations in Fig. 3
confirms this result.

3.3.2 Chemotaxis in Response to Two Exponential Gradients

We now repeat the discussion of Section 3.3.1 for two opposing exponential gradients
MeAsp and serine. We let

S1(x) = 130e0.0023x and S2(x) = 8e−0.0023(x−400) (21)
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Fig. 3 a and c: Comparisons of Monte Carlo simulation and numerical solutions of (12) for two linear
gradients (19) at times t = 10, 60, 200 (sec) with γ = 0.5 < γ ∗ and γ = 1.5 > γ ∗, in which the snapshots
move to the left and right, respectively. b and (d): Comparisons of the corresponding CMCx

represent the concentrations of MeAsp and serine at x ∈ [0, 400], respectively. Expo-
nential gradients have been used for various chemotaxis environments (e.g., Kalinin
et al. (2009)). Here, V (x, γ ) = 0.0023 γ−1

γ+1 . By Lemma 1, the bifurcation value γ ∗
becomes 1, which is confirmed by choosing two values of γ = 0.9 and 1.1, see Fig. 4.

Note that for the given exponential stimuli, the values of γ and p = 0.05 are chosen
such that the shallow condition (11) holds. As discussed in Sect. 3.3.1, Proposition 1
and Figure 4 confirm that the numerical solutions of (12) agree well with the solutions
of Monte Carlo simulations.

4 E. coli Preferences in Response to Two Stimuli in a Two-dimensional
Space

In this section, we study the behavior of bacteria in response to two stimuli in a two-
dimensional space. First, we derive the corresponding macroscopic equation; then
analyze its steady-state behavior and discuss bacteria preferences. Then, we compare
the numerical solutions of the model and Monte Carlo simulations and discuss how
they agree with experimental results.

4.1 Advection–diffusion Equations and Integration of the Biochemistry of E. coli
Chemotaxis

In this section, we assume that the bacteria move in a two-dimensional space. In a
similar way to deriving the macroscopic equation (10) for a one-dimensional space,
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Fig. 4 a and c): Comparisons ofMonteCarlo simulation and numerical solutions of (12) for two exponential
gradients (21) at times t = 10, 60, 200 (sec) with γ = 0.9 < γ ∗ and γ = 1.1 > γ ∗, in which the snapshots
move to the left and right, respectively. b and d: Comparisons of the corresponding CMCx

an equation for the density of cells carrying the description of an internal state of
individuals can be derived.

Let p(x, a, ν, θ, t) be a density function that describes a population of agents
at time t and location x = (x, y)� with velocity (ν1, ν2) = (ν cos θ, ν sin θ) and
an internal state a. For the sake of simplicity, by fixing a constant speed ν, we let
pθ (x, y, a, t) denotes the density of bacteria centered at (x, y)� which move to the
direction (cos(θ), sin(θ))�, θ ∈ [0, 2π), with the speed ν > 0.

According to the forward Fokker–Planck equation (7), for θ ∈ [0, 2π),
pθ (x, y, a, t) satisfies

∂ pθ

∂t
+ ∂

∂x
(ν cos(θ)pθ ) + ∂

∂ y
(ν sin(θ)pθ ) + ∂

∂a
( fθ (a, S1, S2) pθ )

= 1

2π
λ(a, S1, S2)

∫ 2π

0
(pη(x, y, a, t) − pθ (x, y, a, t)) dη,

(22)

where fθ and λ describe the internal dynamics and tumbling rate, respectively.
In the presence of two extracellular signals S1(x, y, t) and S2(x, y, t), the evolution

(6) of the internal state of the bacteria that move to the direction (cos(θ), sin(θ))� with
the speed ν is governed by the following ordinary differential equation.

da

dt
= fθ (a, S1, S2)

= f0(a, S1, S2) + ν cos(θ) f 11 (a, S1, S2) + ν sin(θ) f 21 (a, S1, S2),
(23)
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where the real-valued functions fθ , f0, f 11 , and f 21 are continuously differentiable.We
assume that f0, f 11 and f 21 have the Taylor expansions with respect to a as follows:

f0 = A0 + A1a + A2a2 + · · · ,

f i
1 = Bi

0 + Bi
1a + Bi

2a2 + · · · , i = 1, 2.

Also, we assume that the tumbling rate λ = λ(a, S1, S2) has the Taylor expansion

λ = α0 + α1a + α2a2 + · · · .

All the Taylor constants are functions of S1 and S2.
At a fixed time t , consider a population of bacteria with internal dynamics (23) and

tumbling rate λ that are located in (x, y). The density of bacteria, described by

n(x, y, t) =
∫
R

∫ 2π

0
pθ (x, y, a, t)dθda,

can be approximated by solving the following advection–diffusion equation:

∂n

∂t
= 1

2

∂

∂x

(
ν2

α0

∂n

∂x
− ν2α1B1

0

α0(A1 − α0)
n

)
+ 1

2

∂

∂ y

(
ν2

α0

∂n

∂ y
− ν2α1B2

0

α0(A1 − α0)
n

)
.

(24)

The above equation is derived by applying moment closure techniques and parabolic
scaling (Erban andOthmer 2004, 2005;Xue andOthmer 2009), (Aminzare and Sontag
2013; Xue 2015), and we provided a detailed derivation in Park and Aminzare (2020).

In accordancewith the experimental setup ofKalinin et al. (2010) inwhich L1 � L2
and the population of bacteria is conserved in time, we impose zero flux boundary
conditions along the boundary as follows:

For the spatial domain [0, L1] × [0, L2],
⎧⎪⎨
⎪⎩

D
∂n

∂x
(0, y, t) = χ1(0, y)n(0, y, t) and D

∂n

∂x
(L1, y, t) = χ1(L1, y)n(L1, y, t)

D
∂n

∂ y
(x, 0, t) = χ2(x, 0)n(x, 0, t) and D

∂n

∂ y
(x, L2, t) = χ2(x, L2)n(x, L2, t)

(25)

for any t ≥ 0, where D = ν2

2α0
and fori = 1, 2, χi (x, y) = ν2α1Bi

0
2α0(A1−α0)

.

We now compute the coefficients of the macroscopic equation (24) for E. coli
bacteria. As we discussed in Sect. 2.1, in a two-dimensional space, the internal state
of E. coli evolves according to the following ODE:

da

dt
= f0(a, S1, S2) + ν cos(θ) f 11 (a, S1, S2) + ν sin(θ) f 21 (a, S1, S2),
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where

f0(a, S1, S2) = α

τa
Na(a − a0)(a − 1),

f 11 (a, S1, S2) = Na(a − 1)
( γ

1 + γ

∂x S1
S1

+ 1

1 + γ

∂x S2
S2

)
,

f 21 (a, S1, S2) = Na(a − 1)
( γ

1 + γ

∂y S1
S1

+ 1

1 + γ

∂y S2
S2

)
.

Note that the constant terms of the Taylor expansions of f 11 and f 21 are zero. These
zero constant terms, in fact, cause a technical difficulty in deriving unique equation
(24)when using themoment closure techniques, aswe discussed in Park andAminzare
(2020). To fix this issue, we make a change of coordinate, â = a − a0, and obtain the
following new internal dynamics of â :

dâ

dt
= f̂0(â, S1, S2) + ν cos(θ) f̂ 11 (â, S1, S2) + ν sin(θ) f̂ 21 (â, S1, S2), (26)

where

f̂0(â, S1, S2) = pNâ(â + q)(â + q − 1),

f̂ 11 (â, S1, S2) = N (â + q)(â + q − 1)
( γ

1 + γ

∂x S1
S1

+ 1

1 + γ

∂x S2
S2

)
,

f̂ 21 (â, S1, S2) = N (â + q)(â + q − 1)
( γ

1 + γ

∂y S1
S1

+ 1

1 + γ

∂y S2
S2

)
.

We let

q = a0 and p = α

τa
(27)

represent the adapted value and the speedof adaptation, respectively.Wealso transform
the tumbling rate, discussed in (5), into the new coordinate â as follows:

λ(â) = λ0 + r(â + q)H , where r = 1

τaH
0

. (28)

All the model parameters N , p, q, r , and H are assumed to be positive constants and
are as given in Table 1. Then, simple calculation show that the Taylor coefficients of
f̂0, f̂ 11 , and f̂ 21 are

A0 = 0, A1 = N pq(q − 1), B1
0 = Nq(q − 1)

( γ

1 + γ

∂x S1
S1

+ 1

1 + γ

∂x S2
S2

)
,

B2
0 = Nq(q − 1)

( γ

1 + γ

∂y S1
S1

+ 1

1 + γ

∂y S2
S2

)
, α0 = λ0 + rq H , α1 = r Hq H

q
.
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We finally derive an advection–diffusion equation for E. coli chemotaxis, see Park and
Aminzare (2020) for details.

Proposition 2 For any θ ∈ [0, 2π), the density functions pθ satisfy the decay condition

pθ (x, y, a, t) ≤ C(x, y, t)e−c(x,y,t)a

for some functions C, c : R2 × [0,∞) → R>0, and the stimuli S1 and S2 satisfy the
shallow condition

∣∣∣ cos(θ)
( γ

1 + γ

∂x S1
S1

+ 1

1 + γ

∂x S2
S2

)
+ sin(θ)

( 1

1 + γ

∂y S1
S1

+ 1

1 + γ

∂y S2
S2

)∣∣∣ ≤ cp

ν

(29)

for any (x, y) ∈ [0, L1] × [0, L2]. Then, for the given internal dynamics (26), the
dynamics of a population of E. coli, n(x, y, t),

∂n

∂t
= ∇ ·

(
D∇n − χ

( γ

1 + γ

∇xS1
S1

+ 1

1 + γ

∇xS2
S2

)
n
)
, (30)

where the diffusion coefficient D and the advection constant χ are

D = ν2

2(λ0 + rq H )
> 0, χ = r N Hq H (q − 1)ν2

2(λ0 + rq H )(N pq(q − 1) − λ0 − rq H )
> 0 .

For the spatial domain [0, L1] × [0, L2], the boundary conditions (25) become

⎧⎪⎨
⎪⎩

D
∂n

∂x
(0, y, t) = χV1(0, y)n(0, y, t) and D

∂n

∂x
(L1, y, t) = χV1(L1, y)n(L1, y, t),

D
∂n

∂ y
(x, 0, t) = χV2(x, 0)n(x, 0, t) and D

∂n

∂ y
(x, L2, t) = χV2(x, L2)n(x, L2, t),

(31)

where

V1(x, y)= γ

1 + γ

∂x S1
S1

+ 1

1 + γ

∂x S2
S2

and V2(x, y)= γ

1 + γ

∂y S1
S1

+ 1

1 + γ

∂y S2
S2

.

4.2 Bifurcation of Bacterial Chemotactic Preference

In a similar way to explaining the direction of bacterial migration in Section 3.2
through the bifurcation parameter γ , we explore properties of a steady-state solution
of the advection–diffusion equation (30) and (31) and predict the direction of bacteria.
To do this, we choose S1, S2 and γ so that continuous functions V1 and V2 on [0, L1]×
[0, L2] satisfy

V1(x, y) = V1(x) and V2(x, y) = V2(y). (32)
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It is a sufficient condition to guarantee a unique non-trivial steady state of (30) and
(31) when the initial condition n(x, y, 0) is non-trivial, see Park and Aminzare (2020)
for more details.

To compute the steady-state solution of the advection–diffusion equation (30) with
zero flux boundary conditions (31), we let the flux at x direction and the flux at y
direction be zero, i.e.,

Jx (x, y) := D
∂n

∂x
− χV1(x, y)n = 0,

Jy(x, y) := D
∂n

∂ y
− χV2(x, y)n = 0,

which yield

(
∂
∂x log n
∂
∂ y log n

)
= χ

D

(
V1(x, y)

V2(x, y)

)
. (33)

Note that this equation cannot be satisfied for any arbitrary V1 and V2. Since the LHS
is a gradient, a necessary and sufficient condition for the equation to hold is

∂V1

∂ y
= ∂V2

∂x
. (34)

Note that (32) automatically satisfies (34). Under this condition, the steady-state solu-
tion can be obtained by simple integration of (33):


(x, y) = 
(c1, c2) exp

{
χ

D

(∫ x

c1
V1(z, y) dz +

∫ y

c2
V2(c1, z) dz

)}
, (35)

where (c1, c2) ∈ [0, L1]×[0, L2] are chosen such that
(c1, c2) is a positive constant.
Similar to what we discussed in Sect. 3.2, if ∂V1/∂x ≤ 0 and ∂V2/∂ y ≤ 0, then the
signs of V1 and V2 at the initial point (x0, y0) can determine the direction of the
motion of bacteria. We let γ ∗

1 be the bifurcation value that determines the right/left
direction (i.e., V1(x0, y0, γ ∗

1 ) = 0) and γ ∗
2 be the bifurcation value that determines

the up/down direction (i.e., V2(x0, y0, γ ∗
2 ) = 0). Then, three scenarios are possible:

(i) for max{γ ∗
1 , γ ∗

2 } < γ , the bacteria move to the northeast and accumulate in A1 :=
{x0 < x < L1, y0 < y < L2}; (ii) for min{γ ∗

1 , γ ∗
2 } < γ < max{γ ∗

1 , γ ∗
2 } the bacteria

either move to the southeast and accumulate in A4 := {x0 < x < L1, 0 < y < y0}
or move to the northwest and accumulate in A2 := {0 < x < x0, y0 < y < L2};
(iii) for γ < min{γ ∗

1 , γ ∗
2 }, the bacteria move to the southwest and accumulate in

A3 := {0 < x < x0, 0 < y < y0}.
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In the following section,we consider three sets of stimuli,which their corresponding
V1 and V2 satisfy condition (32) (and hence (34)). For each set, we find the bifurcation
values which determine the direction of bacteria.
4.3 Monte Carlo Agent-based Simulations in Two-dimensional Space

To validate the two-dimensional macroscopic approximation (30), we run a Monte
Carlo simulation for microscopic equation (22). Our numerical experimental setup is
very similar to that of Section 3.3, which we generalize to a two-dimensional space as
follows. Note that since this work is motivated by Kalinin et al. (2010), we choose a
computational setting to be qualitatively similar to the experimental setup of Kalinin
et al. (2010) as well.

Spatial Domain. A channel of area of 400μm by 1600μm (x ∈ [0, 400], y ∈
[0, 1600]).
Stimuli. Along the two sides of the channel x = 0 and x = 400, two opposing
chemical signals S1(x, y) and S2(x, y), which, respectively, represent the concen-
trations of MeAsp and serine at (x, y), flow and diffuse across the channel. Three
sets of stimuli will be considered in Sects. 4.3.1–4.3.3.
Initial Condition. At t = 0 (sec), an ensemble of 100,000 agents is located in the
center of the channel (x = 200 and y = 800).
Boundary Condition. We use reflecting boundary conditions at x = 0, 400 and
y = 0, 1600 so the cells stay in the domain for all time.
Simulation Duration.We simulate the bacterial behavior for t ∈ [0, 200]. In Sec-
tions 4.3.1 and 4.3.2, we observed that the solutions of theMonte Carlo simulation
and the numerical solutions of (30) become stationary at t = 200.

The distributions of the solutions are displayed by using histograms with 2500
equal-sized bins. To solve the advection–diffusion equation (30) with boundary con-
ditions (31), we use an explicit finite difference method. The summary of input data is
given in Table 2. In what follows, we show some numerical results for three different
choices of the stimuli combinations: Linear–Linear in Sect. 4.3.1, Exponential–
Exponential in Sect. 4.3.2, and Linear × Exponential–Linear × Exponential in Sect.
4.3.3. We will show that (i) for some γ ∗, when γ > γ ∗, the bacteria move to the
gradient of increasing MeAsp and when γ < γ ∗, the bacteria move to the gradi-
ent of increasing serine; and (ii) under the shallow condition (29), the Monte Carlo
agent-based simulations and the numerical solutions of (30) agree well.

4.3.1 Chemotaxis in Response to Two Linear Gradients

Let S1(x, y) = 0.5x + 130 and S2(x, y) = −0.03x + 20 be two opposing linear
gradients for MeAsp and serine, respectively. Note that the stimuli are constant with
respect to y. In this case, V1(x, y) = V (x), as defined in Sect. 3.3.1, and V2(x, y) = 0.
Therefore, the condition (34) holds and the bacteria only move to the right or left (no
up or down movement). Furthermore, the bifurcation value is equal to γ ∗ ≈ 0.985, as
computed in Sect. 3.3.1.

For the given linear gradients, Figure 5(a, b) (respectively, Figure 6(a, b)) displays
the distributions of the normalized density of bacteria obtained from the Monte Carlo
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Fig. 5 a and b: Comparisons of the Monte Carlo simulations and numerical solutions of (30) in response
to two linear gradients, when γ = 1.5. In this case the bacteria move to the right, the gradient of increasing
MeAsp. c: Comparisons of the corresponding CMCs

agent-based simulation and numerical simulation of (30) for γ = 1.5 (respectively,
γ = 0.5). The simulations are shown in three snapshots at times t = 0 (left), t =
60 (middle), and t = 200 (right). Figure 5c (respectively, Figure 6c) displays the
corresponding CMCs in x-direction and y-direction.

In Figs. 5 and 6, the numerical solutions of (30) are in good agreement with the
results of the agent-based simulation. The snapshots of the distributionmove to the gra-
dient of increasing MeAsp in Fig. 5 or serine in Fig. 6. Recalling the bifurcation value
of γ ∗ ≈ 0.985 in Sect. 3.3.1, these figures confirm that the chemotactic preference of
bacteria depends on the relative abundances of receptors, i.e., when γ = 1.1 > γ ∗,
the bacteria move to the gradient of increasing MeAsp (CMCx > 0 and increasing)
and when γ = 0.9 < γ ∗, the bacteria move to the gradient of increasing serine
(CMCx < 0 and decreasing). Note that these numerical examples qualitatively repro-
duce the bacterial behaviors observed in Kalinin et al. (2010).
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Fig. 6 a and b: Comparisons of the Monte Carlo simulations and numerical solutions of (30) for two linear
gradients in (19), γ = 0.5, and p = 1. In this case, the bacteria move to the left, the gradient of increasing
serine. Plots in (a) and (b) are displayed only for (x, y) ∈ [0, 400] × [600, 1000]. (c): Comparisons of the
corresponding CMCs

Since S1 and S2 are independent of y, the bacteria move in the y-direction very
slightly, as evidenced by CMCy ≈ 0. Thus, although we run all the simulations on the
domain [0, 400] × [0, 1600], we display a smaller domain, [0, 400] × [600, 1000].

4.3.2 Chemotaxis in Response to Two Exponential Gradients

We assume that bacteria are exposed to two opposing exponential gradients

S1(x, y) = 130e0.0023x and S2(x, y) = 8e−0.0023(x−400).

In this case, V1(x, y) = V (x), as defined in Sect. 3.3.2, and V2(x, y) = 0. Therefore,
condition (34) holds and the bacteria only move to the right or left (no up or down
movement). Furthermore, the bifurcation value is equal to γ ∗ = 1, as computed in
Sect. 3.3.2.
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Fig. 7 a and b: Comparisons of Monte Carlo simulation and numerical solutions of (30) in response to
two exponential gradients when γ = 1.1. Plots in (a) and (b) are displayed only for (x, y) ∈ [0, 400] ×
[600, 1000]. (c): Comparisons of the corresponding CMCs

In Figs. 7 and 8, we compare the results of the Monte Carlo simulation with numer-
ical solution of (30) and their corresponding CMCs. From the plots, we can see that
(30) captures the behavior of individuals well. Recalling the bifurcation value γ ∗ = 1
of the ratio of Tar to Tsr in Sect. 3.3.2, as expected, the individuals travel to the right
when γ = 1.1 > γ ∗ as in Fig. 7 and move to the left when γ = 0.9 < γ ∗ as in Fig. 8.

4.3.3 Chemotaxis in Response to Mixed Signals

In Sections 4.3.1 and 4.3.2, we used two opposing gradients, independent of y, to
reproduce chemotaxis experiments in the literature. In what follows, we assume that
two opposing gradients MeAsp (S1) and serine (S2) satisfy

S1(x, y)=(0.5x + 130)e0.005(y−800) and S2(x, y)=(−0.03x + 20)e−0.005(y−800).

(36)
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Fig. 8 a and b: Comparisons of Monte Carlo simulation and numerical solutions of (30) in response to two
exponential gradients when γ = 0.9. Plots in a and b are displayed only for (x, y) ∈ [0, 400]×[600, 1000].
c: Comparisons of the corresponding CMCs

Note that each gradient increases toward the corners (0, 0) and (400, 1600) on the
boundary of the domain, and reaches a peak at the corners. In this case, V1(x, y) =
V (x), as defined in Sect. 3.3.1, and V2(x, y) = 0.005 γ−1

γ+1 . Therefore, condition
(34) holds. Furthermore, the bifurcation values are γ ∗

1 ≈ 0.985, as computed in Sect.
3.3.1, and γ ∗

2 = 1. Therefore, three scenarios occur: (i) for γ > 1 the bacteria move
to the northeast, (ii) for 0.985 < γ < 1 the bacteria move to northwest, and (iii) for
γ < 0.985 the bacteria move to southwest. As expected, the plots in Fig. 9 show that
bacteria accumulate toward the corner (400, 1600), when γ = 1.5 > 1. Also, the
solution of (30) agrees well with the result of the Monte Carlo simulation.

5 Discussion

In this work, we studied the movement of a population of E. coli bacteria in response
to two stimuli in a one- and a two-dimensional environment. Experimental results
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Fig. 9 a and b: Comparisons of Monte Carlo simulation and numerical solutions of (30) for gradients (36)
for γ = 1.5. c: Comparisons of the corresponding CMCs

(Kalinin et al. 2010) show that the bacterial chemotactic preference to serine and
MeAsp depends on the ratio of their chemoreceptors, namely γ = Tar/Tsr. In a
shallow-gradient regime, we analytically found a threshold γ ∗ that determines the
bacterial preference, i.e., if γ > γ ∗, the bacteria move toward the gradient of MeAsp,
and if γ < γ ∗, the bacteria move toward the gradient of serine. We examined our
results in an environment where one stimulus is dominant everywhere and observed
that in such a situation, a bigger force γ ∗ might be needed to change the preference
of the bacteria.

We started with a microscopic model for a population of bacteria carrying a
one-dimensional internal dynamics. Indeed the microscopic equation is the forward
Fokker–Planck equation of a stochastic model which describes bacterial chemotaxis
(Stroock 1974). Then, we approximated the microscopic Fokker–Planck equation by
a macroscopic advection–diffusion equation which is more tractable mathematically.
We compared the numerical solution of the advection–diffusion equationwith aMonte
Carlo simulation of the bacterial chemotaxis to validate the approximation in a shallow-
gradient regime.

The analysis in deriving the advection–diffusion equations is valid under the
shallow-gradient condition. However, we numerically observed that even if the
shallow-gradient condition does not hold, some of our results remain valid. For exam-
ple, Figure 10 shows that under the condition of Section 3.3.1, the behavior of the
bacteria does not change even when the adaptation rate p does not satisfy the sallow-
gradient condition (gray region).We also observed that p does not affect the preference
of bacteria. In fact, cells are often exposed to rapidly changing signals in vitro experi-
ments and natural environments (see Xue (2015), Xue and Yang (2016) and references
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Fig. 10 How fast the signal changes or the adaptation speed does not affect the bacterial chemotactic
preference. CMCx of the steady state (17) for S1 and S2 in (19) for x0 = 200. For (γ, p) in the dark
red (respectively, blue) region, CMCx becomes positive (respectively, negative) as shown in the color bar.
For (γ, p) in the dark gray region, the shallow condition (11) is not satisfied. The dotted line represents
γ ≈ 0.985

therein), and great progress has been made in relaxing shallow gradient assumption
Xue and Othmer (2009), Xue (2015), Xue and Yang (2016), Rousset and Samaey
(2013), Gosztolai and Barahona (2020). Our work can be improved by considering a
more general class of stimuli.

In Long et al. (2017), the authors found that E. coli cells respond to the gradient
of chemoattractant not only by biasing their own random-walk swimming pattern
through the intracellular pathway, but also by actively secreting a chemical signal
into the extracellular medium, possibly through a communication signal transduction
pathway. The extracellular signaling molecule is a strong chemoattractant that attracts
distant cells to the food source. They showed that cell–cell communication enhances
bacterial chemotaxis toward external attractants. Incorporating such chemoattractant
into microscopic model is one of the main areas of our future investigation. This cell–
cell communication can be modeled as an external force to each cell and described by
an extra term into the LHS of (7), see Xue and Othmer (2009).

In this work, we only considered a one-dimensional internal dynamics. To obtain
the internal dynamics of E. coli in response to multiple stimuli, we applied the het-
erogeneous MWC model (1) Hu and Tu (2014), Mello and Tu (2005), Keymer et al.
(2006), which can capture the total activity level of bacterium affected by the stimuli
and mathematically is tractable. In this global adaptation model, all receptors within
the cluster are assumed to turn on and off simultaneously, and therefore, only the
total kinase activity and total methylation level are considered. However, in a mixed-
receptor cluster, it was found that receptor methylation dynamics is ligand specific
and transient methylation crosstalk exists (Lan et al. 2011). Hence, a local adaptation
model, such as Ising-type models (Lan et al. 2011; Keymer et al. 2006; Hu and Tu
2013), can better explain the adaptation dynamics of the mixed-receptor cluster. Such
models require higher-dimensional equations to describe the internal dynamics. In our
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future works, we generalize our result to two-dimensional internal dynamics and for
each receptor Tar and Tsr, we will consider separate activity levels a1 and a2 instead
of a in (1) and separate methylation dynamics dm1/dt and dm2/dt instead of (2), as
described in Lan et al. (2011). Further, it would be great to consider the roles of the
intratrimer and intertrimer interactions as the existing MWC-type or Ising-type model
averages these interactions (Xin and Othmer 2012).

Acknowledgements The authors would like to thank Professor Eduardo Sontag for sharing the Matlab
codes for one-dimensional space (used in Aminzare and Sontag (2013)) and Professor Hans Othmer for
helpful discussions. This work is partially supported by the University of Iowa Old Gold Fellowship and
Simons Foundation (712522) to ZA. The authors would also like to thank the anonymous referee who
provided valuable suggestions and comments to improve this work.

Appendix

A brief description of Monte Carlo simulation: In a one-dimensional (respec-
tively, two-dimensional) channel, we locate an ensemble of 100,000 agents in the
center of the channel x = 200 (respectively, (x, y) = (200, 800)) at time t =
0. At each time step, the individuals choose a direction +1 or -1 (respectively,
(cos(θ), sin(θ)), θ ∈ [0, 2π)) at random, and move in that direction with a con-
stant speed ν > 0. At each time step, the internal dynamics of each individual are
computed by Euler method. At the end of each time step, we choose a number between
0 and 1 randomly and compare the number with the probability of change from run to
tumble in interval of length dt , namely λ(a)dt . If the turn occurs, the cell moves in the
opposite directionwith a probability of 0.5 (respectively, rotates by θ ∈ [0, 2π), where
θ is chosen at random). If a cell is located outside the spatial domain, we relocate the
cell by imposing reflecting boundary conditions.

See Tables 1 and 2.
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